A Dataset for Interactive Vision-Language
Navigation with Unknown Command Feasibility

Andrea Burns', Deniz Arsan?, Sanjna Agrawal', Ranjitha Kumar?, Kate
Saenko!:3, and Bryan A. Plummer!

! Boston University, Boston MA 02215, USA
{aburns4,sanjna,saenko,bplum}@bu.edu
2 University of Illinois Urbana-Champaign, Champaign IL 61820, USA
{darsan2,ranjitha}@illinois.edu

3 MIT-IBM Watson AI Lab, Cambridge MA 02142, USA

Abstract. Vision-language navigation (VLN), in which an agent follows
language instruction in a visual environment, has been studied under the
premise that the input command is fully feasible in the environment. Yet
in practice, a request may not be possible due to language ambiguity or
environment changes. To study VLN with unknown command feasibility,
we introduce a new dataset Mobile app Tasks with Iterative Feedback
(MoT1IF), where the goal is to complete a natural language command in
a mobile app. Mobile apps provide a scalable domain to study real down-
stream uses of VLN methods. Moreover, mobile app commands provide
instruction for interactive navigation, as they result in action sequences
with state changes via clicking, typing, or swiping. MoTIF is the first to
include feasibility annotations, containing both binary feasibility labels
and fine-grained labels for why tasks are unsatisfiable. We further col-
lect follow-up questions for ambiguous queries to enable research on task
uncertainty resolution. Equipped with our dataset, we propose the new
problem of feasibility prediction, in which a natural language instruction
and multimodal app environment are used to predict command feasibil-
ity. MoTIF provides a more realistic app dataset as it contains many
diverse environments, high-level goals, and longer action sequences than
prior work. We evaluate interactive VLN methods using MoTIF, quantify
the generalization ability of current approaches to new app environments,
and measure the effect of task feasibility on navigation performance.

Keywords: Vision-language navigation, task feasibility, mobile apps

1 Introduction

Vision-language navigation (VLN) has made notable progress toward natural
language instruction following [BIT7I3TI32I3839144]. While navigation datasets
exist for home environments [3I8T9/38] and digital environments like mobile
apps and websites [2526/33137], none capture the possibility that the language
request may not be feasible in the given environment. When high-level natural
language goals are requested, they may not be feasible for various reasons: the

2 Burns et al.

] Input || Resulting Action Sequence || Feasibility

[[
[7, - Champaign a D
Weather App . B e <

@ champaign

Add Location

(4

e — Warnings

w o

Sommmmrr Nl S S S S S S S (N
am s s M s sme o

[w]

Open settings foday > 2w w GE ®

and change o

temperature & 1 El]
unitto C " o

el

Temperature Task is

O celsius (| feasible
(X X J Q

© Falventei (F) in this app

O ke Q

Weather Radar

Foracast Maps

Satelites

ColorThemes.

Sattings

Nes

Yo eE2eE PP

s 000

= .
‘ 1
Go to the menu Navigate to settings

ohgo93nvdcqtgb5vew...

Task is
NOT
feasible
in this app

X
E3

Do you mean
"open settings and
clear cache"?

Open settings
and clear “ ; = Data Saver
search history "

Do you mean
delete cache?

Best of artists.
P e |
¢ =)

Should this be 'go |
to settings
and delete cache'?

Fig. 1. MoTIF natural language commands which may not be possible. At each time
step, action coordinates (i.e., where clicking, typing, or scrolling occurs), the app screen,
and view hierarchy (i.e., the app backend, illustrated behind it) are captured

request may be ambiguous or state dependent, refer to functionality that is no
longer available, or is reasonable in a similar environment but not satisfiable in
the current. Task feasibility has been studied to determine question relevance
for text-only [12] and visual question answering [I4J30J36], but it has not been
explored in interactive multimodal environments.

To study interactive task feasibility, we propose Mobile app Tasks with It-
erative Feedback (MOTIF)EL the largest dataset designed to support interactive
methods for completing natural language tasks in mobile apps. As illustrated in
Figure a sample includes the natural language command (i.e., task), app view
hierarchy, app screen image, and action coordinates for each time step. MoTIF
contains both feasible and infeasible requests, unlike any VLN dataset to date.
In addition to these binary feasibility labels for each task, we collect subclass an-

4 https://github.com/aburns4/MoTIF

https://github.com/aburns4/MoTIF

Interactive Vision-Language Navigation with Unknown Command Feasibility 3

notations for why tasks are infeasible and natural language follow-up questions.
Our dataset provides a domain with practical downstream applications to study
vision-language navigation, as well as data for investigating app design [QUT0J27],
human-computer interfaces [2122/23], and document understanding [420/43].

We propose a baseline model for task feasibility prediction and confirm app
exploration is necessary, with visual inputs key to accuracy. Surprisingly, prior
representation learning approaches specific to the mobile app domain (e.g., app
icon features) do not result in the best performance. We then evaluate meth-
ods for automating MoTIF’s commands and find MoTIF’s diverse test set are
challenging for prior work. Performance trends between seen and unseen app
environments point to the need for more in-app exploration during training and
qualitative failures in the best baseline model demonstrate the importance of
visual understanding for MoTIF.

We summarize our contributions below:

— A new vision-language navigation dataset, Mobile app Tasks with Iterative
Feedback (MoTIF). MoTIF has free form natural language commands for
interactive goals in mobile apps, a subset of which are infeasible. It contains
natural language tasks for the most app environments to date. MoTIF also
captures multiple interactions including clicking, swiping and typing actions.

— A new vision-language task: interactive task feasibility classification, along
with subclass annotations on why tasks are infeasible and follow-up questions
for research toward resolving task uncertainty via dialogue.

— Benchmarks for feasibility classification and task automation with MoTIF. A
thorough feature exploration is performed to evaluate the role of vision and
language in task feasibility. We compare several methods on mobile app task
automation, analyze generalization, and examine the effects of feasibility.

2 Related Work

We now discuss the key differences between MoTIF and existing datasets; we
provide a side-by-side comparison in Table

Task Feasibility Vision-language research has recently begun to study task fea-
sibility. Gurari et al. introduced VizWiz [I4], a visual question answering dataset
for images taken by people that are blind, resulting in questions which may not
be answerable. To the best of our knowledge, VizWiz is the only vision-language
dataset with annotations for task feasibility, but it only addresses question an-
swering over static images. Additionally, images that cannot be used to answer
visual questions are easily classified, as they often contain blurred or random
scenes (e.g., the floor). Gardner et al. [12] explored question-answer plausibility
prediction, but the questions used were generated from a bot, which could result
in extraneous questions also easy to classify as implausible. Both are significantly
different from the nuanced tasks of MoTIF with human generated queries, for
which exploration is necessary to determine feasibility. MoTIF’s infeasible tasks
are always relevant to the Android app category, making it more challenging to
discern feasibility compared to the distinct visual failures present in VizWiz.

4 Burns et al.

Table 1. Comparison of MoTIF to existing datasets. We consider the number of natural
language commands, command granularity, existence of feasibility annotations, the
number of environments and whether the visual state is included in annotations

Language Annotations Dataset Environment
Dataset # Human Task - # Visual
Annotations| Granularity Feasibility Environments| State
(a) House
R2R [3] 21,567 Low X 90
IQA [13] X High X 30
ALFRED [38] 25,743 |High & Low X 120
(b) Webpage
MiniWoB [37] X High X 100 X
PhraseNode [33] 50,000 Low X 1,800 X
(c) Mobile App
RicoSCA [25] X Low X 9,700 X
PIXELHELP [25] 187 Low X 4 X
MoTIF (Ours) 6,100 |High & Low 125

Vision-Language Navigation There are datasets that strictly navigate to
locations like Room-to-Room [3] and Room-Across-Room [19], as well as inter-
active datasets where agents perform actions in the environment to complete a
goal like ALFRED [38]. MoTIF is most similar to interactive VLN, as the nat-
ural language instructions are intended to complete a goal for the user, which
requires clicking, typing, or swiping actions in the environment. However, an ad-
vantage of MoTTF is that it is a real, non-simulated domain to study interactive
navigation, unlike all VLN prior work which uses simulated data [13/34138//45].

Digital Task Automation Prior work has not studied web task automation
in a multimodal setting, ignoring the rendered website image [33l37]. The exist-
ing datasets MiniWoB [37] and PhraseNode [33] also lack realism, as MiniWoB
consists of handcrafted HTML and PhraseNode only captures single action com-
mands on the home screen of websites. Unlike these datasets which limit inter-
action to a single screen, MoTIF contains action sequences with many different
states (as shown in Figure[l]), with a median of eight visited screens.

RicoSCA and PIXELHELP were introduced for mobile app task automation
by Li et al. [25]. RicoSCA makes use of the mobile app dataset Rico [9], which
captures random exploration in Android apps. Li et al. synthetically generate
random commands with templates like “click on x” and stitch multiple together
to any prescribed length. These generated step-by-step instructions do not reflect
downstream use, where users ask for a high-level goal. For MoTIF, we instead
collect free form high-level goals, and then post-process our data to automatically
generate the low level subgoal instructions. PIXELHELP is a small mobile app
dataset, but most commands are device specific. I e., the tasks refer to the phone
itself, such as “in the top control menu click the battery saver,” and are not in-
app tasks like those in Figure |1} PIXELHELP also only contains clicking, while
MoTTIF has clicking, typing and swiping actions.

Interactive Vision-Language Navigation with Unknown Command Feasibility 5

| Mobile App Environment Modalities |

34 Degrees 20%

Menu Icon Umbrella lcon

Class: AppCompatTextView

Class: AppCompatTextView
Class:AppCompatimageView| | visibility: Visile
Visibility: Visible Clickable: False
Clickable: False Resource-ID: info

-1D: rain_i Bounds: [804, 742, 1384, 441]
Text: 90%

Class : AppCompatimageView
Visibility: Visble
Clickable: Tr -

B emmseymbu\ Bounds : [64, 1002, 119, 1059]
Sounds: (0,0, 48, 45] Text: 34 Degrees

Text: None | Zext:iNone

Feels like 26 Degrees

ass:
-1D: feeling_thermal

inds : [56, 90, 344, 967]
Text: Feels lie 26 Degrees

Fig. 2. We illustrate captured app modalities: the rendered screen and view hierarchy,
which contains element metadata such as the Android class, resource ID, and text

3 MOoTIF Dataset

For a mobile app task dataset, we need natural language tasks for apps and their
resulting action sequence. Figure [1] illustrates MoTTF tasks like “open settings
and change temperature unit to C.” For each command, we collect expert demon-
strations of attempts to complete the request. At each time step we capture the
app screen, the app backend view hierarchy, what type of action is taken, and
where the action occurred. We show the modalities captured at each time step
in greater detail in Figure 2] The Android app backend, i.e., view hierarchy, is a
tree-like structure akin to the Document Object Model (DOM) used for HTML.
It organizes each screen element hierarchically, and contains additional metadata
like the Android class of an element (e.g., a text view or image view), its resource
identifier, the text it contains, whether it is clickable, and other attributes.

3.1 Data Collection

We provide a general framework for others to collect natural language data with
unknown feasibility; Figure [3| illustrates the collection pipeline. We select 125
apps for MoTIF over 15 app categories (the complete app list can be found in the
Supplementary). Ten apps with (1) at least 50k downloads and (2) a rating higher
than or equal to 4/5 were chosen for each category. Next, a first set of annotators
writes commands. A list of (app, task) pairs are then provided to a second set
of annotators in an interactive session, where they attempt the task, specify if
it is not feasible, and can ask a clarifying question if not. The Supplementary
includes annotator demographics, payment, and collection interface details.

Natural Language Commands To collect natural language tasks, we instruct
workers to write commands as if they are asking the app to perform the task for
them. Annotators can explore the app before deciding on their list of tasks. We
ask them to write functional or navigational tasks, and not commands requiring

6 Burns et al.

(1) App Collection [(2) Task Collection |
For each app

Mobile Annotator returns
EETTETI [m— open ended lst o
A tasks

Choose list of
n applications to
collect from, with:

Send task follow up,

needs revision
(3) Demonstration Collection ‘ (4) Feasibility Collection

State Screenshots
- - Annotator determines
View Hierarchy if task was possible

Action Localization

Needs clarification

Fig. 3. The data collection pipeline (see Section|3.1]). Colored boxes (app, task, demon-
stration, and feasibility collection) are stages of curating the dataset

text comprehension like summarizing an article. We neither structure the written
tasks nor prescribe a specific number of tasks to be written for each app.

Task-Application Pairing When collecting natural language tasks, annota-
tors can first explore the app. Once we have tasks for every app, we introduce
additional feasibility uncertainty for the demonstration stage by collecting de-
mos for both the original (app, task) list, as well as tasks paired with apps they
were not originally written for. We create these additional (app, task) pairs by
clustering tasks within each Android category (for example, clustering all tasks
for Music and Audio Android apps) and selecting representatives from each clus-
ter. These representative tasks are then collected for all apps of that category,
which we coin “category-clustered.” Specifically, we cluster the mean FastText
embedding [7] of the language commands using K-Means [28].

Clusters are visualized with T-SNE [29] (see Supplementary). If a particular
app’s tasks are isolated from other clusters, we retain “app-specific” pairings, i.e.,
the (app, task) pairs for tasks specifically written for the given app. This resulted
in 40 apps having only app-specific tasks. If two apps’ tasks are closely clustered,
we group them; 17 apps’ tasks were gathered this way. Figure |1 (bottom) shows
a category-clustered task which was deemed infeasible by annotators. The com-
mand “open settings and clear search history” was paired with the music app
Spotify even though it was not written for it. This is a sensible request given
that Spotify is a music streaming app. Yet, no search history is found under
settings, only the option to “delete cache,” and follow-up questions are asked.

Task Demonstration and Feasibility Annotations Once the language com-
mands are paired with apps, we instruct new annotators to demonstrate the task
in the given app. We provide a website interface connected to physical Android
phones for crowd workers to interact with, as well as anonymized login credentials
so that no personally identifiable information is collected. They are instructed
to record their demonstration after they have logged in (we consider logging in
to be a separate task). After attempting to complete the task, they are brought
to a post-survey where they provide details on whether or not the task was
successfully completed. We therefore have demonstrations of actions taken both

Interactive Vision-Language Navigation with Unknown Command Feasibility 7

Table 2. Task feasibility and follow-up question breakdown. Annotators can state the
action: can’t be completed (impossible), is under-specified (unclear), may be possible,
but are unsure how or other tasks need to be completed first (premature)

. Infeasible
Feasible Impossible|Unclear|Premature Total
Task Demonstrations| 3,337 911 159 300 4,707
Follow-Up Questions| 93 253 136 164 646

in successful and unsuccessful episodes, which may provide interesting insight
toward how to reason about whether a task is or is not feasible, and why.

3.2 Dataset Analysis

Natural Language Commands We collected over 6.1k natural language tasks
across 125 Android apps. The vocabulary size was 3,763 after removing non-
alphanumeric characters. The average number of tasks submitted per app is 56,
with average length being 5.6 words. The minimum task length is one, consisting
of single action tasks like ‘refresh’ or ‘login,” with the longest at 44 words. Word
cloud visualizations, additional examples and statistics are in the Supplementary.

Feasibility Annotations We collect at least five expert demonstrations per
(app, task) pair for two purposes: to reach a majority feasibility label and to
capture different attempts of the same task, as some tasks can be completed in
multiple ways. See the Supplementary for an annotator agreement histogram.
Of the resulting tasks, 29.2% are deemed infeasible by at least five crowd
workers. However, the tasks considered infeasible do not always correlate to
mismatched (app, task) pairs, i.e., some app-specific tasks are deemed infeasible
during demonstration. This confirms the need to study commands with unknown
feasibility, as someone familiar with an app can still pose requests that are either
not possible, ambiguous, or state dependent. Of the infeasible tasks, 16.8% are
from app-specific pairs. E.g., the request “click shuttle and station” originally
written for the NASA app was labeled infeasible because the app has chang-
ing interactive features. Thus app changes and dynamic features also motivate
studying infeasible requests, as a task that was once feasible may not always be.
Table [2| provides statistics on the number of task demonstrations and follow-
up questions per feasibility category. There are three options for annotators to
choose from: (1) the action cannot be completed in the app, (2) the action is
unclear or under-specified, or (3) the task seems to be possible, but they cannot
figure out how or other tasks need to be completed first. These map to Table[2]s
impossible, unclear, and premature columns. If a crowd worker cannot complete
the task, they are prompted to ask a follow-up question. We instruct them to
write the question(s) such that if they had the answer, they may now be able to
complete the original action or perform an alternative task for the user.

8 Burns et al.

4 Task Feasibility Experiments

We first perform experiments with MoTIF for task feasibility. Given a natural
language command and the app states visited during its demonstration, the pur-
pose of task feasibility prediction is to classify if the command can be completed.
To determine feasibility, we expect a model to learn the most relevant state for
the requested task and if the functionality needed to complete it is present. Our
results provide an initial upper bound on performance, as the input action se-
quences can be considered the ground truth exploration needed to determine
feasibility, as opposed to a learned agent’s exploration. MoTTF has 4.7k demon-
strations and we reserve 10% for testing. Note that our test set only includes
(app, task) pairs for which all annotators agreed on their feasibility annotation.

4.1 Models

We propose a Multi-Layer Perceptron (MLP) baseline with two hidden layers
that outputs a binary feasibility prediction. Each MLP is trained for 50 epochs
with cross entropy using Stochastic Gradient Descent with a learning rate of le-
2. The natural language command is always input to the classifier, and we ablate
which app environment features are additional input. In addition to the feature
ablations, we ablate how the demonstration sequence is aggregated (averaging
or concatenating over time steps or using the last hidden state of an LSTM [16]).

Features We encode the task command and view hierarchy elements per step
with mean pooled features. Specifically, we try both FastText [6] and CLIP [35]
(trained with a Transformer backbone for its image and text encoders [11/41]).
As seen in Figure [2| the view hierarchy captures all rendered app elements and
their attributes: the element’s text (ET), resource-identifier (ID) and class labels
(CLS) which provide content and type information. We use the best combination
of these attributes in Table [8]and have more ablations in the Supplementary. We
also include Screen2Vec [24] in our view hierarchy representations. Screen2Vec
is a semantic embedding of the view hierarchy, representing the view hierarchy
with a GUI, text, and layout embedder. The GUI and text encoders make use of
BERT features while the layout features are learned with an autoencoder. Thus,
it tries to encode both textual and structural features, but no visual information.

For visual features, we extract ResNet152 [15] features for ten crops of each
app image and CLIP features of each whole app image. We also include icon
features by cropping all icon images per screen (e.g., the menu and umbrella
icons shown in Figure[2)). We embed each icon image using the embedding layer
of a CNN trained for the downstream task of icon classification by Liu et al. [27].

Metrics We report the average F1 score over ten runs with different random
initialization. “Infeasible” is defined as the positive class, as we care more about
correctly classifying tasks that are infeasible, than misclassifying feasible tasks.

Interactive Vision-Language Navigation with Unknown Command Feasibility 9

Table 3. Task feasibility F1 score using our MLP. We ablate input features and action
sequence aggregation. The random baseline predicts a feasibility label given the train
distribution. On the right is a confusion matrix for the predictions of our best classifier

Cfeas Input Features Eigocﬁﬁgrsg?;ﬁn (c) Best Combination
Random 20.1

(a) View[I]-I(ierarchgr Ground Truth
FastText [6] (ET, ID 16.7|143.6| 34.1 B B
CLIP [35] (ET, ID) 28.0/50.9| 36.2 . Feasible Infeasible
Screen2Vec [24] 25.9(33.7] 36.0 s

(b) App Screen Image g § 76.4% 8.6%
ResNet [15] 31.3|41.9| 35.9 peg

Icons [27] 0.4 [40.0| 15.2 22

CLIP [35] 44.758.2| 42.8 o2

(c) Best Combination S 4.0% 11.0%
CLIP [35] (Screen, ET, ID)|44.8/61.1| 40.9 =

4.2 Results

Our best task feasibility classifier (Table [3|c) left) achieves an F1 score of 61.1
when CLIP embeds the task, view hierarchy, and app screen image. This is still
fairly low, and feature ablations demonstrate room to improve both the language
and visual representations. While CLIP has shown significant performance gains
in other vision-language tasks, it is somewhat surprising that domain-specific
embeddings (e.g., Screen2Vec, Icons) are not as competitive. The combination
of view hierarchy and app screen features does not largely outperform the app
screen image CLIP results (and does worse with LSTM aggregation), suggesting
a need for better vision-language encodings which can pull features together
from different modalities such as the view hierarchy.

We include the confusion matrix on the right of Table [3| for our best model.
In downstream use, the classifier would result in 5% of tasks being missed out on;
i.e., 5% of tasks were incorrectly classified as infeasible. This reduces the utility
of assistive applications, where we’d like all possible commands to correctly be
completed. However, the 44% of infeasible tasks that were incorrectly classified as
feasible can have more negative consequences. In application, this means a vision-
language model would attempt to complete an unsatisfiable request, resulting
in unknown behavior. We need downstream models to behave in reliable ways,
especially for users that cannot verify the task was reasonably completed.

Table a) left compares methods of encoding the view hierarchy. Using CLIP
for view hierarchy elements results in notably better performance than FastText,
albeit less significant when input demos are aggregated with an LSTM. Our final
view hierarchy embedding is Screen2Vec which performs worse than CLIP and on
par with FastText, despite being trained on mobile app data. Screen2Vec may not
capture enough low level view hierarchy information to predict feasibility, and
methods trained on huge data, even if from another domain, are more powerful.

10 Burns et al.

In Table b) left we ablate over the visual representations of the app screen.
While icon representations are trained on images from the same domain as Mo-
TIF, they are significantly less effective than ResNet and CLIP. The F1 score
nearly drops to zero when the average icon feature is used, illustrating that the
average icon does not carry useful information for feasibility classification. Icon
features may be too low-level or require improved aggregation methods.

Comparing demonstration aggregation methods (averaging, concatenating,
or LSTM), there is a trend that concatenating time steps is the best method,
suggesting a sequential representation of the action sequence is needed. However,
when the best representations for the view hierarchy and app screen are combined
in Table (c), averaging manages to outperform the LSTM performance.

In future work we hope to learn hierarchical representations in order to en-
code global information such as that of Screen2Vec as well as local information
from icon embeddings. Taking advantage of the tree structure from the view hi-
erarchy via Transformers or Graph Neural Networks may help learn structured
app features. Additionally, all current approaches do not take into account any
notion of app “affordance,” i.e., which app elements are most actionable.

5 Task Automation Experiments

In app task automation, we are given an app environment (with all of its modal-
ities) and a language command. The goal is to interact with the app and output
a sequence of app actions that complete the task, akin to interactive VLN. At
each time step there are two predictions: an action (clicking, typing, or swiping)
and a localization (grounding visually on the app screen or classifying over the
app elements). We benchmark several methods and analyze performance below.

5.1 Models

We adapt three models for the mobile app domain with as few changes as possi-
ble. The VLN approaches described below (Seq2Seq and MOCA) take both the
high-level goal and low level instructions as input while Seq2Act only supports
low level instruction. In the supplementary we include input language ablations
to consider what performance with real downstream use would look like.

Seq2Seq is a VLN model for the ALFRED, a dataset of actionable commands
for tasks in household environments. It originally predicts an action and binary
mask at each time step. The mask isolates the household object on which the
action is performed. The features at each time step include the attended language
instruction, the current step’s visual features, the last predicted action, and the
hidden state of a BILSTM which takes the former as input. The previous step’s
BiLSTM hidden state attends to the language input. These features are passed to
a fully connected layer with Softmax for action prediction and a deconvolutional
network for mask prediction. We replace the mask prediction network for three
fully connected layers that predict a point in the app screen and minimize the
mean squared error. Action prediction is trained via cross entropy.

Interactive Vision-Language Navigation with Unknown Command Feasibility 11

MOCA [39], also proposed for ALFRED, decouples the action and grounding
predictions of each step in a VLN sequence. One model stream is for the action
prediction policy, and another for interaction grounding. Both streams first use a
BiLSTM language encoder, which take the high-level goal or low level instruction
as input, respectively. The encoded tokens are attended to using ResNet visual
features via dynamic attention filters. Then, two LSTM decoders are used: one
for the action policy stream and another for the interaction grounding.

At test time MOCA makes use of an off-the-shelf object segmentation model
to perform grounding given the predicted object class. To adapt the object class
prediction to mobile apps, we instead perform app element type prediction (pre-
diction is over twelve classes, including button, checkbox, edit text, image view,
and more). As no such segmentation model exists for mobile apps yet, we also
predict bounding box localization directly using the LSTM decoder output, but
use the app element type prediction to narrow grounding options at evaluation.

Seq2Act [25] models mobile app task automation in two stages: action phrase
extraction and action grounding. Both stages are modeled with Transformers.
The first model predicts a span (i.e., substring) of the original input command
that corresponds to the action type, action location, and action input. It has an
encoder-decoder architecture: the encoder embeds the instruction’s text tokens
and the decoder computes a query vector for the action type, location, and input
phrases given the previously decoded spans. A text span is selected for each
decoder query (action type, action location, action input) via cosine similarity.

The action grounding model takes each extracted phrase as input to predict
an action type and location (which app element it is performed on). Actions are
predicted given the encoder embedding of the predicted action type span via a
Multi-Layer Perception. To localize the action, a Transformer is trained to embed
app elements using the view hierarchy attributes as shown in Figure[2} A Softmax
is applied to the similarities of the predicted app location span embeddings and
the latent app element representations. The max scoring app element becomes
the grounding prediction for that time step.

Datasets We evaluate task automation on two MoTIF test splits: an app seen
and an app unseen split to study generalization to new environments; general-
ization of tasks across apps is provided in the Supplementary. We jointly train
VLN models on MoTIF and RicoSCA for additional data (see the Supplemen-
tary for additional experiments trained solely on MoTIF). Seq2Act was originally
trained on RicoSCA and we adapt its training data split to be able to evaluate
seen versus unseen apps at test time.

Features Visual features for Seq2Seq and MOCA are from the last convolutional
layer of a ResNet18, as done for the original models; these features are needed for
meaningful localization on the mobile app screen. We also include CLIP features
of the screen at each time step. Note that VLN methods require a test-time
environment; we build an offline version of each Android app to approximate a
complete state-action space graph. Details on the creation of these graphs can
be found in the Supplementary. Seq2Act does not use off-the-shelf features as
input; all text and app element embeddings are learned from scratch.

12 Burns et al.

Table 4. Mobile app task accuracy on MoTIF. We evaluate the Seq2Seq and MOCA
navigation models and the Transformer grounding model Seq2Act

App Seen App Unseen
Model Action|Ground Actlon + Action|Ground Actlon +
Ground Ground

(a) Seq2Seq [38]
Complete Sequence| 68.5 | 22.5 22.5 54.3 18.0 17.7
Partial Sequence 89.5 | 40.4 40.1 81.7 | 31.3 30.6

(b) MOCA [39]
Complete Sequence| 51.1 | 21.3 20.7 44.8 | 17.0 15.1
Partial Sequence 78.5 | 40.0 38.6 72.2 | 32.7 30.0

(c) Seq2Act [25]
Complete Sequence| 98.8 | 27.6 27.6 94.9 | 23.5 23.5
Partial Sequence 99.7 | 64.4 64.3 98.9 | 62.2 61.7

Metrics We report complete and partial sequence accuracy per [25]: the com-
plete score for an action sequence is 1 if the predicted and ground truth sequences
have the same length and the same predictions at each step, else 0. The partial
sequence score is the fraction of predicted steps that match the ground-truth.
These are reported for action prediction (Action), action grounding (Ground),
or both jointly. Seq2Seq localization is correct if the predicted point falls within
the bounding box of the ground truth app element. MOCA localization is correct
if the predicted bounding box and ground truth have an IoU greater than 0.5.

5.2 Results

Despite MOCA being a more recent model for interactive vision-language naviga-
tion, it generally does not outperform Seq2Seq. The app element type prediction
MOCA uses may be responsible for the similar or lower accuracy, as the original
intention of object class prediction was to narrow down grounding interaction
to very few options. E.g., in the home environments of ALFRED, which MOCA
evaluated on, the object class predicted may be apple. If there is only a single
apple in the scene, the object segmentation model would be highly effective for
grounding. The mobile app domain differs in that there are many app elements
per time step of the same type, e.g., there are many app icons or app buttons,
and this prediction may not significantly reduce the grounding prediction space.

The Seq2Seq and MOCA models perform worse than Seq2Act. While addi-
tional model ablations may improve performance, it is clear that action localiza-
tion on the continuous app screen is more challenging. Seq2Act achieves the high-
est performance for all metrics. Seq2Act was originally evaluated with PIXEL-
HELP [25] and achieved 70.6% complete Action + Ground accuracy on it, much
higher than the accuracy reported on MoTIF. This may be due to PIXELHELP
containing click-only tasks for four test environments, which does not reflect the
model’s performance on a greater variety of apps or tasks. MoTIF’s step-by-

Interactive Vision-Language Navigation with Unknown Command Feasibility 13

App: @ Task: App: @ Task:| Go to my profile

W ey

IsabellaCruz_01 I:l

Inbox

Fig. 4. Seq2Act text matching. Green and red boxes are valid and invalid predic-
tions, respectively; black are additional valid ground truth. The left shows valid text
matching, identifying “notifications” in the app Pinterest. The right shows Seq2Act
incorrectly matching “my” in the input task to the app element “My favorite” in the
Opera news app

step instructions also contain location descriptions for app elements which don’t
contain text, differing from the Seq2Act training data distribution.

Qualitatively inspecting misclassifications, we find one culprit to be Seq2Act
overly relying on matching input task text to view hierarchy text. In Figure [4
we show Seq2Act’s text matching tendency, which can result in failure. For
example, Seq2Act predicts the app element with the word “my” in it for the
input command “go to my profile.” These results, in addition to the high visual
performance from the feasibility classifier, verifies the need for visual input to
correct model bias to match input task text directly to the view hierarchy.

Performance is unsurprisingly worse for unseen app environments. We sus-
pect that current model formulations do not learn enough about app elements
outside of the ground truth action sequences during training. None of the bench-
mark models include exploration, and as a result, may be biased to the small
subset of elements seen in expert demonstration. In future work, using pre-
trained generic app features or incorporating exploration into the training pro-
cess through reinforcement learning approaches may alleviate this.

6 Discussion

We find our best task feasibility prediction results to be low at a 61.1 F1 score,
given that the input demonstrations serve as the oracle exploration needed to
determine feasibility. In addition to improving vision-language feasibility reason-
ing, a necessary next step is to instead use learned explorations during training.
Our ablations demonstrate that visual inputs are useful for feasibility prediction,
and research toward better mobile app features that actually use the rendered
screen could increase performance. Building hierarchical visual and textual fea-
tures may provide stronger context clues for determining command feasibility

14 Burns et al.

in the app environment. We also hope to perform experiments classifying why
tasks are not feasible and automating question generation in response, making
use of MoTTF’s subclass annotations for infeasible tasks and follow up questions.

By evaluating action and grounding performance independently, we found
that models for completing mobile app tasks can have more difficulty grounding
and consistently perform more poorly in new app environments. Better represen-
tations of app elements are needed; specifically, incorporating pretraining tasks
for improved app features or allowing for exploration outside of ground truth
action sequences may be necessary to diversify test time predictions.

Limitations The MoTIF dataset is not on the scale of pretraining datasets used
in other VL tasks (e.g., Alt-Text [I8], JFT-300M [40)]), as it is very expensive and
time costly to collect natural language commands and feasibility labels. MoTIF
is nonetheless useful to the research community as it can be used to evaluate how
existing methods would solve language-based digital tasks in realistic settings.

Societal Impact Methods for automating language commands and predicting
command feasibility can be used to assist people who are not able to interact with
apps, either situationally (e.g., while driving) or physically (e.g., users who are
low-vision or blind). Improving mobile app task automation could better balance
the capabilities of current assistive technologies, which typically lack agency or
flexibility [42]. E.g., screen readers are primarily used for web browsing and
information consumption (lacking agency), while interactive virtual assistants
(e.g., Siri, Alexa) have limited, structured commands (lacking flexibility).
MoTTF’s collection was designed to ensure no personally identifiable informa-
tion is captured. But, in downstream use of app task automation, user privacy
is of concern. People who use assistive tools (e.g., people who are blind) already
expose sensitive information to other humans to receive help [IJ2]. To mitigate
potential harm, deployment of our research can be limited to apps which do
not require log in information; these are less likely to include name, address, or
payment data. MoTIF does not have tasks which require payment, and we can
deny payment related tasks to prevent fraud and other undesired outcomes.

7 Conclusion

We introduced Mobile app Tasks with Iterative Feedback (MoTIF), a new VLN
dataset that contains natural language commands for tasks in mobile apps which
may not be feasible. MoTIF is the first dataset to capture task uncertainty for
interactive visual environments and contains greater linguistic and visual diver-
sity than prior work, allowing for more research toward robust vision-language
methods. We introduced the task of feasibility prediction and evaluate prior
methods for automating mobile app tasks. Results verify that MoTIF poses new
vision-language challenges, and that the vision-language community can make
use of more realistic data to evaluate and improve upon current methods.
Acknowledgements This work is funded in part by Boston University, the
Google Ph.D. Fellowship program, the MIT-IBM Watson AI Lab, the Google
Faculty Research Award and NSF Grant 11S-1750563.

Interactive Vision-Language Navigation with Unknown Command Feasibility 15

References

1.

10.

11.

12.

13.

14.

15.

Ahmed, T., Hoyle, R., Connelly, K., Crandall, D., Kapadia, A.: Privacy con-
cerns and behaviors of people with visual impairments. In: Proceedings of
the 33rd Annual ACM Conference on Human Factors in Computing Sys-
tems. p. 3523-3532. CHI ’15, Association for Computing Machinery, New York,
NY, USA (2015). |https://doi.org/10.1145/2702123.2702334, https://doi.org/
10.1145/2702123.2702334

. Akter, T., Dosono, B., Ahmed, T., Kapadia, A., Semaan, B.C.: “I am uncom-

fortable sharing what I can’t see”: Privacy concerns of the visually impaired with
camera based assistive applications. In: USENIX Security Symposium (2020)
Anderson, P., Wu, Q., Teney, D., Bruce, J., Johnson, M., Siinderhauf, N., Reid,
I.D., Gould, S., van den Hengel, A.: Vision-and-language navigation: Interpreting
visually-grounded navigation instructions in real environments. In: Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)
Appalaraju, S., Jasani, B., Kota, B.U., Xie, Y., Manmatha, R.: Docformer: End-to-
end transformer for document understanding. In: 2021 IEEE/CVF International
Conference on Computer Vision (ICCV) (2021)

Blukis, V., Paxton, C., Fox, D., Garg, A., Artzi, Y.: A persistent spatial semantic
representation for high-level natural language instruction execution (2021)
Bojanowski, P., Grave, E., Joulin, A., Mikolov, T.: Enriching word vectors with
subword information. Transactions of the Association for Computational Linguis-
tics 5 (2017)

Conneau, A., Lample, G., Ranzato, M., Denoyer, L., Jégou, H.: Word translation
without parallel data. In: International Conference on Learning Representations
(ICLR) (2018)

Das, A., Datta, S., Gkioxari, G., Lee, S., Parikh, D., Batra, D.: Embodied Ques-
tion Answering. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) (2018)

Deka, B., Huang, Z., Franzen, C., Hibschman, J., Afergan, D., Li, Y., Nichols,
J., Kumar, R.: Rico: A mobile app dataset for building data-driven design appli-
cations. In: 30th Annual Symposium on User Interface Software and Technology
(UIST) (2017)

Deka, B., Huang, Z., Kumar, R.: Erica: Interaction mining mobile apps. In: 29th
Annual Symposium on User Interface Software and Technology (UIST) (2016)
Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner,
T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.:
An image is worth 16x16 words: Transformers for image recognition at scale (2021)
Gardner, R., Varma, M., Zhu, C., Krishna, R.: Determining question-answer plau-
sibility in crowdsourced datasets using multi-task learning. In: W-NUTQEMNLP
2020

(Gord(zn7 D., Kembhavi, A., Rastegari, M., Redmon, J., Fox, D., Farhadi, A.: IQA:
Visual question answering in interactive environments. In: 2018 IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR). pp. 4089-4098 (2018).
https://doi.org/10.1109/CVPR.2018.00430

Gurari, D., Li, Q., Stangl, A.J., Guo, A., Lin, C., Grauman, K., Luo, J., Bigham,
J.P.: Vizwiz grand challenge: Answering visual questions from blind people. In:
Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
pp. 770-778 (2016). https://doi.org/10.1109/CVPR.2016.90

https://doi.org/10.1145/2702123.2702334
https://doi.org/10.1145/2702123.2702334
https://doi.org/10.1145/2702123.2702334
https://doi.org/10.1109/CVPR.2018.00430
https://doi.org/10.1109/CVPR.2016.90

16

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Burns et al.

Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735-1780 (Nov 1997). https://doi.org/10.1162/neco.1997.9.8.1735, https://doi.
org/10.1162/neco.1997.9.8.1735

Irshad, M.Z., Ma, C.Y ., Kira, Z.: Hierarchical cross-modal agent for robotics vision-
and-language navigation. In: Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA) (2021), https://arxiv.org/abs/2104.10674
Jia, C., Yang, Y., Xia, Y., Chen, Y.T., Parekh, Z., Pham, H., Le, Q.V., Sung, Y.,
Li, Z., Duerig, T.: Scaling up visual and vision-language representation learning
with noisy text supervision (2021)

Ku, A., Anderson, P., Patel, R., Ie, E., Baldridge, J.: Room-across-room: Mul-
tilingual vision-and-language navigation with dense spatiotemporal grounding.
In: Proceedings of the 2020 Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP). pp. 4392-4412. Association for Computational Lin-
guistics, Online (Nov 2020). https://doi.org/10.18653/v1/2020.emnlp-main.356,
https://aclanthology.org/2020.emnlp-main. 356

Li, P., Gu, J., Kuen, J., Morariu, V.I., Zhao, H., Jain, R., Manjunatha, V., Liu,
H.: Selfdoc: Self-supervised document representation learning. In: 2021 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR) (2021)

Li, T.J.J., Azaria, A., Myers, B.A.: Sugilite: Creating multimodal smartphone au-
tomation by demonstration. In: Proceedings of the 2017 CHI Conference on Human
Factors in Computing Systems. p. 6038—-6049. CHI '17, Association for Computing
Machinery, New York, NY, USA (2017)

Li, T.J.J., Chen, J., Xia, H., Mitchell, T.M., Myers, B.A.: Multi-Modal Repairs of
Conversational Breakdowns in Task-Oriented Dialogs, p. 1094-1107. Association
for Computing Machinery, New York, NY, USA (2020)

Li, T.J.J., Mitchell, T.M., Myers, B.A.: Demonstration + Natural Language: Mul-
timodal Interfaces for GUI-Based Interactive Task Learning Agents, pp. 495-537.
Springer International Publishing, Cham (2021)

Li, T.J.J., Popowski, L., Mitchell, T.M., Myers, B.A.: Screen2vec: Semantic embed-
ding of gui screens and gui components. In: Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems. CHI ’21 (2021)

Li, Y., He, J.,, Zhou, X., Zhang, Y., Baldridge, J.: Mapping natu-
ral language instructions to mobile Ul action sequences. In: Proceedings
of the 58th Annual Meeting of the Association for Computational Lin-
guistics. pp. 8198-8210. Association for Computational Linguistics, Online
(Jul 2020). |https://doi.org/10.18653 /v1/2020.acl-main.729, https: //www.aclweb.
org/anthology/2020.acl-main.729

Li, Y., Li, G., Zhou, X., Dehghani, M., Gritsenko, A.A.: VUT: versatile
UI transformer for multi-modal multi-task user interface modeling. CoRR
abs/2112.05692 (2021), https://arxiv.org/abs/2112.05692

Liu, T.F., Craft, M., Situ, J., Yumer, E., Mech, R., Kumar, R.: Learning design
semantics for mobile apps. In: 31st Annual Symposium on User Interface Software
and Technology (UIST) (2018)

Lloyd, S.: Least squares quantization in pcm. In: IEEE Transactions on Information
Theory (1982)

van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. Journal of Ma-
chine Learning Research 9, 2579-2605 (2008), http://www. jmlr.org/papers/v9/
vandermaaten08a.html

Massiceti, D., Dokania, P.K., Siddharth, N., Torr, P.H.S.: Visual dialogue without
vision or dialogue. CoRR abs/1812.06417 (2018), http://arxiv.org/abs/1812.
06417

https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://arxiv.org/abs/2104.10674
https://doi.org/10.18653/v1/2020.emnlp-main.356
https://aclanthology.org/2020.emnlp-main.356
https://doi.org/10.18653/v1/2020.acl-main.729
https://www.aclweb.org/anthology/2020.acl-main.729
https://www.aclweb.org/anthology/2020.acl-main.729
https://arxiv.org/abs/2112.05692
http://www.jmlr.org/papers/v9/vandermaaten08a.html
http://www.jmlr.org/papers/v9/vandermaaten08a.html
http://arxiv.org/abs/1812.06417
http://arxiv.org/abs/1812.06417

Interactive Vision-Language Navigation with Unknown Command Feasibility 17

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

Min, S.Y., Chaplot, D.S., Ravikumar, P., Bisk, Y., Salakhutdinov, R.: Film: Fol-
lowing instructions in language with modular methods (2021)

Nguyen, K., Daumé III, H.: Help, anna! visual navigation with natural multimodal
assistance via retrospective curiosity-encouraging imitation learning. In: Proceed-
ings of the Conference on Empirical Methods in Natural Language Processing
(EMNLP) (November 2019)

Pasupat, P., Jiang, T.S., Liu, E.Z., Guu, K., Liang, P.: Mapping natural language
commands to web elements. In: Empirical Methods in Natural Language Processing
(EMNLP) (2018)

Puig, X., Ra, K., Boben, M., Li, J., Wang, T., Fidler, S., Torralba, A.: Vir-
tualhome: Simulating household activities via programs. In: 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR). pp.
8494-8502. IEEE Computer Society, Los Alamitos, CA, USA (jun 2018).
https://doi.org/10.1109/CVPR.2018.00886, https://doi.ieeecomputersociety.
org/10.1109/CVPR.2018.00886

Radford, A., Kim, J.W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G.,
Askell, A., Mishkin, P.; Clark, J., Krueger, G., Sutskever, I.: Learning transferable
visual models from natural language supervision. CoRR abs/2103.00020 (2021),
https://arxiv.org/abs/2103.00020

Ray, A., Christie, G., Bansal, M., Batra, D., Parikh, D.: Question relevance in vqa:
Identifying non-visual and false-premise questions (2016)

Shi, T., Karpathy, A., Fan, L., Hernandez, J., Liang, P.: World of bits: An open-
domain platform for web-based agents. In: 34th International Conference on Ma-
chine Learning (ICML) (2015)

Shridhar, M., Thomason, J., Gordon, D., Bisk, Y., Han, W., Mottaghi, R., Zettle-
moyer, L., Fox, D.: ALFRED: A Benchmark for Interpreting Grounded Instructions
for Everyday Tasks. In: The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) (2020), https://arxiv.org/abs/1912.01734

Singh, K.P., Bhambri, S., Kim, B., Mottaghi, R., Choi, J.: Factorizing perception
and policy for interactive instruction following. In: Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV) (2021)

Sun, C., Shrivastava, A., Singh, S., Gupta, A.: Revisiting unreasonable effectiveness
of data in deep learning era. CoRR abs/1707.02968 (2017), http://arxiv.org/
abs/1707.02968

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
L., Polosukhin, I.: Attention is all you need. In: Conference on Neural Information
Processing Systems (NeurIPS) (2017)

Vtyurina, A., Fourney, A., Morris, M.R., Findlater, L., White, R.W.: Bridging
screen readers and voice assistants for enhanced eyes-free web search. In: Interna-
tional ACM SIGACCESS Conference on Computers and Accessibility (ASSETS)
(2019)

Yamaguchi, K.: Canvasvae: Learning to generate vector graphic documents. In:
Proceedings of the IEEE/CVF International Conference on Computer Vision
(ICCV) (2021)

Zhu, F., Zhu, Y., Chang, X., Liang, X.: Vision-language navigation with
self-supervised auxiliary reasoning tasks. In: 2020 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR). pp. 10009-10019 (2020).
https://doi.org/10.1109/CVPR42600.2020.01003

Zhu, Y., Gordon, D., Kolve, E., Fox, D., Fei-Fei, L., Gupta, A.K., Mottaghi, R.,
Farhadi, A.: Visual semantic planning using deep successor representations. In:
2017 IEEE International Conference on Computer Vision (ICCV) (2017)

https://doi.org/10.1109/CVPR.2018.00886
https://doi.ieeecomputersociety.org/10.1109/CVPR.2018.00886
https://doi.ieeecomputersociety.org/10.1109/CVPR.2018.00886
https://arxiv.org/abs/2103.00020
https://arxiv.org/abs/1912.01734
http://arxiv.org/abs/1707.02968
http://arxiv.org/abs/1707.02968
https://doi.org/10.1109/CVPR42600.2020.01003

	A Dataset for Interactive Vision-Language Navigation with Unknown Command Feasibility

