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Abstract. Consistently high data quality is essential for the develop-
ment of novel loss functions and architectures in the field of deep learning.
The existence of such data and labels is usually presumed, while acquir-
ing high-quality datasets is still a major issue in many cases. Subjective
annotations by annotators often lead to ambiguous labels in real-world
datasets. We propose a data-centric approach to relabel such ambigu-
ous labels instead of implementing the handling of this issue in a neural
network. A hard classification is by definition not enough to capture
the real-world ambiguity of the data. Therefore, we propose our method
”Data-Centric Classification & Clustering (DC3)” which combines semi-
supervised classification and clustering. It automatically estimates the
ambiguity of an image and performs a classification or clustering de-
pending on that ambiguity. DC3 is general in nature so that it can be
used in addition to many Semi-Supervised Learning (SSL) algorithms.
On average, our approach yields a 7.6% better F1-Score for classifications
and a 7.9% lower inner distance of clusters across multiple evaluated SSL
algorithms and datasets. Most importantly, we give a proof-of-concept
that the classifications and clusterings from DC3 are beneficial as pro-
posals for the manual refinement of such ambiguous labels. Overall, a
combination of SSL with our method DC3 can lead to better handling
of ambiguous labels during the annotation process. 5
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Fig. 1: Benefit of data-centric classification and clustering (DC3) over Semi-
Supervised Learning (SSL) - Real-world datasets often suffer from intra- or inter-
observer variability (IIV) during the annotation and thus no clear separation of
classes is given as in common benchmark datasets. Images with a high variabil-
ity between the annotations therefore have a ambiguous label. These ambiguous
labels can perturb SSL approaches (see lightning bolt) and result in inconsistent
predictions. Our method DC3 can be used in combination with SSL to identify
ambiguous images automatically and cluster them, while classifying the rest as
usual. Therefore, we avoid label ambiguity during training and generate cluster
proposals which can be used to create more consistent labels.

1 Introduction

In recent years, deep learning has been successfully applied to many computer
vision problems [21, 49, 11, 42, 40, 15]. The availability of large high-quality
datasets was a main reason for this success, as this enabled machine learning to
incorporate a wide variety of real world patterns [30]. Many novel loss functions
and architectures have been proposed including options to handle imperfect data
[51, 58]. This model-centric view mostly tries to deal with issues like label bias
[35], label noise [26] or ambiguous labels [17] instead of improving the dataset
during the annotation process. Following recent data-centric literature [4, 43, 45],
we therefore investigate in this paper an approach to improve the dataset during
the annotation process.

Specifically, we study the impact of ambiguous labels due to intra- or inter-

observer variability (IIV). Such variability may arise from variability / incon-
sistency of annotations over time or between annotators. This issue is common
when annotating data [39, 45, 26, 43, 47, 24, 44, 37, 5, 46, 16, 25, 14, 19]. The
literature names different possible reasons for this variability such as low reso-
lution [39], bad quality[22, 47], subjective interpretations of classes [25, 37] or
mistakes [26, 33].

We assume that this variability can be modeled for each image with an
unknown soft probability distribution l ∈ [0, 1]k for a classification problem
with k classes. Many previous methods use a hard label instead of a soft label
for training and therefore can not model this issue by definition. We call a
label and its corresponding image certain if all annotators would agree on the

5 Source code is available at https://github.com/Emprime/dc3
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classification (l ∈ {0, 1}) and ambiguous if they would disagree (l ∈ (0, 1)). In
other words, ambiguous images are likely to have different annotations due to
IIV while certain images do not. It is problematic that the unknown distribution
l can only be estimated with expensive operations such as the acquisition of
multiple annotations. Real-world example images with certain and ambiguous
labels are given in Figure 3 and detailed definitions are given in subsection 2.1.

The goal of this paper is to introduce a method which provides predictions
which are beneficial for improving ambiguous labels via relabeling in a down-
stream task. The quality of ambiguous labels and thus the performance of trained
models [4, 60] can easily be improved with more annotations. However, more
annotations are associated with a higher cost in the form of human working
hours. Semi-Supervised Learning (SSL) can reduce these costs because it has
shown great potential in reducing the amount of required labeled data to 10%
or even 1% while maintaining classification performance [49, 27, 11, 61, 8]. SSL
can even boost performance further [59, 40] on already large labeled datasets
like ImageNet [30].

Therefore, we propose Data-Centric Classification & Clustering (DC3) which
can be used in combination with many SSL algorithms to perform a combined
semi-supervised classification and clustering. It simultaneously distinguishes be-
tween ambiguous and certain images, classifies the certain images and clusters
visually similar ambiguous images. A graphical summary is provided in Fig-
ure 1. We will show that this approach leads to better classifications and more
compact clusters across multiple semi-supervised algorithms and non-curated
datasets. Furthermore, we give a proof-of-concept that these improvements lead
to a greater consistency of labels based on proposals from DC3.

The key contributions of this paper are: (1) DC3 allows an SSL algorithm to
predict on average a 7.6% better F1-Score for classifications and a 7.9% lower
inner distance of clustering across multiple algorithms and non-curated datasets.
The hyperparameters of DC3 are fixed across all algorithms and datasets which
illustrates the general applicability of our method. (2) We give a proof-of-concept
that these improved predictions can be used to create labels on average 2.4-fold
faster and 6.74% more consistent, in comparison to the non-extended algorithms
and a consensus process. This leads to higher quality data for further evalua-
tion or model training. (3) DC3 can be used in combination with many SSL
algorithms without a noticeable trade-off in terms of run-time or memory con-
sumption, which should enable many further applications.

1.1 Related Work

Our method is mainly related to Data-Centric Machine Learning, Semi-Supervised
Learning and Classification & Clustering.

Data-Centric Machine Learning aims at improving the data quality rather then
improving the model alone[45, 36]. The data issues like imperfect, ambiguous or
erroneous labels [4, 52, 60, 14, 24, 13, 1] are often handled in a model-centric
approach by detecting errors or making the models more robust [50, 9, 26, 2]. We
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want to use the predictions of our model to improve the annotation process and
therefore prevent or minimize the quality issues before they need to be handled
in particular.

Semi-Supervised Learning [10] is mainly developed on curated benchmark datasets
[30, 12, 29] where the issue of IIV is not considered. In contrast to other SSL
research [11, 61, 8, 18, 49], we are not evaluating on these curated benchmarks
but work with new real-world datasets for two reasons. Firstly, curated datasets
do not suffer so much from IIV because they were already cleaned. Recent re-
search indicates that even these datasets suffer from errors in the labels which
negatively impact the performance [39, 4]. Secondly, if we want to evaluate the
IIV issue, we need an approximation of the variability of the label for each image
e.g. in the form of multiple annotations per image. However, this information
is not provided for current state-of-the-art benchmarks except for datasets like
[39, 4].

Classification&Clustering was investigated in detail [41, 38, 6, 7, 54]. However,
classical low dimensional approaches are difficult to extend to real-world images
[41, 38, 6]. and many deep-learning methods use the clustering only as a proxy
task before the actual classification [55, 23, 43] or iterate between classifications
and clusters [7, 54]. The work by Smieja et al. is a rare example where classifi-
cation and clustering results are generated in parallel in each training step [48].
However, we want to automatically decide which data should be classified or
clustered due to their underlying ambiguity.

2 Method

Our method Data-Centric Classification & Clustering (DC3) is not an individual
method but an extension for SSL algorithms such as [3, 49, 53, 32, 31]. Any image
classification model can be combined with DC3 as long as it is compatible with
the definition of an arbitrary SSL algorithm below.

2.1 Definitions

We assume that every image x ∈ X has an unknown soft probability distribution
l ∈ [0, 1]k for a classification problem with k classes. This assumption is based
on two main reasons. Firstly, inconsistent annotations exist due to subjective
opinions from the annotators, e.g. the grading of an illness [25]. A hard label l ∈
{0, 1}k could not model such a difference over the complete annotator population.
Secondly, if we consider biological processes, images of intermediate transition
stages between two classes, such as the degeneration of a living underwater
organism to dead biomass exist [43].

An image and its corresponding label l are ambiguous if i, j ∈ {1, .., k} exist
with i ̸= j, li > 0 and lj > 0. Otherwise the image and its label are certain. The
ambiguity of a label is 1−maxi∈{1,..,k}li. An image might be ambiguous because
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Fig. 2: Our method DC3 and an extended arbitrary SSL method – The SSL
algorithm passes an image x through the network Φ and outputs a classification
pn(x). We add two additional outputs: an overclustering po(x) and a ambiguity
estimation pa(x). The ambiguity estimation pa(x) is used to determine if the
classification or the overclustering output is used for our method DC3. Only
some labels are available for the classification output and therefore most images
have to be trained completely self-supervised on all outputs.

it is actually an intermediate or uncertain combination of different classes as
stated above. For this reason, ambiguous images are not just wrongly assigned
images.

An SSL algorithm uses a labeled dataset Xl and an unlabeled dataset Xu for
the training of a neural network Φ with X = Xl

˙⋃Xu. For all images x ∈ Xl a
hard label l is available while no label information is available for x ∈ Xu. The
output pn(x) := Φ(x) is a probability distribution over the k classes.

2.2 DC3

Our method DC3 extends an arbitrary SSL algorithm. The SSL algorithm passes
an image x through the network Φ and predicts a classification pn(x) ∈ [0, 1]k.
DC3 calculates two additional outputs without a noticeable impact on training
time or memory consumption: a clustering assignment po(x) ∈ [0, 1]k

′

with k′ > k

and an ambiguity estimation pa(x) ∈ [0, 1]. The cluster assignment partitions
visually similar images in more clusters than classes exist (overclustering with
k′ > k). The ambiguity estimation is used to determine if a classification (pn(x))
or an (over)clustering (po(x)) should be used as the final output. The image is
predicted as certain and the classification is used if pa(x) < 0.5. Otherwise, the
image is estimated as ambiguous and the clustering is used as output.

A key difference to previous literature [23, 43, 7] is that we do not create an
additional or only a clustering of all samples. We create SSL classifications for
certain images while ambiguous images are clustered without prescribed knowl-
edge. Moreover, it is not feasible to determine ambiguous images before this
classification/clustering and thus we have no ground-truth for this decision as
well. These conditions led us to formulate three goals for our development: 1.
The underlying SSL training must be possible and not negatively impacted while
computing an additional overclustering. 2. A degeneration to one or random
cluster assignments has to be avoided as no ground-truth is available for the
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clustering. 3. A balance between certain and ambiguous images is needed as the
same argument (no-ground truth) applies to the ambiguity estimation pa(x) For
this purpose, the network is trained by minimizing the following loss function
which benefits from SSL but avoids the described degenerations.

L(x) = LSSL(x) · [1− pa(x)] + λCE−1LCE−1(x) · [1− pa(x)]

+ λaLA(x) + λsLS(x) · pa(x)
(1)

The first three loss terms correspond to the outputs pn(x), po(x) and pa(x) and
the three goals described above, respectively. The last term (LS) is optional and
stabilizes the training. The λ values are weights to balance the impact of each
term. The first loss LSSL is the loss calculated by the original SSL algorithm
and is only scaled with [1−pa(x)] to prevent the original SSL training on images
the network predicts as ambiguous.

The second loss LCE−1 incentives visually homogeneous clusters of the images
by pushing images from different classes into different clusters. This loss is needed
to prevent a degeneration of the clustering. A similar loss was used in [43] but
could only be trained on labeled data, with pretrained networks and several
inefficient stabilizing methods like repeating every sample 3-5 times per batch.
We generalized the formula for two input images x, x′ of the same mini-batch
which should not be of the same class:

CE−1(po(x), po(x
′)) = −

k
∑

c=1

po(x)c · ln(1− po(x
′)c) . (2)

For the selection of x, x′, we use either the ground-truth label l of x if it is
available or the Pseudo-Label based on the network prediction pn(x). The loss is
also scaled with [1− pa(x)] because it uses an estimate of the class for an image
which could be wrong / ill-suited for ambiguous images.

The third loss LA allows the ambiguity estimation. As stated above, the
underlying distribution l is unknown and thus we do not know during training if
x is ambiguous or certain. However, we can expect to know or be given a prior
probability pA ∈ [0, 1] of the expected percentage of ambiguous images in the
total dataset. We set pA to a fixed value which balances certain and ambiguous
images and the details are given in subsection 3.3. Based on this probability, we
can estimate a Pseudo-Label of the ambiguity of each image in a batch during
training. The loss LA is the binary cross-entropy between the Pseudo-Label h(x)
and pa(x). The usage of hot-encoded Pseudo-Labels forces the network to make
more confident predictions. The formulation is given below with i as the index of
the image x inside the given batch, when all images inside the batch are sorted
in ascending order based on pa.

LA(x) = CE(h(x), pa(x))

= −(1− h(x)) · ln(pa(x = 0))

− h(x) · ln(pa(x = 1)) with

h(x) =

{

1 i ≤ batch size · pA

0 else

(3)
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The fourth term LS is the cross-entropy (CE) between po(x) and po(x
′) for

two differently augmented versions x, x′ of the same image. This loss is scaled
with pa(x) and incentives that augmented versions of the same ambiguous image
are in the same output cluster. We use CE because it indirectly minimizes also
the entropy of po(x) which leads to sharper predictions. Many SSL algorithms
already use a differently augmented version x′ of x as secondary input [3, 49,
53, 31, 23] which allows an easy computation. Otherwise, the fourth term is not
calculated and treated as zero.

It is important to note that only the proposed combination of the individual
parts leads to a successful training of all desired outputs. We show in section 4
that the combined clustering and classification (CC) based on pa(x) and the loss
LCE−1 are the two essential parts to DC3.

3 Experiments

3.1 Datasets

That our method can be applied to many SSL algorithms across different real-
world ambiguous datasets without major changes is a major advantage. While
many datasets [39, 26, 43, 47, 24, 37, 5, 16, 25, 14] suffer from annotation
variability, we do not know the unknown underlying distribution l to evaluate
the ambiguity or any related metrics. We can approximate l with the average
over multiple annotations from humans. An annotation is the hard coded guess
a = (a1, ..., ak) ∈ {0, 1}k of a class for an image from a human with exactly
one i′ ∈ {1, ..., k} : a′i = 1 and for all j ∈ {1, ..., k} \ {i′} : aj = 0. We as-

sume that the approximation l̂ as the average of n annotations is identical to
the unknown distribution l for n −→ ∞. This leaves the issue that we need
multiple annotations per image for a dataset with ambiguous labels which are
often not available. However, all datasets summarized in Table 1 have multiple
annotations and thus allow the approximation of l̂. Nine visual examples for all
datasets are given in Figure 3 and the datasets are shortly introduced below.

The Plankton dataset was introduced in [43]. The dataset contains 10 plank-
ton classes and has multiple labels per image due to the help of citizen scientists.
In contrast to [43], we include ambiguous images in the training and validation
set and do not enforce a class balance which results in a slightly different data
split as shown in Figure 3. Moreover, we processed the data by recentering the
images and removing artifacts like scale bars.

The Turkey dataset was used in [56, 57]. The dataset contains cropped images
of potential injuries of the birds which were separately annotated by three experts
as not injured or injured.

The Mice Bone dataset is based on raw data which was published in [47]. The
raw data are 3D scans from collagen fibers in mice bones. The three proposed
classes are similar as well as dissimilar collagen fiber orientations and not relevant
regions due to noise or background. We used the given segmentations to cut
image regions from the original 2D image slices which mainly consist of one
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Table 1: Overview of the used datasets – # is an abbreviation for number. The
class imbalance is given as the percentage of the smallest and largest class with
regard to the complete dataset. p̂A is the expected prior ambiguity probability
of the dataset. n is the average of annotations per image.

Name # classes Input size [px] # Images Class Imbalance [%] p̂A [%] n

Train Val Unlabeled Smallest Largest

Plankton [43] 10 96x96 1964 2456 7860 4.16 30.37 44 24
Turkey [?] 2 96x96 1299 1542 5199 9.66 90.33 22 3
Mice Bone [47] 3 224x224 277 169 278 10.81 63.98 65 3
CIFAR-10H [39] 10 32x32 1600 2000 6400 9.88 10.16 32 51

(a) Plankton [43] (b) Turkey [56] (c) Mice Bone [47] (d) CIFAR-10H [39]

Fig. 3: Example images for the ambiguous real-world datasets – All datasets have
certain images (red & blue) and ambiguous images between these classes (grey).
The classes are Bubble & Copepod, Not Injured & Injured, Similar & Dissimilar
Orientations and Dog & Cat respectively.

class. We generated ambiguous GT labels on 10% of the generated images by
averaging over three classifications from an expert.

The CIFAR-10H [39] dataset provides multiple annotations for the test set
of CIFAR-10[29]. This dataset is interesting because it illustrates that even the
hard labels from benchmark datasets like CIFAR-10 are based on soft labels due
to IIV.

As stated above the approximation of l̂ is only possible with multiple an-
notations per image. For the STL-10 dataset [12], only one annotation / label
per image is given. We still include some results of this dataset to illustrate the
performance on previous benchmarks.

For all datasets, we split our images X into a labeled Xl and an unlabeled
Xu training set. We keep additional images as a validation subset. On Xl, we
use for each image a random hard label sampled from the corresponding l̂. This
simulates the noisy approximation of the true ground truth label l. On Xu, we
can only use the image information and not any label information. The validation
data is used to compare the trained networks and to detect issues like overfitting.
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3.2 Metrics

We want to measure the quality of classification and clusters over the certain
and ambiguous data respectively which we assume are better proposals in the
annotation or evaluation process. Based on this reasoning, we decided to use the
weighted F1-Score on certain data and the mean inner distance on ambiguous
data, The ambiguity is determined by the network output pa. We define the
metrics in detail below and give in subsection 3.5 a proof-of-concept for the
higher consistency of labels based on proposals selected by the defined metrics.
Common metrics like accuracy are not used as the class imbalance of several of
our datasets would lead to misleading results.

During training we do not enforce a balance between ambiguous and certain
predictions to keep the required prior knowledge minimal. This can lead to un-
informative metrics and therefore we call a training degenerated if no more than
10% of the validation data are either predicted as ambiguous or certain. We use
the weighted F1-Score on certain images, based on the number of images per
class to avoid instability due to classes with no or very few certain (predicted)
images. For the ambiguous images, we use the mean inner euclidean distance (d)
to the centroid on the soft / ambiguous Ground-Truth (GT) labels. The metric d
is based on the soft GT and thus also minimal for classifications of the majority
class which allows an evaluation also on classified data. The equation for a set
of clusters of images X is given in Equation 4 with sets C ∈ X as clusters and
the corresponding approximated soft label distribution l̂x for each image x ∈ C.
The centroid per cluster is given as µC .

d(X) :=
1

|X|

∑

C∈X

1

|C|

∑

x∈C

||l̂x − µC ||2 with

µC :=
1

|C|

∑

x∈C

l̂x

(4)

We use the vanilla (unchanged) SSL algorithms as baseline experiments. For
these experiments and some ablation experiments, we have no ambiguity pre-
diction pa(x). In these cases, we assume all images to be certain and use pn(x)
as output. We often noticed that the classification improved while the clustering
degenerated and the other way round. Therefore, we determine the best perfor-
mance considering the difference (d−F1) between distance and F1-Score (smaller
is better). It is important to note that this balancing is arbitrary, but we give
a proof of concept that the proposals calculated by these metrics lead to more
consistent annotations which justifies their definition. In general, we have 3 runs
per setup but we exclude results that degenerate as described above. We report
the best of these runs based on the (d−F1)-score over all non-degenerated runs.
All scores are calculated on the validation data which is in general about 20%
of all the data (see details in Table 1).
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3.3 Implementation Details

All methods use the same code base and share major hyperparameters which
is crucial for valid comparisons [28]. We use the prior ambiguity pA = 0.6 and
loss weights λCE−1 = 10, λf = 0.1 and λs = 0.1 across all experiments. It is
important to note that we do not use the actual prior probability of ambiguous
images p̂A as given in Table 1 because the probability is unknown or would
require multiple annotations per image. We use a constant approximation across
all datasets and show in section 4 that this approximation is comparable or
even better than p̂A. This parameter is essential for balancing the certain and
ambiguous images. The batch size was 64 for all datasets except for the mice bone
dataset with a batch size of 8. The additional losses LA and LS are only applied
on the unlabeled data while LCE−1 is also calculated on the labeled data. These
hyperparameters were determined heuristically on the Plankton dataset with
Mean-Teacher and show strong results across different methods and datasets as
shown in subsection 3.4. Most likely these parameters are not optimal for an
individual combination of a method and a dataset but they show the general
applicability across methods and datasets. We want to show that DC3 can be
applied successfully to other datasets without hyperparameter optimization and
thus did not investigate all combinations in detail. Nevertheless, we refer to the
supplementary for more detailed insights about individual hyperparameters and
the complete pseudo code for the loss calculation.

3.4 Evaluation

The comparison between different SSL algorithms and their extension with DC3
is given in Table 2. The best results were selected as described in subsection 3.2.
The complete results and additional plots are given in the supplementary. We
see that DC3 improves the classification and clustering performance across the
majority of classes and methods by 5 to 10%. (d−F1) is improved by up to 40%
for 16 out of 19 method-dataset-combinations. On average, we achieve a 7.6%
higher F1-Score for certain classifications and a 7.9% lower inner distance for
clusterings of ambiguous images if we look at all non excluded method-dataset-
combinations. Even on STL-10 (without the possibility to evaluate ambiguous
labels) DC3 creates up to 9% better classifications. Overall, we see the most
benefit on the Mice Bone and Turkey dataset which we attribute to the worse
initial approximation of l̂. The different vanilla algorithms achieve quite similar
results for each dataset. Only FixMatch achieves a more than 5% better F1-Score
on the curated STL-10 and CIFAR-10H dataset. In general, we see that DC3
can be beneficially applied to a variety of datasets and methods and predicts
better classifications and more compact clusters.

Additional results about the impact of ambiguous data, the unlabeled data
ratio and the interpretabiliy can be found in the supplementary.
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Table 2: Performance across different methods and datasets – The vanilla al-
gorithm is highlighted in light grey. Better results in comparison to the vanilla
algorithm are marked bold. The definition of the metrics are given in subsec-
tion 3.2. CE stands for supervised Cross-Entropy training. All values are given
in %. Reasons for exclusion: H - Hardware Restrictions
Methods Plankton Turkey Mice Bone CIFAR-10H STL-10

F1 ↑ d ↓ (d−F1) ↓ F1 ↑ d ↓ (d−F1) ↓ F1 ↑ d ↓ (d−F1) ↓ F1 ↑ d ↓ (d−F1) ↓ F1 ↑

CE 86.71 30.45 -56.26 83.84 42.98 -40.86 69.55 54.75 -14.80 67.71 55.80 -11.91 80.48
CE + DC3 78.24 23.41 -54.84 85.79 27.64 -58.14 93.88 36.58 57.30 78.27 54.52 -23.75 88.45

Mean-Teacher [53] 88..72 25.84 -62.88 81.82 45.12 -36.70 66.41 48.83 -17.58 73.53 46.93 -26.59 80.67
Mean-Teacher [53] + DC3 91.30 24.84 -66.46 86.45 33.92 -52.53 89.4 35.11 -54.73 85.13 52.44 -32.69 89.28

Pi-Model [31] 87.57 28.43 -59.14 82.11 39.46 -42.65 68.15 54.11 -14.04 71.53 49.13 -22.40 82.56
Pi-Model [31] + DC3 79.79 19.08 -60.71 87.43 23.33 -64.10 88.01 30.99 -57.02 83.05 43.40 -39.65 89.54

Pseudo-Label [32] 87.62 27.42 -60.20 82.37 44.88 -37.49 66.60 57.03 -9.57 69.70 53.30 -16.40 82.48
Pseudo-Label [32] + DC3 89.31 31.76 -57.55 83.44 35.04 -48.41 86.58 37.52 -49.06 83.74 51.32 -32.42 88.87

FixMatch [49] 85.81 30.29 -55.52 82.14 43.33 -38.81 H H H 78.09 41.99 -36.10 89.35
FixMatch [49] + DC3 87.20 31.28 -55.92 83.56 28.17 -55.39 H H H 83.09 49.49 -33.60 91.45

Table 3: Consistency comparison of generated labels from proposals – The first
column describes the annotator selection and the used proposals. The Cohen’s
kappa coefficient κ measures the agreement of between the used repetitions and
Time gives annotation time in minutes. Results which are within one percent or
minute of the best result per dataset and annotator selection are marked bold.

Plankton Turkey Mice Bone CIFAR-10H

κ [%] ↑ Time [min] ↓ κ [%] ↑ Time [min] ↓ κ [%] ↑ Time [min] ↓ κ [%] ↑ Tim [min] ↓

A1 73.00 ± 1.51 51.09 ± 2.36 88.08 ± 3.43 14.56 ± 0.84 71,35 ± 2.56 13,94 ± 2.25 92.70 ± 1.69 40.58 ± 1.93
A1 + SSL 85.00 ± 2.52 12.69 ± 3.37 85.63 ± 3.66 10.70 ± 0.44 72.00 ± 2.87 6.59 ± 1.65 94.85 ± 0.91 14.33 ± 1.48

A1 + DC3 90.29 ± 1.41 11.32 ± 1.43 91.95 ± 1.22 11.57 ± 0.64 81.36 ± 2.17 6.74 ± 1.05 94.70 ± 0.52 14.65 ± 0.60

A2 85.25 ± 1.79 61.99 ± 10.98 81.54 ± 0.89 18.11 ± 4.30 68.63 ± 6.66 11.06 ± 3.60 98.81 ± 0.14 33.08 ± 5.36
A2 + SSL 94.88 ± 0.52 9.23 ± 0.76 81.10 ± 3.39 9.48 ± 0.83 59.63 ± 6.20 12.07 ± 4.77 98.00 ± 0.27 12.66 ± 0.69

A2 + DC3 94.04 ± 0.67 10.32 ± 0.07 81.83 ± 1.98 9.91 ± 0.39 72.19 ± 3.23 9.13 ± 2.98 98.29 ± 0.19 14.27 ± 0.69
A3 84.74 ± 1.02 21.54 ± 1.54 78.27 ± 1.08 19.35 ± 1.16 56.27 ± 4.03 10.15 ± 2.12 93.22 ± 1.01 21.96 ± 1.10
A3 + SSL 88.59 ± 0.84 9.02 ± 0.20 88.44 ± 1.74 13.24 ± 0.32 72.32 ± 0.61 8.02 ± 1.23 92.37 ± 1.78 9.79 ± 0.52

A3 + DC3 88.57 ± 0.62 7.76 ± 0.27 91.94 ± 1.04 14.05 ± 0.51 72.77 ± 2.74 9.56 ± 1.71 94.81 ± 0.96 9.50 ± 0.74

3.5 Proof-of-concept improved data quality

We show above that DC3 can lead to better classifications and clusters than
SSL alone. In accordance with previous literature [45, 43], we give a proof-of-
concept in Table 3 that the annotation process can be improved with cluster-
based proposals. As an SSL algorithm we used Mean-Teacher and for the datasets
Plankton, Turkey and CIFAR-10H we used a random subsample of 10% for
the evaluation. We conducted experiments with a pool of 6 annotators which
consisted of domain experts and inexperienced hired workers which were paid
a fixed wage per hour. We assigned 3 annotators from the pool per dataset.
This means that annotator named e.g. A1 might be a different person between
datasets in Table 3. We compare the annotations over time from each annotator.
We investigated three different proposals for the annotation. The baseline is not
using any proposals, the second is using the SSL predictions (classification) and
the third is using the DC3 predictions (classification + clusters). For each cluster,
a rough description was given as guidance during the annotation. After a training
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Table 4: Ablation results averaged over different methods – The vanilla algo-
rithms / baselines are highlighted in light grey. Each lower row extends this
baseline individually with CE−1 [43], Clustering & Classification (CC) or both
(DC3). CC can be interpreted as DC3 without CE−1. The prior ambiguity esti-
mate pA is given in brackets if applicable. Results that improve over the baseline
are marked in bold. The metrics are defined in subsection 3.2. The column ’Am-
biguous’ gives the percentage of predicted ambiguous data and the last column
gives the number of non-degenerated runs over which we averaged

F1 d (d−F1) Ambiguous # Runs

best mean ± std best mean ± std best mean ± std best mean ± std

CIFAR-10H

Baseline 0.7809 0.7153 ± 0.0359 0.4199 0.5027 ± 0.0469 -0.3611 -0.2126 ± 0.0827 - - 15
+ CE−1 0.7383 0.7191 ± 0.0164 0.4692 0.4929 ± 0.0243 -0.2691 -0.2262 ± 0.0404 - - 12
+ CC (pA = 0.6) 0.8565 0.7471 ± 0.1246 0.8657 0.8768 ± 0.0129 0.0092 0.1297 ± 0.1374 0.6145 0.5923 ± 0.0322 12
+ DC3 (pA = 0.32) 0.6656 0.6970 ± 0.0469 0.2155 0.3684 ± 0.1227 -0.4501 -0.3286 ± 0.0836 0.2910 0.3115 ± 0.0140 12
+ DC3 (pA = 0.6) 0.8305 0.7457 ± 0.1097 0.4340 0.4741 ± 0.0584 -0.3965 -0.2716 ± 0.0928 0.6125 0.5860 ± 0.0290 15

Plankton

Baseline 0.8872 0.8652 ± 0.0212 0.2584 0.2915 ± 0.0240 -0.6287 -0.5737 ± 0.0444 - - 15
+ CE−1 0.8896 0.8803 ± 0.0060 0.2540 0.2690 ± 0.0098 -0.6356 -0.6113 ± 0.0154 - - 12
+ CC (pA = 0.6) 0.8919 0.9128 ± 0.0427 0.4085 0.7702 ± 0.1630 -0.4833 -0.1426 ± 0.1375 0.6242 0.5927 ± 0.0127 12
+ DC3 (pA = 0.44) 0.8625 0.9049 ± 0.0340 0.2192 0.3269 ± 0.0526 -0.6433 -0.5780 ± 0.0305 0.4365 0.4451 ± 0.0204 11
+ DC3 (pA = 0.6) 0.9130 0.8768 ± 0.0640 0.2484 0.3004 ± 0.0750 -0.6646 -0.5764 ± 0.0416 0.6164 0.5893 ± 0.0202 14

Turkey

Baseline 0.8211 0.8213 ± 0.00s69 0.3946 0.4428 ± 0.0209 -0.4265 -0.3786 ± 0.0230 - - 15
+ CE−1 0.7998 0.7998 ± 0.0000 0.3338 0.3338 ± 0.0000 -0.4660 -0.4660 ± 0.0000 - - 12
+ CC (pA = 0.6) 0.8527 0.8264 ± 0.0469 0.3400 0.3435 ± 0.0408 -0.5127 -0.4829 ± 0.0128 0.5837 0.5646 ± 0.0427 12
+ DC3 (pA = 0.22) 0.7998 0.7998 ± 0.0000 0.1675 0.2252 ± 0.0646 -0.6322 -0.5746 ± 0.0646 0.5000 0.3674 ± 0.2054 4
+ DC3 (pA = 0.6) 0.8743 0.8432 ± 0.0350 0.2333 0.3270 ± 0.0692 -0.6410 -0.5162 ± 0.0643 0.8093 0.6387 ± 0.2354 12

phase for the inexperienced annotators, we averaged across three repetitions for
every annotator, proposal and dataset combination.

We see a general trend that the consistency improves and the annotation
time decreases when proposals are used instead of None. Using DC3 proposals
instead of SSL proposals, either leads to a similar or better consistency while
the annotation time is often increased by one or two minutes. For this improve-
ment, we credit the cleaner and more fine-grained outputs of the network. The
additional verifications of the clusters could lead to the slightly increased anno-
tation time. The individual benefits vary between the datasets and annotators.
For example, the gains on the curated CIFAR-10H dataset are lower than on the
uncurated Mice Bone dataset. On average across all annotators and datasets,
we achieve an improved consistency of 6.74%, a relative speed-up of 2.4 and a
maximum speed-up of 4.5 with DC3 proposals in comparison to the baseline.

4 Discussion

Ablation Study We pooled the runs between all methods to evaluate the impact
of the individual components of our method DC3 and show the results in Ta-
ble 4. The method FixMatch and the Mice Bone dataset are excluded from this
ablation due to the up to 12 times higher required GPU hours and degenerated
runs as before. Across the datasets, we see the best (d−F1)-scores are achieved
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by DC3. The impact of the components varies between the datasets. We see
that CE−1 positively impacts the clustering results which confirms the benefit
of using CE−1 for overclustering [43]. CC often reaches a better F1-Score than
the baseline and even surpasses DC3 sometimes. However, the inner distance
(d) may increase as well. We conclude that CC and CE−1 on their own can
lead to improvements but only the combination of both parts results in a stable
algorithm across datasets and methods. Additionally, we see that the number of
not degenerated runs is highest with the combination of CE−1 and CC. If we
use an realistic amount of ambiguity p̂A in each dataset as pA, we see that in
general the F1-Score decreases and d-score improves. We attribute this differ-
ence to the lower prior ambiguity pA because DC3 tries to predict more certain
than ambiguous images. This leads to a lower inner distance but also includes
more difficult images in the classification of the certain data. We believe this pa-
rameter is essential for balancing the improvements in the F1- and d-score for a
specified usecase. We chose a pA of 0.6 because we wanted to weight certain and
ambiguous images almost equally but ensure very certain /fewer classifications.

Qualitative Analysis with t-SNE We investigated some t-SNE [34] visualizations
in Figure 4. Comparing the predicted (DC3) classes and ambiguity with the
ground truth (GT), we see more wrong classifications on ambiguous images.
DC3 outputs higher ambiguity than expected due to the higher value of pA, but
the predicted ambiguous clusters are often located nearby of ambiguous regions
in the GT. Additionally, the clusters in (c) partition the feature space in smaller
regions which can be more easily verified by humans as shown in subsection 3.5.
Overall, we see a better representation of the ambiguous feature space.

Limitations We showed that DC3 generalizes to different SSL algorithms and
datasets without hyperparameter changes. However, the datasets only consist
of up to several thousand images. Due to the required multiple annotations per
image for the evaluation it is difficult to obtain datasets with millions of images.
We focused on improving the classification and clustering and gave a proof-
of-concept for the increased consistency of relabeled data. Due to the required
human labor during the relabeling step, we could not investigate the consistency
across more datasets and algorithms or investigate the usage of the improved
data. We proposed to improve the annotation process based on human-validated
network predictions. This could introduce a not-desired bias into the data. This
might lead to a negative impact for humans or a group of humans for certain use-
cases but we believe a small bias can be accepted in most applications because
it is human controlled and systematically.

5 Conclusion

In real-world datasets, we often encounter ambiguous labels, due to intra- or
interobserver variability, but also as intermediate classes might exist. We pro-
pose our method DC3 which is an extension to many SSL algorithms and al-
lows to classify images with certain labels and cluster ambiguous ones. DC3
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(a) GT Classes (b) DC3 Classes (c) DC3 Clusters

(d) GT Ambiguity (e) DC3 Ambiguity (f) Legend

Fig. 4: t-SNE plots for Plankton dataset with Mean-Teacher – The same color
was used 2–3 times for different clusters to ensure distinct colors.

also automatically determines which image should be treated as certain or am-
biguous only based on a given prior probability pA. On average, we achieve an
increased F1-Score of 7.6% and a lower inner distance of clusters of 7.9% over all
method-dataset-combinations. We give a proof-of-concept that these improved
predictions can be used beneficially as proposals to create more consistent anno-
tations. On average, we achieve an improved consistency of 6.74% and a relative
speed-up of 2.4 when using DC3 proposals instead of no proposals. Therefore,
SSL algorithms with DC3 are better suited to handle real-world datasets includ-
ing ambiguous labeled images either by an improved classification / clustering
or as a proposal during the annotation process with more insight.
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