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Abstract. Recently, Dual-Pixel (DP) sensors have been adopted in many
imaging devices. However, despite their various advantages, DP sensors
are used just for faster auto-focus and aesthetic image captures, and
research on their usage for 3D facial understanding has been limited
due to the lack of datasets and algorithmic designs that exploit paral-
lax in DP images. It is also because the baseline of sub-aperture images
is extremely narrow, and parallax exists in the defocus blur region. In
this paper, we introduce a DP-oriented Depth/Normal estimation net-
work that reconstructs the 3D facial geometry. In addition, to train the
network, we collect DP facial data with more than 135K images for
101 persons captured with our multi-camera structured light systems. It
contains ground-truth 3D facial models including depth map and surface
normal in metric scale. Our dataset allows the proposed network to be
generalized for 3D facial depth/normal estimation. The proposed net-
work consists of two novel modules: Adaptive Sampling Module (ASM)
and Adaptive Normal Module (ANM), which are specialized in handling
the defocus blur in DP images. Finally, we demonstrate that the pro-
posed method achieves state-of-the-art performances over recent DP-
based depth/normal estimation methods.

Keywords: Dual-Pixel, Depth/Normal estimation

1 Introduction

A huge number of facial images are posted every day on social media. In 2020, for
example, about 70 percent of photos were taken using cameras on smartphones
and 24 billion selfies were uploaded to Google Photos App [19,20]. Accordingly,
acquiring facial geometry from images has emerged as an interesting research
topic, since 3D facial geometry can be used for various applications [69] such as
face recognition [25,40,37], performance-based animation, real-time facial reen-
actment [5,68], facial biometrics [65], face-based interfaces, visual speech recog-
nition, face-based search in visual assets, creating personalized avatars [43,35]
or 3D printing of faces for entertainment or medicine, facial puppetry, face re-
placement [68,5], speech-driven animation, virtual make-up, and face image edit-
ing [63], etc. 3D facial geometry can be obtained by either using multiple cam-
eras [15,4] or active sensing devices [32,30]. However, these methods often suffer
from uncontrolled lighting conditions or hardware synchronization.
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Recently, Dual-Pixel (DP) sensors get noticed due to their various advan-
tages and are applied to the many portable imaging devices such as iPhone13
ProMax and Samsung Galaxy 22. DP sensors are perfectly synchronized with
the same exposure, white balance, and geometric rectification. Such strengths
derive from their hardware configuration that captures two images in a single
camera at once. Based on these properties, currently, these novel sensors are
mainly specialized in the fast auto-focus operation and more aesthetic image
captures. However, thanks to their characteristics, DP sensors have great po-
tential for other tasks. For example, a few previous studies [57,16,46,67,45,61]
envision the new possibility of DP images for scene depth estimation. Usually,
these studies regard DP images as extremely narrow-baseline stereo images hav-
ing defocus-blur to infer high-quality depth maps. Here, it is worthy to note
that although the DP sensors are being actively used to take face pictures, there
has been a limited study [60] that recovers facial geometry using a Dual-Pixel
camera. We found that previous methods have difficulty in facial geometry esti-
mation, which is due to the lack of a facial DP dataset with precise 3D geometry
and an appropriate algorithm for generalized estimation.

To address the issue, we present a DP-oriented 3D facial dataset and a
depth/normal estimation network toward high-quality facial geometry recon-
struction with DP cameras. We represent the 3D facial geometry not only with
the depth map but also with the normal map for various applications such as face
relighting. Our dataset involves 135,744 face data for 101 persons consisting of
DP images and their corresponding depth maps and surface normal maps, which
are captured by our structured light camera system. Based on these data, we
train our depth/normal estimation network, called stereoDPNet, to infer 3D fa-
cial information from DP images. In particular, our stereoDPNet is fully oriented
from the properties of dual-pixel images that have an extremely small range of
disparity with defocus-blur. Our network design carefully treats these distinctive
properties through our Adaptive Sampling Module (ASM) and Adaptive Normal
Module (ANM). Finally, the contributions are as follows:

– DP-oriented 3D facial dataset with more than 135K DP images and their
corresponding high-quality 3D models.

– Novel depth/normal estimation network for facial 3D reconstruction from a
DP image with better generalization.

2 Related Work

Defocus-disparity in Dual-Pixel. Dual-Pixel images can be considered as
a pair of stereo images since the DP camera captures two sub-aperture images
with small parallax. However, since the DP camera is equipped with a micro-lens
array in front of a camera sensor, the pixel disparity in DP images is extremely
narrow (−4px ∼ +4px) [67] compared to conventional stereo images. For this
reason, Zhang et al . [67] contend that a single pair of DP images is not suitable
for cost volume-based disparity regression due to the narrow baseline (<∼1mm).
Other works [16] also adopt simple 2D U-Net architectures for affine-transformed
depth regression. Meanwhile, the disparity of DP images is induced by different
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(b) Real-World Generalization(a) Facial Depth and Normal from our Facial Dataset (c) Real-World Applications
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Fig. 1. Using our Dual-Pixel Facial datasets, our network aims at generalized estima-
tion of unmet facial geometry, which can be used for various applications, such as face
spoofing or relighting.

left/right point spread functions (PSFs) instead of view parallax of stereo, called
defocus-disparity [46]. Based on this observation, Punnappurath et al . [46] pro-
pose an optimization-based disparity regression using a parametrized PSF. The
pioneering works [57,16,46] allow us to formulate depth-disparity conversion.
Geometry dataset for Dual-Pixel. Owing to the growing research interest
in DP photography, several real/synthetic DP datasets [16,46,45,3] have been
released. Garg et al . [16] propose a real-world DP dataset that includes scene-
scale images captured by an array of smartphones. Despite of their success, the
estimated depth is up to scale because their training data contains a relative-
scaled 3D geometry computed by a multiview stereo algorithm (COLMAP [51]).
Face dataset. Facial datasets have typically been created whenever new types
of commercial imaging devices are introduced. Since it is only available to recon-
struct faces from monocular images with a limited assumption [59], many 3D face
regression methods [49,14,21] rely on a given face morphable model [56,7] and
modify the shape with facial keypoints [14,52] and landmarks [13,6]. Recently,
several face regression models [58,6] utilize multi-view images as input. However,
it is challenging to estimate facial geometry from DP images since blurry features
are hardly captured from homogeneous regions of the face. This property brings
difficulty in finding correspondence between left/right DP images. We observe
that the previous DP-oriented methods [16,46] have difficulty estimating the 3D
geometry of human faces as well. Many of the applications with facial images
require both a high-quality depth and a surface normal for pleasing aesthetic ef-
fects [68]. Therefore, we satisfy the increasing industrial and academic demands
by providing high-quality and absolute scale facial depth/normal maps that are
captured with cameras with DP sensors.

3 Overview

This paper covers dual-pixel based facial understanding: from data acquisition
(Sec. 4) to general estimation by stereoDPNet (Sec. 5). Different from natu-
ral images from typical cameras, dual-pixel sensors capture images having an
extremely small range of disparity as well as defocus-blur, as shown in Fig. 4.
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(b) Examples of captured dataset (c) Statistics of captured dataset 
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Fig. 2. Examples of our facial dataset. (a) The proposed hardware setup:
(2×4 multi-camera array (blue), 6 LEDs (red), a projector (green), and a LED con-
troller (magenta). (b) DP images with various facial expressions (horizontal axis) and
distances from the hardware to faces (vertical axis). There are two additional images
taken in different heading directions (center/rightward). (c) Our dataset has 68 men
and 33 women and age distribution of them ranges from 19 to 45.

Through our carefully designed dataset and network, we design a well-generalized
methodology that even can infer facial geometry from unmet DP facial images.

4 Dual-Pixel Facial Dataset

In this section, we explain the construction of DP-oriented facial dataset. Since
defocus-disparity in DP images is highly sensitive to image resolution, our dataset
should contain both high resolution and high quality ground truth depth. By con-
sidering these requirements, we first explain the data configuration (Sec. 4.1),
details of capturing system (Sec. 4.2), and describe a ground-truth depth/normal
acquisition process (Sec. 4.3).

4.1 Dataset Configuration

Given an array of multiple DP cameras, we capture various human faces with
different expressions and light conditions. The dataset consists of 135,744 photos,
which are a combination of 101 people, eight cameras, seven different lighting
condition, four facial heading directions (left, right, center and upward), three
facial expressions (normal, open mouth and frown), and two fixed distances of
subjects from the camera array, as illustrated in Fig. 2. The distances between
the camera array and subjects range from 80 cm to 110 cm. Since the focus
distance is about 97 cm, our captured images contain both front focused and
back focused cases. Our dataset includes 44,352 female photos as well as 91,392
male photos, ages range from 19 to 45. The detailed statistics are provided
in Fig. 2-(c). In main experiments, we use 76 people (76%) as a train set and
the others (24%) as a test/validation set without any overlap with the train set.

4.2 Hardware Setup

For facial data acquisition, we set up the DP-oriented camera-projector system.
The system consists of eight synchronized Canon 5D Mark IV cameras on a 2×4
grid, with one commercial projector (1920× 1080 pixels) and six LED lights, as
shown in Fig. 2 which enables capturing high-quality ground truths by using both
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(b) Outlier Removal (c) Refinement(a) Initial (d) Ground truth surface normal

Fig. 3. Ground-truth depth and surface normal acquisition. (a) Initial depth
from the structured light. (b) Depth after removing outliers. (c) Depth via fusion of
the initial depth and the surface normal obtained from the photometric stereo in (c).

structured light and photometric stereo. These cameras are available to capture
DP images [2,3,45]. Each camera is equipped with a Canon 135mm L lens. The
17◦ field of view (FOV), which the lens affords, can cover an approximately
16.7cm×25cm area at about one-meter distance, which is suitable for capturing
human faces. We take our dataset with a camera aperture of F5.6, exposure
time 1/30”, and ISO 1600. The shape of the camera rig mimics a spherical dome
with a one-meter radius. All of the cameras are located on the rig looking at the
same point near the sphere’s center. The projector is positioned at the center of
the camera array. The LED lights are installed at various positions so that face
images can be taken under varying lighting conditions.

4.3 Ground Truth Data Acquisition

Structured light systems are designed for high-quality 3D geometry acquisition
under controlled environments by projecting pre-defined patterns on surfaces
of objects [50,23,12] and by analyzing the projected patterns to measure 3D
shapes of the objects. It is extensively used for ground-truth depth maps in
stereo matching benchmarks [27,1,54] and shape from shading [24]. In this work,
we tailor the structured light-based facial 3D reconstruction method [22] with
our well-synchronized multi-camera system. Thanks to our capturing system and
structured light-based reconstruction method, we obtain dense, high-quality fa-
cial 3D corresponding to high-resolution DP images in Fig. 1-(a). Moreover, we
calibrate point light directions by using a chrome ball and applying a photo-
metric stereo in [44] to obtain accurate surface normal maps of subjects’ faces
in Fig. 3(d). We utilize the RANSAC algorithm in obtaining both surface nor-
mal and albedo for robust estimation by excluding severe specular reflection. By
using the surface normals, initial depth is refined by conforming the initial facial
depth and the surface normal [44], as illustrated in Fig. 3(a), (b), and (c).

To the end, we find an exact conversion between a defocus-disparity and a
metric depth by using the relationship of signed defocus-blur b̄(x, y) and dispar-
ity d (Eq. 1) introduced in [16] with the paraxial and thin-lens approximations.

d(x, y) = αb̄(x, y)

≈ α
Lf

1− f/g

(
1

g
− 1

Z(x, y)

)
≜ A(L, f, g) +

B(L, f, g)

Z(x, y)
,

(1)
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Fig. 4. Dual-Pixel Geometry. Disparity in DP images exists in blurry regions, called
defocus-disparity (left). The ground-truth depth obtained by a plane homography and a
defocus-disparity from the matching pairs are used to robustly find parameters of Eq. 1.
This relationship is used to back-project our prediction to metric-scale depth (right).

where (x, y, Z(x, y)) indicates 3D coordinates in camera space, α is a propor-
tional term, and L is the diameter of the camera aperture. f represents the
focal length of the lens and g is the focus distance of the camera. By using this
relationship, we obtain a ground-truth defocus-disparity from the ground-truth
depth in Fig. 4. This conversion is used to back-project our defocus-disparity to
metric 3D space, and will be utilized to support absolute metric information for
our depth and surface normal estimation network in Sec. 5.

5 Facial Depth and Normal Estimation

Based on our dataset, we design StereoDPNet for the general estimation of facial
depth and normal. In real applications, dual-pixel images can be captured with
various camera parameters, such as focus distance or focal length. The proposed
network should cope with various hardware setups as well.

In this point of view, stereo matching methods [9,62,31,66] show strength
in generalization toward unmet environments and robust to camera configura-
tion thanks to its corresponding search. Since a pair of DP images can also be
regarded as stereo images having a short disparity range, we build our Stere-
oDPNet based on the stereo-based depth/normal method [34] for our dual-pixel
based depth/normal estimation.

Nonetheless, the stereo matching methods often require all-in-focus and well-
textured images for pixel-wise correspondence search, which is not always guar-
anteed for DP images due to its defocus-blur and homogeneous/textureless faces.
Thus, we propose our two novel modules, Adaptive Sampling Module (ASM) and
Adaptive Normal Module (ANM), to further fit the properties of dual-pixel im-
ages. As in Fig. 5, our StereoDPNet consists of four parts: feature extraction
layer, ASM, cost aggregation layer, and ANM.

5.1 Overall Architecture

Given DP images with left IL and right IR, stereoDPNet is trained to infer a
disparity map d̂ and a surface normal map n̂. To do so, first, the feature ex-
traction layer infers DP image features FL and FR, respectively. Our feature
extractor captures multi-scale information with a large receptive field by adopt-
ing Atrous Spatial Pyramid Pooling [11] and Feature Pyramid Network [39] to
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Fig. 5. Architecture of StereoDPNet. Given DP images, our network is trained to
infer facial depth/normal maps. Our two key modules, Adaptive Sampling Module and
Adaptive Normal Module, overcome the extremely narrow baseline in DP images by
capturing disparities in blurry regions. Note that we use the pre-defined relationship
between disparity and depth in Sec. 4.3 to convert disparity to metric depth.

encode various sizes of defocus blur in the DP images. Second, using FL and
FR, the proposed ASM captures an amount of spatially varying blur in dynamic
ranges, and then adaptively samples the features. Then, the sampled features
GL and GR are stacked into a cost volume V. Third, the cost volume is ag-
gregated through three stacked hourglass modules to infer the aggregated cost
volume CA. Lastly, this aggregated volume CA is used to regress a disparity map
following the baseline and infer a surface normal map by ANM. The details of
ASM and ANM are described in Sec. 5.2 and Sec. 5.3.

5.2 Adaptive Sampling Module

In contrast to the widely used stereo images such as KITTI Stereo Bench-
mark [18,17], dual-pixel images inherently have a small disparity range and
defocus-blur. To cope with this issue, we design ASM inspired by defocus blur
matching method [10] and depth from narrow-baseline light-field image [29]. As
illustrated in Fig. 6-(a), our ASM dynamically samples blurry texture features
for narrow-baseline stereo matching. To this end, the input features (FL,FR)
pass through a dynamic feature sampling layer and a self-3D attention layer to
obtain the locally dominant features GL, GR.

According to Jeon et al . [29], the sub-pixel shift from different sampling
strategies to construct cost volume for matching provides varying results de-
pending on the local scene configurations. In particular, phase-shift interpolation
ensures a denser sampling field at sub-pixel precision and reduces the burden
from blurriness compared to other interpolation methods [29]. To take advan-
tage of various conventional sampling methods, we incorporate them into ASM.
The dynamic sampling layer in ASM is designed with a combination of nearest-
neighbor, bilinear, and phase-shift interpolation, which can have various recep-
tive fields to find varying blur sizes and can obtain subpixel-level shifted features.
To this end, the shifted features from the three different sampling strategies are
concatenated into one channel as a volumetric feature V.

To extract useful features from given volumetric feature V, we design a self-3D
attention layer. Our self-3D attention layer adaptively selects sampling strategies
to include prominent texture information in an extracted feature map. The layer
consists of several 3D convolutional layers and the Sigmoid function. This obtains
a soft mask as attention map W and selects features along the channel where V is
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Fig. 6. Proposed Modules of StereoDPNet. (a) Adaptive Sampling Module
(ASM) consists of a dynamic sampling and a self-3D attention layer. (b) Adaptive
Normal Module (ANM) consists of a surface sampling and a 3D deformable convolu-
tional layer for surface normal regression.

concatenated. The soft mask W is multiplied with the feature V to sample useful
features and the final feature volume VS is produced through a softmax layer.
Finally, the sampled features with the sub-pixel shift, GL and GR, are obtained
by averaging the volume VS . The matching cost volume, constructed from the
selected feature maps (GL, GR), contains rich texture information with relative
blur and performs effective matching in homogeneous regions as well [10].

5.3 Adaptive Normal Module

As illustrated in Fig. 6-(b), ANM aims to produce a surface normal map com-
plementary to an estimated defocus-disparity map and to model 3D surface of
human faces. The ANM consists of surface sampling module to capture surface
by sampling the aggregated cost volume CA and deformable 3D convolutional
layer to consider dynamic ranges of neighbors to compute normal vectors.

According to [34], an accurately aggregated cost volume contains an implicit
function representation of underlying surfaces for depth estimation. Since the
surface normal mainly depends on the shape of the local surface, it is redundant
to use all voxel embeddings in CA for facial normal estimation. We thus sample
the P candidates of hypothesis planes among M planes from the aggregated
volume CA using the estimated disparity map (Eq. 2). Since the surface normal
is defined with the metric scale depth, we convert disparity to a depth map
using Eq. 1 in Sec. 4.3 and provide this volumetric information with our network
denoted as coordinate volume Ccoord. The details of surface sampling process is
explained in the supplementary material.

Since a human face has a variety of curved local surfaces, we need to con-
sider dynamic ranges of neighbors to extract a local surface from the sampled
hypothesis planes CS in the previous stage. To do this, we follow the assumption
of local plane in [41,47,42] and forms a local plane by a small set of neighbor
points. Since these local patches have arbitrary shapes and sizes composed with
its sampled neighboring points, we use 3D deformable convolutions [64] to con-
sider the neighboring points within the dynamic ranges. The learnable offsets
of the deformable convolution in 3D space allow us to adaptively sample neigh-
bors and to find the best local plane. The final feature volume CN is predicted
after passing two 3D deformable convolution layers to extract surface normal
information from the sampled volume CS .
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5.4 Depth and Normal Estimation

The aggregated volume CA passes through a classifier to produce a final matching
cost A, and the softmax function σ(·) is applied to regress the defocus-disparity

d̂. Accordingly, we compute the disparity as follows:

d̂u,v =

M∑
m=1

dm · σ
(
Am

u,v

)
, (2)

where d̂u,v is the defocus-disparity and Au,v is the final matching cost at a pixel
(u, v). M and dm are the range of defocus-disparity, and predefined discrete dis-
parity labels, respectively, whose details are described in Sec. 5.5. Following [9],
we minimize a disparity loss Ldisp using a smooth L1 loss as follows:

Ldisp =
1

H ·W

W∑
u=1

H∑
v=1

Mu,v · smoothL1

(
du,v − d̂u,v

)
, (3)

where du,v is a ground-truth defocus-disparity at a pixel (u, v) converted from
the ground-truth metric scale depth and Mu,v is the facial mask in Sec. 4.3.

For the surface normal estimation, shared 2D convolutions are applied to the
feature volume CN to regress a surface normal. The final convolutional layers
follow the same structure of the baseline architecture in [34]. Finally, we train
ANM by minimizing a cosine similarity normal loss Lnormal as:

Lnormal =
1

H ·W

W∑
u=1

H∑
v=1

Mu,v · (1− nu,v · n̂u,v) , (4)

where nu,v and n̂u,v are a ground-truth, and a predicted normal at a pixel (u, v).

Ltotal = Ldisp + Lnormal (5)

Our StereoDPNet is fully supervised by our ground-truth depth/normal maps.
The network is trained by minimizing the combination of Eq. 3 and Eq. 4.

5.5 Implementation Details

The depth in our facial dataset ranges from 80 cm to 110 cm as described
in Sec. 4.1 and the focus distance is about 97 cm. Therefore, our valid disparity
range on original images is from -12 to 32 pixels. We note that the resolution of
input images used is 1680× 1120, which is downsampled four-fold due to GPU
memory limitations. We thus set the minimum and maximum disparity of Eq. 2
to -4 and 12 pixels. We also set the number of levels in the cost volume M to
8, which represents a 0.5 pixel accuracy at least. We train our network with a
batch size of four, and use Adam optimizer [33] starting from the initial learning
rate 10−4 with a constant decay of 0.5 at every 35 epochs.
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Method Task
Absolute error metric [mm] ↓ Affine error metric [px] ↓ Accuracy metric ↑

AbsRel AbsDiff SqRel RMSE RMSElog WMAE WRMSE 1−ρ δ<1.01 δ<1.012

PSMNet [9] ST 0.006 5.314 0.054 6.770 0.008 0.093 0.126 0.054 0.818 0.983
StereoNet [31] ST 0.005 4.306 0.038 5.811 0.006 0.112 0.150 0.087 0.903 0.991
DPNet [16] DP 0.008 7.175 0.092 8.833 0.010 0.110 0.148 0.086 0.688 0.959
MDD [46] DP - - - - - 1.830 2.348 0.575 - -
BTS [36] M 0.007 6.575 0.081 8.102 0.009 0.111 0.150 0.077 0.731 0.964
NNet [34] DN 0.004 3.608 0.027 4.858 0.005 0.073 0.102 0.048 0.934 0.995

Ours DN 0.003 2.864 0.019 3.899 0.004 0.064 0.091 0.034 0.966 0.995

Table 1. Depth Benchmark Results. We show that our proposed method out-
performs the existing stereo matching methods (PSMNet [9], StereoNet [31]), DP-
oriented state-of-the-art methods (DPNet [16], MDD [46]), monocular depth estima-
tion (BTS [36]), and depth/normal network for stereo matching (NNet [34]). Note that
since MDD adopts another a defocus-disparity geometry different from [16], it is not
measured by the absolute metrics. ST, DP, M, and DN denotes “Stereo Matching”,
“DP-oriented method”, “Monocular”, and “Depth and Normal”, respectively.

Method
ANM Absolute [mm] ↓ Affine [px] ↓ Accuracy ↑ Normal [deg] ↓
SS D3D AbsDiff RMSE WMAE WRMSE 1−ρ δ<1.01 δ<1.012 MAE RMSE

ASM Only 4.895 6.223 0.095 0.127 0.056 0.850 0.992 - -
NNet [34] 3.608 4.858 0.073 0.102 0.048 0.934 0.995 9.634 11.877

ASM + NNet 3.271 4.434 0.064 0.090 0.033 0.947 0.997 9.072 11.045
ASM + NNet ✓ 3.214 4.519 0.062 0.089 0.037 0.943 0.990 8.894 10.837

StereoDPNet ✓ ✓ 2.864 3.899 0.064 0.091 0.034 0.966 0.995 7.479 9.386

Table 2. Ablation Study of ANM. NNet [34] is a baseline model of our overall
architecture. We compare the performance of depth and surface normal estimation by
adding each component. SS denotes “Surface Sampling” and D3D denotes “Deformable
3D convolution” of ANM respectively.

Method
Absolute error metric [mm] ↓ Accuracy metric ↑
AbsDiff SqRel RMSE δ<1.01 δ<1.012

Bilinear (Bi) 7.956 0.116 9.842 0.615 0.928

Phase 8.287 0.132 10.487 0.606 0.916

Phase + Bi 6.030 0.067 7.522 0.754 0.980

Nearest + Bi 5.841 0.062 7.287 0.772 0.984

Nearest + Phase 5.831 0.062 7.247 0.773 0.985

ASM 4.895 0.045 6.223 0.850 0.992

Table 3. Ablation Study of ASM. We test various sampling strategies in ASM and
determine the final structure of ASM. Here, we only use ASM to strictly compare the
inference of each sampling strategies. Bi denotes bilinear sampling.

6 Experiments

To evaluate the effectiveness and the robustness of our work, we carry out vari-
ous experiments on our dataset as well as DP images captured under real-world
environments. For a fair comparison, all the methods are trained on identical
training sets of our dataset from scratch. We then evaluate the quality of esti-
mated depth/normal maps on the same test split of our facial dataset. Note that
we use the facial mask for training and the test, given by the data acquisition
process in Sec. 4.1. For the real-world samples, we use a facial mask from a
pretrained face segmentation network1.

1 https://github.com/zllrunning/face-parsing.PyTorch

https://github.com/zllrunning/face-parsing.PyTorch
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RMSE : 11.58RMSE : 10.0 RMSE : 3.84 RMSE : 3.77RMSE : 5.12

RMSE : 7.63 RMSE : 7.62 RMSE : 8.84 RMSE : 9.25 MAE : 7.09 RMSE : 3.63 MAE : 6.96

MAE : 6.62MAE : 7.46WMAE : 1.32

WMAE : 1.20

(A) StereoNet (B) DPNet (C) MDD (D) BTS (E) NNet (Depth and Normal) (F) Ours (Depth and Normal)

Fig. 7. Qualitative results on test set. We report AbsRel map of depths and MAE
map of normals as the error map of predictions. The error map from MDD is the
WMAE map because it predicts relative scale depth maps. We note that the range of
error map is 0.0 ∼ 1.0 (AbsRel [mm]) and 0.0 ∼ 15.0 (MAE [degree]).

(A) StereoNet (B) DPNet (C) BTS (D) NNet (Depth and Normal) (E) Ours (Depth, Normal, and Point Cloud)

Fig. 8. Real-world results. We capture faces in unmet real-world and compare our
method with the others in Table 1. StereoDPNet clearly captures surface and boundary
depth of the face. Please refer to the supplementary material for more examples.

6.1 Comparison Results

Evaluation Metrics. In our dataset benchmark, we convert our predicted
disparity to depth (Sec. 4.3). Thus, we use both evaluation metrics in a public
benchmark suite2: AbsRel, AbsDiff, SqRel, RMSE, RMSElog, and inlier pixel
ratios (δ < 1.01i where i ∈ {1, 2, 3})3 and affine invariant metrics [16] for the
evaluation of predicted disparity/depth. To measure the quality of a surface
normal map, we utilize a Mean Angular Error (MAE) and a Root Mean Square
Angular Error (RMSAE) in degree unit following the DiLiGenT benchmark [53].

2 http://www.cvlibs.net/datasets/kitti/
3 All equations of the metrics are described in Supplementary material.

http://www.cvlibs.net/datasets/kitti/
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(a) Visualized spatial behavior of ASM. (b) Surface refinement with ANM.
ASM Only ASM + ANM

Fig. 9. (a) Spatial behavior of ASM (bilinear, nearest, and phase). (b) We compare 3D
point cloud of the method of only ASM and with our full method of ASM and ANM.
The result demonstrates that ANM refines surface of the facial 3D.

Depth Benchmark. We compare our method with recent DP-based depth es-
timation approaches [16,46] as well as widely used stereo matching networks [9,31],
a depth/normal network for stereo matching, NNet [34] and a state-of-the-art
monocular depth estimation network, BTS [36], whose results are reported in Ta-
ble 1 and in Fig. 7. Since there is no published code for [16], we implement DP-
Net [16] to predict disparity instead of inverse depth following them, and check
that the performance is similar on their dataset.

Due to the small range of the defocus-disparity from DP images (-4px to
12px), the cost volume with the discrete hypotheses leads to unstable train-
ing [67]. As a result, typical stereo matching based depth estimations, PSM-
Net [9], StereoNet [31] do not work well. The methods in Table 1 except ours fail
to handle defocus blur or struggle to find correspondances in human faces. For
example, both DPNet and BTS suffer from blurry predictions, and MDD [46]
is sensitive to the textureless regions in human faces. Although NNet [34] show
relatively promising results, our method still outperforms them. Moreover, real-
world results in Fig. 8 demonstrates that our network is specialized in finding
defocus-disparity from facial DP images and robust to blur which produces ro-
bust results from the unmet facial scene.
Surface Normal Benchmark. To the best of our knowledge, this is the first
attempt to estimate both the surface normal and the defocus-disparity from
single DP images. Since the basic structure of ANM is derived from the recent
depth and normal network [34] for multi-view stereo, we show the performance
improvement of our ANM, compared to the baseline method [34] by adding
each component in Table 2. We find that joint learning of disparity and surface
normal leads to geometrically consistent and high-quality depth and surface
normal shown in Fig. 9, which has been demonstrated in previous works [48,26].

6.2 Ablation Study

Analysis of ASM and ANM. First, we compare various subpixel sampling
strategies in ASM as an ablation study. In Table 3, including whole attention
maps from three different interpolations as proposed in ASM, shows the best
performance over any combination of two interpolations. We also provide spatial
attention of W in ASM following the illustration scheme for selective matching
costs in [28]. It shows that different sampling schemes are adaptively chosen.
Second, we show that our surface normal estimation greatly improves the pre-
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Fig. 10. Depth from single DP images in the wild. We show depth estimation
results of StereoDPNet on outdoor photos, which are directly captured by us (left side)
and in a public real-world DP dataset [2] for deblurring (right side).

(a) Depth and normal from public dataset [2] (b) Depth and normal from our captured examples

Fig. 11. Depth and normal results in the wild. (a) public DP dataset [2], and
(b) our captured natural DP images.

diction of the disparity in Table 2. ANM captures local surface and refines the
surface via cost volume and leads to major performance improvement as shown
in Fig. 9. We attribute this outstanding performance to our sub-modules (ASM
and ANM), which overcome the extremely narrow baselines in DP images.
Real World Experiment. To verify the generalizability of our method, we
newly capture outdoor DP images using the Canon DSLR camera. We capture
faces with various camera parameters (focus distance from 1.0m to 1.5m and
F-number from 2.0 to 7.1) to demonstrate our method’s robustness. Some of
the results are shown in Fig. 8. Surprisingly, our StereoDPNet trained solely on
our facial dataset also works well with general scenes (Fig. 10, Fig. 11), which
demonstrates that our method is generalized well. Some of the scenes in Fig. 10
are from public DP dataset [2] (focus distance from 1.46m to 1.59m).
Generalization on the public dataset [46]. We conduct an additional ex-
periment on another real-world DP dataset [46] to validate the generalization
of our network. Although our method is generalized well in real-world scenar-
ios in Fig. 10 and in Fig. 11, we augment our network by using an additional
synthetic DP dataset in [3]. This is because there is no currently available large
real-world DP dataset captured with DSLR for training except ours. For a fair
comparison, we don’t apply any post-processing (i.e. bilateral or guided filter)



14 Kang et al.

Metrics
Method

PSMNet [9] StereoNet [31] DPNet [16] MDD [46] NNet [34] Ours

WMAE (↓) 0.102 0.111 0.132 0.107 0.103 0.085
WRMSE (↓) 0.154 0.214 0.192 0.168 0.143 0.133

1−ρ (↓) 0.351 0.261 0.420 0.187 0.345 0.276

Table 4. Comparisons on the public dataset [46]. We provide quantitative com-
parison result of the methods in Table 1 on the public dataset [46].

(a) DP Input

(b) GT Depth (f) Ours

(e) NNet(c) DPNet

(d) MDD

(a) DP Input

(b) GT Depth

(c) DPNet

(d) MDD

(e) NNet

(f) Ours

Fig. 12. Generalization on the public dataset [46]. We show qualitative results
of depth from the methods in Table 1 on the public dataset [46].

to the predictions. As illustrated in Fig. 12 and Table 4, our network shows
promising results on the non-facial dataset [46] as well.

7 Conclusion

We present a high-quality facial DP dataset incorporating 135,744 face images for
101 subjects with corresponding depth maps in metric scale and surface normal
maps. Moreover, we introduce DP-oriented StereoDPNet for both depth and
surface normal estimation. StereoDPNet successfully shows impressive results in
the wild by effectively handling the narrow baseline problem in DP.
Potential societal impact. We have already received consent from partici-
pants to use our facial dataset for only academic purposes. Thus, our dataset will
be available to the computer vision community to promote relevant research.
Limitation. Although we show that our method is generalized to real-world
DP scenes with various focus distances, our dataset is captured with fixed fo-
cus distance which is a clear limitation. Moreover, our ground truth acquisition
of surface normal doesn’t fully consider the complex specular reflection of the
face which still remains as a challenging issue [35,55]. We also recognize that
our dataset has an inherent bias in skin tone. However, these limitations can be
resolved by capturing more dataset with various camera parameters and consid-
ering advanced non-Lambertian shape from shading methods [38,8,35]. We will
refine the dataset sustainably and try to resolve these limitations.
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69. Zollhöfer, M., Thies, J., Garrido, P., Bradley, D., Beeler, T., Pérez, P., Stamminger,
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