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Abstract. We present the Caltech Fish Counting Dataset (CFC), a
large-scale dataset for detecting, tracking, and counting fish in sonar
videos. We identify sonar videos as a rich source of data for advanc-
ing low signal-to-noise computer vision applications and tackling domain
generalization in multiple-object tracking (MOT) and counting. In com-
parison to existing MOT and counting datasets, which are largely re-
stricted to videos of people and vehicles in cities, CFC is sourced from
a natural-world domain where targets are not easily resolvable and ap-
pearance features cannot be easily leveraged for target re-identification.
With over half a million annotations in over 1,500 videos sourced from
seven different sonar cameras, CFC allows researchers to train MOT and
counting algorithms and evaluate generalization performance at unseen
test locations. We perform extensive baseline experiments and identify
key challenges and opportunities for advancing the state of the art in
generalization in MOT and counting.
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1 Introduction

Diverse and high-quality datasets collected from the natural world have en-
abled progress on fundamental computer vision tasks such as fine-grained visual
categorization [9, 10, 11, 67, 82, 102, 107, 108, 109] and individual re-identification
[50, 69, 86]. This progress has had valuable impact in the same natural-world
domains, and automated visual systems are now used in the field every day by
ecologists, citizen scientists, and conservationists to improve the accuracy and ef-
ficiency of biodiversity monitoring efforts around the globe [1,12,41,66,106,107].
However, the range of computer vision tasks that these systems can perform is
still limited, with most current algorithms and their supporting datasets focus-
ing largely on visual classification in relatively high-quality imagery. Methods
developed for existing datasets can fail to transfer to tasks where video analysis
or non-RGB imagery is involved.

We present the Caltech Fish Counting Dataset (CFC), a large video dataset
containing over half a million annotations for detecting, tracking, and counting
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migrating fish in sonar video. In addition to providing a challenging benchmark
in a novel application domain, the dataset allows for detailed study in three
areas that have received limited attention from the computer vision community
and lack supporting benchmarks:

1. Multiple-object tracking (MOT) in natural environments with
animal targets. Most existing MOT datasets focus on human [34, 68, 78] and
vehicle [44,101,113,120] tracking in cities. Animal targets provide a rich source
of variability for developing trackers that are not biased toward urban domains,
in addition to having numerous beneficial applications in conservation [106], neu-
roscience [76], and animal husbandry [42]. Furthermore, many state-of-the-art
methods make extensive use of visual re-identification for performing associa-
tion [88, 116, 126]. In contrast, CFC provides a benchmark sourced from low
signal-to-noise recording equipment in challenging natural-world environments
where tracking targets are difficult to resolve from background clutter and each
other, making frame-to-frame visual association less effective.

The dataset is large, well-annotated, and challenging. It consists of 1,567
video sequences sourced from seven different sonar cameras on three rivers lo-
cated in the U.S. states of Alaska and Washington. The videos are single-channel
(i.e. grayscale), vary in resolution from 288x624 to 1,086x2,125, have frame rates
between 6.7 and 13.3 frames per second, and are an average of 336 frames (38
seconds) in duration. Tracking annotations were collected through a paid anno-
tation service for 8,254 fish across 527k frames, totaling 516k bounding boxes in
16.7 hours of video.

2. Video-based counting. Existing video counting benchmarks focus on
crowd counting in urban environments [25, 26, 40, 40, 114, 115] and emphasize
density estimation over trajectory-based counting. Methods developed for these
datasets have limitations in applications where information about individuals,
such as size or direction of motion, is required, since crowd density is largely
treated as a regional feature [95]. The community is in need of a benchmark which
can support both tracking and counting concurrently. CFC provides both a chal-
lenging MOT benchmark and an evaluation protocol for video-based counting
that is motivated by a real-world metric. Ground-truth detections, trajectories,
and counts are provided for every video sequence.

3. Generalization of tracking and counting methods to new do-
mains. While generalization in computer vision has been extensively studied in
object recognition [10,30,63,131], it is still relatively understudied within MOT
and counting. CFC presents significant generalization challenges that are high-
lighted by the dataset design, providing a strong benchmark for the study of
generalization and efficient adaptation in the context of MOT and counting. We
enable this study by constraining training data to a single camera location, while
sourcing test data from a variety of different out-of-sample rivers and cameras.

Finally, CFC is the first annotated video dataset sourced from the domain of
fish counting in sonar, an application area with significant impacts in conserva-
tion ecology. Salmon are keystone species that support at least 137 other animal
species and provide food and nutrients to a wide range of ecosystems during their
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Table 1: Comparison of video tracking and counting datasets. CFC is
the first dataset that supports all three tasks of interest: detection, tracking, and
counting, with more tracking annotations than existing animal-centric tracking
datasets. (* indicates annotations are points, not bounding boxes)

Dataset Vids Frames Annos Animals Detect Track Count

3D-ZeF [87] 8 28,800 86,400 ✓(100%) ✓ ✓
BIRDSAI [19] 48 62,400 154,000 ✓(78%) ✓ ✓
GMOT-40 [7] 40 9,643 256,341 ✓(38%) ✓
MOT16 [78] 14 11,235 292,733 ✓ ✓
MOT20 [34] 8 13,410 1.65M ✓ ✓
UA-DETRAC [113] 100 140,000 1.21M ✓ ✓
TAO [33] 2,907 4.44M 332,401 ✓(∼10%) ✓ ✓
AnimalDrone [133] 162 53,644 4.05M* ✓(100%) ✓
DroneCrowd [115] 112 33,600 4.86M* ✓ ✓
Crossing-line [129] 5 3,100 5,900* ✓ ✓
FDST [40] 100 15,000 394,081* ✓
Iowa DOT [81] 200 90,000 0 ✓
Mall [27] 1 2,000 62,315* ✓
UCSD [25] 1 2,000 49,885* ✓
WorldExpo [121] 1,132 3,980 199,923* ✓

CFC 1,567 527,215 515,933 ✓(100%) ✓ ✓ ✓

seasonal migration [43]. Sonar imaging provides a non-invasive way to monitor
escapement—the number of salmon returning home each season to spawn—
helping inform sustainable fisheries management. Automation using computer
vision could enable current sonar-based monitoring programs to scale from a
few locations to entire watersheds. We hope that our dataset will encourage
computer vision researchers to work on this high-impact challenge.

Our contributions are: (1) a large and challenging dataset for tracking and
counting in video that enables the study of generalizing algorithms to new loca-
tions; (2) an evaluation protocol that mimics the procedure used by field tech-
nicians when manually counting fish in sonar video; (3) a baseline method that
utilizes a novel input structure to improve generalization performance at unseen
test locations. The dataset and evaluation code are available here.

2 Related Work

Multiple-Object Tracking (MOT). Several popular benchmarks have sup-
ported recent progress in MOT, particularly in the domains of pedestrian and
vehicle tracking [34, 44, 68, 78, 101, 113, 120]. Large-scale benchmarks for track-
ing animals in the wild are less common. TAO [33] and GMOT-20 [7] focus
on tracking all foreground objects with limited class information, and include
some animal tracking sequences. The BIRDSAI [19] dataset focuses on human

https://github.com/visipedia/caltech-fish-counting
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and animal tracking in the wild, and—similar to ours—contains non-RGB (in
their case, thermal infrared) sequences, though it is sourced from moving aerial
cameras rather than in-situ monitoring devices. With over half a million MOT
annotations, the CFC dataset is larger than existing benchmarks for animal
tracking in the wild, with a unique additional focus on video-based counting and
generalization challenges. See Tab. 1 for a comparison with prior work.

Recent advancements in object detection [54, 134] have helped popularize
the tracking-by-detection paradigm in MOT, which divides the tracking problem
into two steps: (1) an object detector predicts object locations (e.g. bounding
boxes) in each frame, and (2) a tracker associates detections over time into ob-
ject trajectories. While there has been significant progress in recent years (see
recent surveys [29,72]), there are two notable shortcomings. First, the tracking-
by-detection paradigm implicitly assumes that detection is possible and accurate
in each frame. This is not universally valid, and our dataset can stimulate re-
search in algorithms that do not rely on this assumption due to the difficulty in
resolving fish locations frame-to-frame. Second, much recent progress can be at-
tributed to the development of complex visual-feature representations for target
re-identification. These techniques are often domain-specific according to the
benchmark dataset. For example, [130] use a generative model to create syn-
thetic pedestrian data consisting of various combinations of person appearance
and structure information to achieve state-of-the-art performance, a technique
that has been adopted by other top-performing MOT methods [52]. Our dataset
introduces a challenging MOT benchmark in which individuals are visually in-
distinct, offering little opportunity to make use of visual features for individual
re-identification, which can motivate the development of tracking methods that
are not dependent upon complex appearance matching.

Counting in Video. Datasets for object counting are predominantly image-
based [4,8,22,45,53,55,57,60,83,89,97,110,112,117,121,122,127]. Video-based
counting datasets are more limited. Most are focused on estimating the number
of people [25,26,40,40,114,115] or animals [133] in crowded scenes, combining the
challenges of crowd-density estimation and camera motion compensation. While
a limited number of video counting datasets incorporate trajectory information
[115, 129], existing benchmarks primarily model object locations as points and
do not contain bounding box labels. CFC supports the study of all three tasks
(detection, tracking, and counting), while containing over five times the number
of annotated video frames as existing video counting benchmarks (see Tab. 1).

Methods for video-based counting can be roughly divided into regression-
based methods, density-based methods, and detection-based methods.
Regression-based methods attempt to predict counts directly by mapping
image features to counting numbers [59, 79], while density-based methods
predict per-pixel crowd density in each frame and then analyze densities over
time to obtain counts [4,84,123,127,129]. These methods are typically designed
for counting large numbers of densely clustered objects where individual object
detection is challenging. In contrast, detection-based methods utilize object
detection in each frame to localize objects of interest and count them over time.
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These approaches typically employ a tracking-by-detection pipeline followed
by counting based on either region-of-interest (ROI) [24, 74] or line-of-interest
(LOI) [62, 73, 129]. ROI-based methods attempt to estimate the number of
objects passing through a subregion of the frame, such as a traffic lane or
onramp in the case of vehicle counting [24]. LOI-based methods instead draw a
virtual line through the field of view, counting objects when their trajectories
intersect this line. In this work we use LOI-based counting, as it matches the
approach currently used by fishery managers for counting fish in sonar [61].

Animal-Centric Datasets. Existing computer vision datasets in animal ecol-
ogy primarily target the tasks of species classification [9,11,82,102,107,108,109],
detection [2, 6, 9, 10, 20, 31, 35, 57, 85, 90, 94, 99, 102, 103, 104, 119, 128], and indi-
vidual identification [50, 69, 86]. These datasets consist predominantly of RGB
imagery where visual features are key signals for recognition; in contrast, our
dataset consists of single-channel sonar video, in which the animals of interest
are difficult to distinguish from background, debris, and each other.

For this reason CFC shares some characteristics with video datasets for study-
ing animal behavior, including mice [3,5,17,46,47,51,100], rats [32], flies [37,38],
bees [16,21,75,92], and fish [23,87,132]. As in our dataset, the visual similarities
between individuals in these datasets mean that tracking must rely heavily on
prediction of motion or behavior rather than using visual features for associa-
tion. Our work, however, entails additional challenges not typically present in
laboratory tracking and behavior study, such as complex background, difficult
frame-by-frame detection, and unknown numbers of individuals in a scene.

Generalization in Computer Vision. Domain generalization is a type of
domain shift—i.e. a difference in training and test data distributions—in which
training and test data come from distinct, but related, domains. For example,
in our dataset the domain generalization challenge comes from training and
test data sourced from distinct sonar camera deployments on different rivers.
Crucially, as opposed to domain adaptation, in which data from the test domain
is available during model training, in domain generalization data from the test
domain is considered inaccessible [15, 80, 105]. Within computer vision this has
been most extensively studied for the task of object recognition [30,48,118,131],
with a number of supporting datasets [10,39,63,93]. While there has been some
study of domain generalization in other computer vision tasks such as semantic
segmentation [28,49,124] and action recognition [65,98,111], it has been relatively
understudied in the context of MOT and counting. Some MOT and counting
datasets do represent domain generalization challenges in their test sets—for
example, in MOT20 [34] one of the three test locations is from a new location, and
in UA-DETRAC [113] (MOT) and WorldExpo [121] (crowd counting) all test
data is from different locations than training data. Our dataset makes it possible
to evaluate generalization for both MOT and video-based counting concurrently,
while providing more out-of-distribution test videos than existing options.

Imaging Sonar. Only a very limited amount of annotated sonar imaging data
has been released. [77] collected 524 sonar video clips with video-level species
labels, [96] collected a small dataset of 143 sonar images to test image-level
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Fig. 1: Illustration of camera strata and data split. (A) Three example
frames, one from each range window (“stratum”) of the far-range camera at the
KR location. Sonar cameras typically cycle between multiple strata periodically.
White bounding boxes are ground-truth fish locations. (B) All cameras in the
dataset. There are seven cameras total distributed among the five locations in
the dataset, each with between one and three strata. Data split is indicated by
the colored circles, and the number of training, validation, and testing sequences
are indicated for each camera/stratum.

classification of fish and dolphin species, and [70] collected dot annotations for
counting fish in 537 sonar images. Our work is the first to release detection and
tracking annotations for fish in sonar, and it is several orders of magnitude larger
than existing sonar datasets.

3 Dataset

Here we describe how we collected, annotated, and split CFC, and give an
overview of common challenges.
Data Collection. The dataset was curated from 2,056 hours of sonar video
obtained from the Alaska Department of Fish and Game, the U.S. National
Marine Fisheries Service, the U.S. National Park Service, and the Lower Elwha
Klallam Tribe. It contains video from five distinct locations which we use to
study out-of-sample performance: three locations on the Kenai River in Alaska,
which we refer to as KL (Kenai Left Bank), KR (Kenai Right Bank), and KC
(Kenai Channel); one location, NU, on the Nushagak River in Alaska; and one
location, EL, on the Elwha River in Washington (sonar configurations shown in
Fig. 1).
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(A) Close Range,
    High Freq.

(B) Far Range,
    Low Freq.

(C) Background
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(D) Shadows (E) Sediment (F) Target Density

Fig. 2: Example frames and common challenges in sonar video. Ground-
truth fish locations are boxed in white. (A) Close range, high operating fre-
quency: ideal conditions, fish is large, visible, and well-defined. Some speckle
noise is still present. (B) Far range, low operating frequency: The fish are
small and very coarsely defined due to scattering of sound waves at long range.
(C) Background texture: The riverbed is very visible, occluding fish. (D) Shad-
ows: Fish cast acoustic shadows which may occlude one another. (E) Sediment:
Dirt, debris, and glacial silt occlude fish. (F) Target density: Dense crowds of
fish, intersecting trajectories and occlusion.

The data had already been analyzed by experts (“manually marked”) to
obtain fish counts. Most of the video contained no fish. Since our focus is on de-
tection, tracking, and counting, we used the manual markings to extract shorter
200–300 frame video clips known to contain fish. If any of these clips overlapped,
we merged them into one longer clip. In total we extracted 1,233 clips from the
Kenai River, containing 4,300 fish; 262 clips from the Elwha River, containing
884 fish; and 72 clips from the Nushagak River, containing 3,070 fish.

Annotation. We hired a third-party annotation service to collect multiple-
object tracking annotations for all fish in the extracted clips. Annotators were
provided with the raw video clips and instructed to box all visible fish tightly us-
ing the vatic.js GUI [18]. For any stationary fish, they were required to annotate
every fifth frame, and we interpolated between those annotations in the interme-
diate frames; for all other tracks, all bounding boxes in all frames were annotated
manually. The annotation service had their own internal quality-management
procedures whereby multiple annotators inspected each clip before it was final-
ized. In total, 515,933 bounding boxes for 8,254 fish tracks were collected in
527,215 frames from seven different cameras.

Data Split. We designed a dataset splitting protocol that allows us to study
generalization to new locations, a known challenge for current computer vision
methods [10,64]. Our test data comes from deployment locations never seen dur-
ing training or validation. We chose KL as our training and validation location
due to its sufficient size for model training. Data from this location spans 16
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days in total. We selected one of these days at random to hold out as a valida-
tion set, and the other 15 days serve as our training set. This gives us 162,680
training images containing 1,762 tracks and 132,220 bounding boxes, and 30,518
validation images containing 207 tracks and 18,565 bounding boxes.

The other locations (KR, KC, NU, and EL) serve as test sets for evaluating
generalization performance under different conditions. These locations cover a
range of generalization scenarios that may be faced in the real world: KR in-
cludes a new camera deployment on the same body of water; KC includes a
new deployment in a nearby, but separate, body of water; NU and EL include
deployments on new rivers in different geographic regions with different species
distributions. The data split is illustrated in Fig. 1. In total the dataset con-
tains 334,017 test images with 6,285 tracks and 365,148 bounding boxes. For all
experiments we report results on all test locations individually.
Challenges. We have identified a number of challenges inherent to detecting
and tracking fish using sonar, which we have illustrated in Fig. 2. Some of these
challenges are constant across all data in this domain (e.g. speckle noise and
shadows), while some vary across locations due to hardware settings or environ-
mental factors, presenting generalization challenges (e.g. presence of sediment,
riverbed shape and texture, and hardware operating frequency). More details on
the causes of these challenges can be found in the supplemental material.

4 Metrics

4.1 Counting Protocol

We follow the counting procedure used by field technicians when counting fish in
sonar video [61]. A vertical line-of-interest (LOI) is drawn in the middle of the
frame, and a fish is considered to have moved left or right if its trajectory start
and end positions are on different sides of the LOI. Note that not every fish in
a clip will cross the LOI. Some fish are stationary throughout the entire clip,
while others enter and exit on the same side of the frame without crossing the
LOI. These fish are excluded from the count totals, which matches the protocol
used by the field technicians.

4.2 Counting Metric

In the target application, fish-counting error is measured as the sum of upstream
and downstream counting errors, and error is normalized separately at each river
to account for variations in fish abundance. We classify direction of movement as
“left” or “right” rather than “upstream” or “downstream” to make our system
agnostic to the orientation of the camera. Based on this we define the absolute
counting error for the ith video clip, Ei, as the sum of the absolute left and right
(i.e. upstream and downstream) counting errors:

Ei = |zlefti − ẑlefti |+ |zrighti − ẑrighti | (1)
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where zi and ẑi are the predicted and ground-truth counts for clip i, respectively.
Overall counting error is reported as normalized Mean Absolute Error (nMAE):

nMAE =
1
N

∑N
i=1 Ei

1
N

∑N
i=1 ẑi

=

∑N
i=1 Ei∑N
i=1 ẑi

(2)

where N is the number of video clips at a given location and ẑi = ẑlefti + ẑrighti
is the ground-truth count for clip i.

We choose a metric that is normalized per location, giving equal weight to each
fish at a given location regardless of variance in fish density across clips at that
location. We do this because video clips in CFC are arbitrarily generated and
are much shorter in duration than videos in the target application, thus per-clip
normalization—i.e. giving equal weight to each clip—would not be appropriate.
We consider this the main metric for the dataset, since it is the most important in
the target application. Achieving at most 10% counting error on a river would
make an algorithm on par with human experts and feasible for augmenting
counting in the field [61].

4.3 Detection and Tracking Metrics

In addition to counting, CFC has been annotated to measure detection and track-
ing performance as well. For our detection metric we choose the PascalVOC [36]
evaluation of mean Average Precision with IoU ≥ 0.5 (AP50). For tracking, we
report the CLEAR [13], IDF1 [91], and HOTA [71] metrics.

The CLEAR MOT metrics [13] are computed per-frame by matching de-
tections from predicted tracks with ground-truth detections. This matching al-
lows the number of true positive (TP ), false positive (FP ), and false negative
(FN) detections to be computed using an IoU threshold between predicted and
ground-truth boxes. Recall (CLR Re) and precision (CLR Pr) are defined as
normal according to the number of TPs, FPs, and FNs, and Multiple Object
Tracking Accuracy (MOTA) is defined as:

MOTA =
TP − FP − IDSW

TP + FN
(3)

Where IDSW is the sum of all “ID switches”, i.e. the number of times a pre-
dicted track changes its matched ground-truth track and vice versa. In practice,
IDSW ≪ TP and MOTA becomes predominantly a measure of detection qual-
ity in the tracks. Since this scoring occurs per-frame, MOTA does not capture
long-term tracking performance.

In contrast, IDF1 [91] first computes a global (per-video-clip) track matching,
i.e. a bipartite matching between all ground-truth and predicted tracks. From
this matching, ID true positives (IDTP ), false positives (IDFP ), and false
negatives (IDFN) are computed, and the IDF1 score is defined as the harmonic
mean of ID Precision (IDP) and ID Recall (IDR):

IDF1 = 2 · IDP × IDR

IDP + IDR
, IDP =

IDTP

IDTP + IDFP
, IDR =

IDTP

IDTP + IDFN
(4)
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Fig. 3:Baseline (Sec. 5.1) and Baseline++ (Sec. 5.3) results on CFC. All
results are displayed in terms of error, i.e. the lower-left of each plot represents
the best performance. Baseline++ improves performance on all tasks across all
locations and reduces generalization gaps between the validation location and
testing locations. Generalization challenges remain, most notably at KC and EL.

Since this matching is restricted to be static for the length of the clip, IDF1
is a measure of long-term tracking performance.

HOTA [71] is designed to measure both short-term and long-term tracking
performance. It is the geometric mean of a detection score (DetA) and an asso-
ciation score (AssA), each defined as the Jaccard index of detection/association
TPs, FPs, and FNs. Thus it can be easily decomposed into detection/association
precision and recall (DetRe and DetPr, and AssRe and AssPr, respectively). In
this formulation, AssRe is inversely correlated with the number of track splits,
while AssPr is inversely correlated with the number of track merges.

5 Experiments

We evaluate state-of-the-art methods on CFC to provide a baseline for future
work and give insight into the generalization challenges of object detection,
multiple-object tracking, and counting. In Sec. 5.1 we propose a tracking-by-
detection approach to fish counting which allows us to evaluate each of these
tasks, and study its performance. In Sec. 5.2 we perform ablation studies and in-
vestigate the upper bounds of this approach and its generalization capabilities. In
Sec. 5.3 we introduce an improved baseline method to address these challenges,
establish the state of the art on CFC, and discuss remaining challenges.

5.1 Baseline

Our baseline method uses the YOLOv5 [56] object detector and SORT [14]
tracker. Trajectories are then analyzed as described in Sec. 4.1 to predict counts.

We chose YOLOv5 after an initial architecture search. These experiments as
well as training settings are included in the supplemental material. We chose
SORT because it has shown to be a popular and robust tracker across a range
of applications, recently achieving state-of-the-art performance on several MOT
datasets with minor modifications [125]. It performs tracking using a motion



The Caltech Fish Counting Dataset 11

Baseline

6.0m

4.8m

3.7m

2.5m Baseline++ 0.25 0.50 0.75
1 - CLR_Re

0.25

0.50

0.75

1 
- C

LR
_P

r

(C) MOTA Breakdown

0.25 0.50 0.75
1 - IDR

0.25

0.50

0.75

1 
- I

DP

(D) IDF1 Breakdown

0.00 0.15 0.30 0.45
Undercount

0.00

0.15

0.30

0.45

Ov
er

co
un

t

(E) nMAE Breakdown

Baseline

15.3m

11.6m

8.0m

4.3m

0.6m Baseline++ 0.45 0.60 0.75 0.90
1 - DetA

0.45

0.60

0.75

0.90

1 
- A

ss
A

(F) HOTA Breakdown

0.4 0.6 0.8
1 - DetRe

0.4

0.6

0.8

1 
- D

et
Pr

(G) DetA Breakdown

0.32 0.40 0.48
1 - AssRe

0.32

0.40

0.48

1 
- A

ss
Pr

(H) AssA Breakdown

(A) KC Example

(B) EL Example

 TP FP FN KL(V) KR KC NU EL

Fig. 4: Baseline and Baseline++ error analysis and comparison. (A)–
(B) Example frames at the KC and EL locations. Note the large reduction
in FP and FN detections between the two methods. (C)–(H) Breakdowns of
MOTA, IDF1, HOTA, and nMAE into component submetrics. Arrows point from
Baseline results to Baseline++ results; Baseline++ markers are larger and have a
black edge. All results are displayed in terms of error. This breakdown shows that
the low tracking scores of our baseline method at out-of-distribution locations
are predominantly due to FP detections (i.e. low detection precision) that cause
low CLR Pr (C), low IDP (D), and low DetPr leading to low DetA (F)–(G).
The proposed Baseline++ method succesfully targets a large portion of these
FPs, improving all tracking metrics and submetrics. (E) nMAE decomposed
into undercounting and overcounting errors, normalized by ground-truth counts.
Baseline++ significantly reduces both types of errors.

model based on the Kalman filter [58] without using appearance information
for association. We verified our hypothesis that appearance features are not a
strong signal for association in CFC by training a visual re-identification model
that performed poorly on our validation set. More details of this experiment are
provided in the supplemental material. See Figs. 3 and 4 for our performance
on the various locations with this baseline method. A tabular version of these
results is included in the supplemental material.

Analysis. Our baseline method performs on par with human experts at the
location where it is trained, with a validation counting error of less than 5%.
Counting generalization performance is best at KR, which matches intuition
given that this data is sourced from a nearby location to the training set (KL).
However, generalization performance at the other locations is quite poor. We
examine the two most challenging locations, KC (53% nMAE) and EL (32.3%
nMAE), in Fig. 4. At KC, false positive (FP) and false negative (FN) detections
are caused by the presence of complex background information (Fig. 4A), while
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Fig. 5: Baseline and upper bound tracking and counting performance.
Baseline methods are compared to methods that use various amounts of
ground-truth data. X axis key: Baseline, Perfect Tracker, Baseline++, Perfect
Tracker++, Perfect Detector, Oracle. Note the performance difference between
Baseline and Perfect Detector: there is a large performance boost when using
ground-truth detections. Using a tracker that can perfectly generalize to different
locations improves performance as well, but not as much as the Perfect Detector.

at EL the errors are overwhelmingly FPs caused by sediment and other noise
resulting from the camera’s very large range window (Fig. 4B).

We can see the direct impact of these detection errors on our tracking and
counting metrics in Fig. 4C–H. At both locations, we see that abundant FPs
cause very low CLR Precision (Fig. 4C), ID Precision (Fig. 4D), and Detection
Precision (Fig. 4G), negatively impacting MOTA, IDF1, and HOTA, respec-
tively. Interestingly, while FPs cause overcounting errors at KC, the majority of
counting errors at EL are actually due to undercounting (Fig. 4E). From man-
ual inspection we diagnosed that this is often caused by TP tracks merging with
hallucinated detections, causing the loss of a track before it has the chance to
cross the counting line. These challenges demonstrate why counting, in addition
to detection and tracking, is an important metric for researchers to consider.

Our baseline results indicate that (1) there are indeed generalization chal-
lenges in this domain, (2) they appear to be largely caused by location-specific
environmental changes, and (3) these challenges affect all three tasks of interest:
detection, tracking, and counting. Further, the low counting error on the vali-
dation set indicates that our overall tracking-by-detection approach is feasible
at in-distribution locations and that the key challenges are in generalization.
To verify this, in the next section we perform ablation studies and examine the
upper-bound generalization capabilities of the proposed tracking-by-detection
baseline, and use these results to motivate an improved baseline in Sec. 5.3.

5.2 Ablation Study and Generalization Upper Bounds

To evaluate generalization potential, we perform a set of “reversed” ablation
studies and compare our baseline results with three different upper bounds that
utilize different types of ground-truth information (Fig. 5):
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1. Perfect Tracker Generalization. We use the detections from our base-
line detector, but we fit the tracker hyperparameters directly to each test set
based on counting performance. This results in five different trackers, one for
each test set, with the best possible tracker parameter settings at each location.
This gives an upper bound for the counting performance of a multiple-object
tracker which can perfectly generalize to new locations.

2. Perfect Detector. This model takes ground-truth detections as input.
The tracker hyperparameters are fit to counting performance on the validation
set as in our baseline. This gives an upper bound for the counting performance
of our tracker when given perfect detections.

3. Oracle. This model combines the first two upper bounds. It takes ground-
truth detections as input and fits the tracker hyperparameters to each test set.
This gives us the overall upper bound on counting performance for our baseline
approach given perfect detections and perfect tracker generalization.
Analysis. The most apparent result is the very strong performance at all loca-
tions given a Perfect Detector. In most cases, with perfect detections our tracker
achieves near-Oracle performance and generalizes well without modification.
Only one location (EL) shows significant further improvements in counting er-
ror in the Oracle method compared to the Perfect Detector method. Meanwhile,
Perfect Tracker Generalization does improve performance in most cases, but not
as much as the Perfect Detector. This indicates that the proposed motion-based
tracking approach is indeed feasible but is dependent upon a strong detector
with strong generalization capabilities. Therefore the most effective improve-
ment to overall system-generalization performance appears to be improving the
generalization capabilities of the detector, which we address in the next section.

5.3 Baseline++

Given the results from our upper bound analysis, we implemented an improved
baseline method, “Baseline++,” with the primary goal of improving object-
detection generalization performance. We noticed that the background (1) varies
significantly across locations and (2) occludes fish (see Fig. 2 for frame exam-
ples). Thus, we appended two additional channels to our image input: (1) a
background-subtracted version of each frame, where the background for each
clip is obtained by averaging all frames, and (2) the difference between each
background-subtracted frame and its preceding frame, to capture motion infor-
mation. Example frames illustrating these transformations are included in the
supplemental material. We trained a new detector and tracker with this input
in the same way as the baseline model. Results are shown in Figs. 3, 4, and 5.
Analysis. In Fig. 3, we see that our Baseline++ method leads to modest im-
provements on our validation set (+1.6 AP50, -1.7% nMAE), but significant im-
provements in generalization performance (e.g. -40.2% nMAE at KC). In Fig. 4,
we dissect these improvements by looking at: (A)–(B) two example frames from
KC and EL, and (C)–(H) breakdowns of tracking and counting metrics across
all locations. We see the efficacy of simple background subtraction as a gener-
alization mechanism, helping significantly reduce the number of FPs and FNs
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in the example KC and EL frames as well as at all test locations. We also see
evidence of some outstanding issues: one FN remains in the KC example due to
a small, stationary fish that appears to have been removed by the background-
subtraction routine, and one FP remains in the EL example due to noise near the
transducer. IDR now lags behind IDP at all locations except for EL, indicating
that most remaining tracking problems are track splits causing undercounting
errors. These trends are also indicated in the HOTA decompositions (Fig. 4F–
H), which show that DetRe now lags behind DetPr at all locations except EL,
and while AssRe has improved (i.e. track splits have been reduced), it is still
lower than AssPr.

6 Conclusions

We present the Caltech Fish Counting Dataset, a natural-world sonar video
dataset that allows us to study object detection, multiple-object tracking, and
counting under challenging real-world domain shifts. Due to the visual qualities
of the source domain of river-based sonar, the dataset poses challenges to existing
methods developed primarily for urban environments and provides a benchmark
for video-based counting in the wild, a task that lacks supporting benchmarks.

Our experiments show that there is still significant room for improvement in
the generalization performance of tracking and counting algorithms. There are
also opportunities to improve tracker generalization and making trackers more
robust to noisy detections. Robust algorithms that work across the range of gen-
eralization challenges in CFC will certainly be impactful in other domains, and
we hope that our dataset will provide a useful testing ground for the computer vi-
sion community to push forward progress on these tasks. High-performing meth-
ods would enable sonar-based fish counting to scale globally and have real-world
impact in managing some of the world’s most sensitive and valuable ecosystems.

In the future, the dataset will be expanded to include additional input for-
mats, locations, and species. One additional path forward for the community is
to explore the impact of utilizing unlabeled data for unsupervised domain adap-
tation or self-supervised pretraining on unseen locations, which we plan to make
possible by releasing additional unlabeled data from all test locations.
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