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Abstract. Transparent objects are ubiquitous in household settings and
pose distinct challenges for visual sensing and perception systems. The
optical properties of transparent objects leave conventional 3D sensors
alone unreliable for object depth and pose estimation. These challenges
are highlighted by the shortage of large-scale RGB-Depth datasets focus-
ing on transparent objects in real-world settings. In this work, we con-
tribute a large-scale real-world RGB-Depth transparent object dataset
named ClearPose to serve as a benchmark dataset for segmentation,
scene-level depth completion and object-centric pose estimation tasks.
The ClearPose dataset contains over 350K labeled real-world RGB-Depth
frames and 5M instance annotations covering 63 household objects. The
dataset includes object categories commonly used in daily life under vari-
ous lighting and occluding conditions as well as challenging test scenarios
such as cases of occlusion by opaque or translucent objects, non-planar
orientations, presence of liquids, etc. We benchmark several state-of-the-
art depth completion and object pose estimation deep neural networks
on ClearPose. The dataset and benchmarking source code is available at
https://github.com/opipari/ClearPose.

Keywords: Transparent Objects. Depth Completion. Pose Estimation.
Dataset and Benchmark.

1 Introduction

Transparent and translucent objects are prevalent in daily life and household
settings. When compared with opaque and Lambertian objects, they present
additional challenges to visual perception systems. The first challenge is that
transparent objects do not exhibit consistent RGB color features across varying
scenes. Since the visual appearance of these objects depends on a given scene’s
background, lighting, and organization, their visual features can drastically differ
between scenes thereby confounding feature-based perception systems. The sec-
ond challenge is the inaccurate depth measurements among RGB-Depth (RGB-
D) cameras on transparent or translucent materials due to the lack of reliable
reflections. This challenge is especially meaningful for state-of-the-art pose esti-
mation approaches that require accurate depth measurements as input. To over-
come these challenges, computational perception algorithms have been proposed
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for a variety of visual tasks, including image segmentation, depth completion,
and object pose estimation. In this paper, our aim is to complement recent work
in transparent object perception by providing a large-scale, real-world RGB-D
transparent object dataset. Furthermore, we use the new large-scale dataset to
perform benchmark analysis of state-of-the-art perception algorithms on trans-
parent object depth completion and pose estimation tasks.
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Fig. 1. Sample images from existing transparent datasets. TOD and StereOBJ-1M are
collected using stereo RGB cameras, and other datasets used RGB-D cameras (except
for Omniverse which is completely synthetic).

Table 1. Comparison between existing transparent object datasets and ClearPose.
*Trans10K is a transparent segmentation dataset and has no object-centric pose labels.
*StereObj1M is not publicly available at the time of submission so the #frame and
#pose annotation are estimated based on the published ratio of transparent objects in
the entire object set [12]

dataset | modality |#obj| F#frame |#pose annotation
TOD [13) RGBD | 15 48K (real) ~0.1M
ClearGrasp [15] RGB-D | 10 [50K(syn)+286(real) ~0.2M
TODD 2] RGBD | 6 15K (real) ~0.1M
Omniverse [26] RGB-D 9 60K (syn) ~0.2M
TransCG [7] RGB-D | 51 58K (real) ~0.2M
Trans10K* [20] RGB 10K 15K (real) seg only
ProLIT [25] Light-Field| 5 |75K(syn)+300(real) ~0.1M
StereObj1M* [12] Stereo 7 ~150K (real) ~0.6M
ClearPose (ours)| RGB-D | 63 350K (real) ~5M
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There are several existing datasets focusing on transparent object perception
with commodity RGB stereo or RGB-D sensors, as summarized in Figure [T
While these datasets target transparent object perception, most are relatively
small-scale (no more than 50K real-world frames), include few cluttered scenes
(typically with less than 3 objects per image), do not offer diverse categories
of commonplace household objects, and record limited lighting changes. These
limitations motivate the introduction of ClearPose, a large-scale real-world
transparent object dataset labeled with ground truth pose, depth, instance-level
segmentation masks, surface normals, etc. that (1) has a comparable size with or-
dinary opaque object pose estimation datasets like YCB-Video [19]; (2) contains
challenging heavy clutter scenes including multiple layers of occlusion between
transparent objects; (3) contains a variety of commonplace household object cat-
egories (bottle, cup, wine, container, bowl, plate, spoon, knife, fork, and some
chemical lab supplies); (4) covers diverse lighting conditions and multiple adver-
sarial testing scenes. Further details of ClearPose in relation to existing datasets
are included in Table. [I| with sample images from ClearPose shown in Figure

Fig. 2. Sample images from ClearPose dataset. On the left, we show RGB images
taken for different object subsets under various lighting conditions and backgrounds.
On the right, we show examples of different types of testing scenes, such as covered by a
translucent box (top-left), novel background with opaque distractor objects (top-right),
non-planar cases (middle-left), filled with liquid (middle-right), and heavy clutters of
transparent objects (bottom).

The labeling of such a large-scale dataset requires both efficiency and accu-
racy. To achieve these qualities in ClearPose, we take advantage of a recently
published pipeline named ProgressLabeller [5]. The ProgressLabeller pipeline
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combines visual SLAM and an interactive graphical interface with multi-view
silhouette matching-based object alignment to enable efficient and accurate la-
beling of the transparent object poses from RGB-D videos, which realizes rapid
data annotation and exempts from the broken depth problem by transparent
objects. Given the unique scale and relevance of ClearPose, we envision it will
serve beneficial as a benchmark dataset on transparent perception tasks. In this
current paper, we include benchmark analysis for a set of state-of-the-art visual
perception algorithms on ClearPose. We target our benchmark analysis on the
tasks of depth completion and RGB-D pose estimation.

2 Related Works

2.1 Transparent Dataset and Annotation

As mentioned in Table[T] there are several existing datasets and associated anno-
tation pipelines that focus on transparent objects. With the exception of works
such as Trans10k [20], TransCut [23] and TOM-Net [3] that are focused on 2D
image segmentation or matting, most recent transparent perception datasets are
collected in an object-centric 3D setting using RGB-D, stereo or light-field sensor
modalities.

Similar to the case of opaque objects, datasets created in simulation, sup-
porting photo-realistic rendering with ray-tracing, are more readily created and
can produce very realistic examples of transparent object appearance. Examples
of such simulated datasets include those [15] rendered by Blender, [25] by Un-
real Engine and [26] by Nvidia Omniverse platform. While simulated datasets
are appealing for their ease of creation, they often lack realistic feature artifacts
(e.g. sensor noise, object wear marks, true lighting etc.) which can impact down-
stream perception systems that rely on the synthetic dataset (i.e. the syn-to-real
gap).

Among existing real-world datasets, TOD [13] and StereObj1M [12] use RGB
stereo cameras together with AprilTags. First, camera pose transforms are solved
from AprilTag detection, and then several 2D keypoints on the objects are man-
ually annotated in keyframes that are farthest to each other in the sequence.
The corresponding 3D keypoint positions are solved by multi-view triangulation
from those labeled 2D keypoints, and finally, the object 6D poses are solved
from 3D keypoints as an Orthogonal Procrustes problem and propagated to all
frames. In TOD, the authors also introduced a method to record ground truth
depth images: they record the positions of transparent objects in the scene,
and put their opaque counterparts that share the same shape at the same pose
in separate collects. This pipeline was also used for real-world data collection in
ClearGrasp [I5], however, it’s extremely inefficient to replace transparent objects
and their counterparts repetitively. Moreover, it is unclear how or whether this
approach could be applied to data collection in complex scenes with cluttered
objects as is typical in household settings. In Xu et al. [22], transparent objects
are placed in several fixed locations relative to AprilTag arrays, with pose dis-
tribution diversity achieved by attaching a camera to a robot end-effector. This
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method still restricts the relative position between objects and is inefficient for
complex scenes. In Fang et al. [7], all objects are attached to a large visual IR
marker so that an optical tracking algorithm can estimate the objects’ 6D poses.
In this way, the collection can support dynamic scenes. On the other hand, all
the object instances in collected data are accompanied by visually obscuring
external labels which may not exist in natural environments.

Overall, datasets except for StereObj1M are still not large-scale and require
external efforts on hardware, such as deploying robotic arms, calibration be-
tween multiple sensors, fiducial or optical markers. Instead of using markers or
complex robotic apparatuses, we take advantage of an existing labeling system,
ProgressLabeller [5], that is based on visual SLAM to produce accurate camera
poses efficiently on recorded RGB-D videos. There are two assumptions in our
labeling pipeline, both of which can be easily met: our pipeline assumes static
scenes during video capturing and that scene backgrounds have adequate RGB
features for visual SLAM processing.

2.2 Transparent Depth Completion and Object Pose Estimation

Zhang et al. [24] presented early work on the problem of depth completion from
inaccurate depth using deep neural networks. Zhang et al. introduced an ap-
proach to estimate surface normal and boundaries from RGB images that then
solved for the completed depth using optimization. ClearGrasp [I5] adapted
the method to work for transparent objects and demonstrated robotic grasping
experiments on transparent objects from completed depth. Tang et al. [I6] in-
tegrated the ClearGrasp network structure with adversarial learning to improve
depth completion accuracy. Zhu et al. [26] proposed a framework that learns local
implicit depth functions from the inspiration of neural radiance fields and per-
forms self-refinement to complete the depth of transparent objects. Xu et al. [22]
proposed to first complete the point cloud by projecting the original depth using
a 3D encoder-decoder U-Net and then re-project the completed point cloud back
to depth, and finally complete this depth using another encoder-decoder network
given the ground truth mask. Fang et al. [7] also used a U-Net architecture to
perform depth completion and demonstrated robotic grasping capabilities with
their approach.

KeyPose [I3] was proposed for keypoint-based transparent object pose esti-
mation on stereo images. It outperformed DenseFusion [I§], even with ground
truth depth, and achieved high accuracy on the TOD dataset. Chang et al. [2]
proposed a 3D bounding box representation and reported results comparable to
KeyPose in multi-view pose estimation. StereObj1M [12] benchmarked KeyPose
and another RGB-based object pose estimator, PVNet [I4], on more challenging
objects and scenes, where both methods achieved lower accuracy with respect
to the ADD-S AUC metric (introduced in [19]) with both monocular and stereo
input. Xu et al. [2I] proposed a two-stage pose estimation framework that per-
forms image segmentation, surface normal estimation, and plane approximation
in the first stage. The second stage then combines output from the first stage
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with color and depth Rol features for input to an RGB-D pose estimator origi-
nally designed for opaque objects [I7] to regress 6D object poses. This method
also outperformed DenseFusion and [I7] fed with ClearGrasp output depth by a
large margin. In this paper, we evaluate how well state-of-the-art RGB-D meth-
ods [9] designed for opaque object pose estimation can perform on transparent
objects compared with [21].

3 Dataset

3.1 Dataset Objects and Statistics

As shown in Figure [3| there are 63 objects included in the ClearPose dataset.
There are 49 household objects, including 14 water cups, 9 wine cups (with
a thin stem compared with water cups), 5 bottles (with an opening smaller
than the cross-section of the cylindrical body), 6 bowls, 5 containers (with 4
corners while bowls are classified with round shapes), and several other objects
like pitcher, mug, spoon, etc. Moreover, the dataset contains 14 chemical supply
objects, including a syringe, a glass stick, 2 reagent bottles, 3 pans, 2 graduated
cylinders, a funnel, a flask, a beaker, and 2 droppers.

Fig. 3. Objects included in the ClearPose dataset. On the left, we show the rendered
CAD models for each object. From top to bottom there are bowls and plates (1st row),
containers and bottles (2nd row), wine cups, two mugs and a pitcher (3rd row), water
cups (4th row), and spoons, a fork, knives as well as chemical supplies (bottom row).
On the right, we show real images of household objects on the top right, and chemical
supplies on the bottom right.

All the images are collected using a RealSense L515 RGB-depth camera, with
a raw resolution of 1280x720. After object pose annotation, the central part of
each image is cropped and reshaped to 640x480 for reduced storage space and
faster CNN training and inference. For the training set, we separate all 63 objects
into 5 separate subsets and collected 4-5 scenes with different backgrounds for
each subset. Each scene is scanned by the hand-held camera moving around the
tabletop scene at 3 different heights with 3 different lighting conditions (bright
room light, dim room light, dim room light with sidelight from a photography
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Fig. 4. Distribution of instance annotations and viewpoint orientation coverage statis-
tics for every object in the ClearPose dataset. The ‘kitchen’ category includes fork,
spoon, knife, mug, plate and pitcher objects.

lighting board). For the testing set, as the appearance of transparent objects
depends on their context within a scene, we consider 6 different test cases and
collect corresponding scenes as follows: (1) different backgrounds: novel back-
grounds that never appeared in the training scenes with each object subset. (2)
heavy occlusions: cluttered scenes each with about 25 objects that form multiple
layers of occlusion when viewed from the table’s side. (3) translucent/transparent
covers: scenes with all transparent objects placed inside a translucent box. (4)
together with opaque objects: transparent objects placed together with opaque
YCB and HOPE objects, which did not appear in the training set. (5) filled
with liquid: scenes with transparent objects filled with different colored liquid.
(6) non-planar configuration: scenes with objects placed onto different surfaces
with multiple heights. Sample RGB images from both training and test sets are
included in Figure

We calculate several statistics about the ClearPose dataset. In total there
are 354,481 RGB-D frames captured in 51 scenes, with 5,052,429 object instance
annotations with 6 DoF poses, segmentation masks, surface normals, and ground
truth depth images. The distribution of object instance annotation and camera
viewpoint coverage are shown in Figure [f] colored by object category, where we
see our dataset has roughly even viewpoint coverage for most objects. Viewpoint
coverage is calculated by projecting collected object orientations onto a unit
sphere and counting the covered region percentage over the sphere’s surface. For
symmetrical objects, regions with the same object appearance are considered
together. Some objects like plates, forks, large bowls can only be placed in certain
orientations, so they have reduced viewpoint coverage. The 2nd water_cup was
broken during the data collection process so it has fewer instance annotations.

3.2 Pose Annotation

We use the ProgressLabeller [5] to annotate the 6D poses of transparent ob-
jects and render object-wise segmentation masks, ground truth depths, surface
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Fig. 5. Transparent object pose annotation pipeline using ProgressLabeller. On top-
left we show one sample of aligned RGB-D images from continuous streams captured
by the camera. The frames are fed into visual SLAM to estimate camera trajectory,
then the objects’ poses are annotated in a multi-view silhouette alignment interface
shown at the bottom-right. Finally, the object poses, surface normals, and fixed depths
are calculated and rendered as output.

normals, etc. from the labeled poses. As shown in Figure [f] the first step of
the ProgressLabeller pipeline is to run ORB-SLAM3 [1] on collected RGB-D
video frames to produce camera pose estimates. During data collection, we no-
tice ORB-SLAM3 sometimes couldn’t estimate camera pose well in case of ex-
treme transparent object clutter, where background RGB features are heav-
ily distorted. In these cases, the camera view needs to capture some back-
ground area or other landmark objects that can provide stable features. The
next step is to import the reconstructed scene (cameras and point cloud) into
the Blender workspace, select several camera views from different orientations,
and import the object 3D CAD model into the workspace. Then, the object sil-
houettes/boundaries can be directly compared and matched with original RGB
images from multiple views simultaneously when the user drags the object across
the scene to tune its position and orientation. Figure [5| shows an example case of
a matched transparent bottle. Optionally, the user can select to first locate the
object onto the 2D fitting plane of the support table, etc., as shown on top-left
of Figure [5} After labeling all objects’ poses in the 3D workspace, their poses
in every camera frame are calculated by dividing them with estimated cam-
era poses. The output ground truth depth images (fixed depth) are generated by
overlaying rendered object CAD model depth to the original depth images. Then
the surface normals are calculated from the depth images. It takes around 30
minutes to finish labeling one scene using this pipeline, including visual SLAM
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for camera pose estimation, object pose manual alignment, and output image
rendering.

4 Benchmark Experiments

In this section, we provide benchmark results of recent research on depth-related
transparent object perception using deep neural networks, including scene level
depth completion, and both instance-level and category-level RGB-D pose es-
timation. As mentioned in Section we test the generalization capability of
such systems on 6 aspects of appearance novelty with transparent objects: new
background, heavy occlusion, translucent cover, opaque distractor objects, filled
with liquid, and non-planar placement. Specifically, around 200K images are se-
lected for training, and for each of 6 test cases, 2K images from corresponding
scenes are randomly sampled to compose the testing set for evaluation.

4.1 Depth Completion

We selected two recent depth completion works that are publicly available, Im-
plicitDepth [26] and TransCG [7] as baseline methods for the depth completion
task on transparent object scenes. (ClearGrasp [I5] was shown to be less accu-
rate than both works, and Transparenet [22] was released around the date of
this submission.) ImplicitDepth is a two-stage method that learns local implicit
depth functions in the first stage through ray-voxel pairs similar to neural ren-
dering and refines the depth in the second stage. TransCG is built on DFNet [11]
which was initially developed for image completion. We trained both networks
following their original papers’ training iterations and hyper-parameters. Specif-
ically, ImplicitDepth was trained on a 16G RTX3080 GPU with a 0.001 learning
rate and iterated around 2M frames for each of the two stages. TransCG was
trained on an 8G RTX3070 GPU with a fixed 0.001 learning rate and iterated
around 900K frames in total. Both works use Adam as the optimizer. Then we
evaluated the two works on 6 test sets mentioned in Section [3.1] with metrics de-
fined in [6]. The results are shown in Table 2| TransCG surpassed ImplicitDepth
in most tests with fewer training iterations, which implies that methods using
DFNet can outperform designs using voxel-based PointNet for transparent depth
completion. Across different tests, both methods perform poorly in Translucent
Cover scenes and achieved the best performance in New Background scenes.
Other scene variations such as Filled Liquid, Opaque Distractor, and Non Pla-
nar do not substantially impact the methods’ accuracy. Figure [f] shows examples
of qualitative results from both methods compared with the ground truth.

4.2 Instance-Level Object Pose Estimation

There is one recent work of Xu et al. [21] focusing on transparent object pose
estimation using raw RGB and depth images. This work doesn’t have source
code publicly available, so we re-implemented the proposed method following
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Table 2. Depth completion benchmark results of ImplicitDepth and TransCG on 6

different test scenarios of the ClearPose dataset.

Testset Metric RMSEi, RELi, MAEi 61_05 T (51,10 T 61,25 T
New Background ImplicitDepth| 0.07 0.05 0.04 67.00 87.03 97.50
TransCG 0.03 0.03 0.02 86.50 97.02 99.74

Heavy Occlusion ImplicitDepth| 0.11  0.09 0.08 41.43 66.52 91.96
TransCG 0.06 0.04 0.04 72.03 90.61 98.73

Translucent Cover ImplicitDepth| 0.16 0.16 0.13 22.85 41.17 73.11
TransCG 0.16 0.15 0.14 23.44 39.75 67.56

Opaque Distractor ImplicitDepth| 0.14 0.13 0.10 34.41 55.59 83.23
TransCG 0.08 0.06 0.06 52.43 75.52 97.53

. .. ImplicitDepth| 0.14 0.13 0.11 32.84 53.44 84.84
Filled Liquid TransCG 0.04 0.04 0.03 77.65 93.81 99.50
Non Planar ImplicitDepth| 0.18 0.16 0.15 20.34 38.57 74.02
TransCG 0.09 0.07 0.07 55.31 76.47 94.88

RGB Raw Depth GT Depth  TransCG ImplicitDepth

Opaque New
Distractor Background Occlusion

Translucnt
Cover

Filled Liquid Non Planar

Fig. 6. Qualitative depth completion results. From left to right, there are RGB image,
raw depth, ground truth depth rendered using object CAD models, completed depth
by TransCG and ImplicitDepth.
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the original paper for inclusion in our benchmark analysis. This method is im-
plemented as a two-stage pipeline, for which we trained Mask R-CNN [§] for
instance-level segmentation and DeepLabv3 [4] for surface normal estimation,
and with an XYZ 3D coordinate map of the supporting plane feature in the
first stage. The second stage replicates most of the architecture and loss func-
tions described in [I7] to ultimately regress dense pixel-wise 3D translation, 3D
rotation delta from a set of fixed rotation anchors, and confidence scores. In
practice, we trained the networks on an RTX2080-SUPER GPU. Mask R-CNN
has trained 5 epochs with SGD optimizer, batch size of 5, and learning rate of
0.005. DeepLabv3 was trained 2 epochs with Adam optimizer, batch size of 4
and learning rate of 0.0001, and second stage network was trained around 180K
iterations with Adam optimizer, batch size of 4, and learning rate of 0.0005. We
compare this method [21] with a state-of-the-art RGB-D pose estimator that was
originally designed for opaque objects, FFB6D [9]. The FFB6D estimator follows
a two-stream RGB and point cloud encoder-decoder architecture with fusion be-
tween blocks. FFB6D is trained on a 16G RTX3080 GPU for 5 epochs with
batch size 6. All the hyper-parameters follow the default value from the original
implementation. For our analysis of FFB6D pose estimation performance, we
run experiments with different depth options in training and testing: with raw,
ground truth, and completed depth from TransCG, as detailed in Table

Table 3. Pose estimation accuracy comparison on different test sets of the ClearPose
dataset. FFB6D,./, refers to train and test FFB6D model both on raw depth. Simi-
larly, FFB6D,., FFB6D,,, refer to train on ground truth, test on completed depth
from TransCG, and train and test both on ground truth, respectively. The values are
averaged across all objects in the dataset.

Testset Metric  |Xu et al. FFB6D,.,, FFB6D,,. FFB6D,/,
Accuracy| 50.958  44.264 49.517 59.694
ADD(-S)| 45.233  43.452 47.691 58.224
Accuracy| 24.193 14.723 15.160 26.331
ADD(-S)| 22.953 17.869 17.862 31.875
Accuracy| 14.353 5.5617 4.5345 13.433
ADD(-S)| 14.311 7.5983 5.8054 17.620
Accuracy| 42.630  0.4618 1.3331 2.3525
ADD(-S)| 39.036  0.7628 1.5516 3.0685
Accuracy| 34.500  7.6908 9.0584 16.228
ADD(-S)| 32.251 11.153 10.828 18.583
Accuracy| 21.024 7.4924 7.5843 15.567
ADD(-S)| 18.411 7.8021 6.7339 16.986

New Background

Heavy Occlusion

Translucent Cover

Opaque Distractor

Filled Liquid

Non Planar

For evaluation, we use two metrics based on Average-point-Distance (ADD
and ADD-S) from [19]. ADD is calculated as the average Euclidean distance of
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corresponding point pairs from two object point clouds separately at the ground
truth pose and predicted pose. ADD-S is calculated as the minimum distance of
every point from the predicted point cloud to the ground truth point cloud. In
Table [3] ‘Accuracy’ is calculated as the percentage of all pose estimates on the
test set with ADD error less than 10cm. ‘ADD(-S)’ is calculated as Accuracy-
Under-Curve area integrated from 0-10cm error, which is then scaled from 1 to
100 as the percentage.

As shown in Table [3| from the comparison between different training and
testing combination within FFB6D, the upper bound performance appears when
the network are both trained and tested on ground truth depth. When both the
training and testing data come to raw, the metric drops a lot. Obviously, inac-
curate depth would be the difficulty for transparent object pose estimation. It
should be mentioned that training on ground truth depth, testing on completed
depth (from TransCG) almost display the same accuracy. Although TransCG
is good at depth completion, the disparity between ground truth and depth
completion would make the network in vain. Generally, the easiest test case is

RGB Ground  y, etal,  FFB6Dgz  FFB6Dge  FFB6Dy:r
Truth

Heavy

Opaque New
Distractor Background Occlusion

Translucnt
Cover

Filled Liquid Non Planar

Fig. 7. Visualization of pose estimation in ClearPose dataset. From left to right, they
are raw image, ground truth object poses, pose estimation results of method from Xu
et al., FFB6D,,,, FFB6D,,., FFB6D,. /.. From top to bottom, results are shown in
different test scenes in Table [3] Objects are projected to color masks based on their
pose estimates, with their 6DoF poses marked as the red-green-blue coordinate frame.
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New Background, and the accuracy drops a lot in the other 5 scenarios. When
we compare the accuracy of Xu et al. with variants of FFB6D, we find they
are comparable in New Background, Heavy Occlusion, Translucent Cover, and
Non Planar scenes, while Xu et al. is much better in Opaque Distractor and
Filled Liquid scenes. One possible reason is that there are some unseen colors
mixing in the transparent objects, adding remarkable noise to object keypoint
regression during the FFB6D inference process, which is not used by Xu et al.
Overall, the pose estimation accuracy of current methods is still much worse
than that on opaque objects with RGB features (with ADD-S around 90 on
public datasets [I0]). Some qualitative examples of pose estimates are shown in

Figure[7]

5 Discussions

There are some common classes of objects with transparency/translucency not
included in our dataset, for example, those with colored transparent/translucent
materials, with markers or labels, together with opaque parts, etc. Instead, our
focus in the ClearPose dataset is to investigate pure transparency that exhibits
relatively few features for perception. On the other hand, we anticipate the open-
source ProgressLabeller [5] will facilitate more large-scale customized transpar-
ent datasets in the future.

As for benchmarking perception models, we didn’t include a complete list of
recent state-of-the-art approaches due to resource constraints (i.e. compute and
time limitations). Based on our current dataset and benchmark results, there are
several possible extensions: (1) Comparison of RGB-only pose estimators with
RGB-D methods that are free of transparent object broken depth issues. (2)
Category-level pose estimation for transparent objects, for which the ClearPose
dataset has categories of bowls, bottles, wine_cups, etc. that are with similar
3D shape and topology. (3) Neural rendering on transparent objects considering
environment contexts, such as varied lighting and occlusions. (4) Transparent

Fig. 8. Examples of multi-layer transparent object appearance. In the left image, the
annotated bounding boxes show large overlap between object pairs, where the objects
behind are still perceivable in some cases with less light distortion. In the right image,
objects behind the translucent surface are still detectable as well.
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object grasping and manipulation experiment in practical scenes, including the
6 test scenarios mentioned in the benchmark.

Besides, an especially interesting problem emerging from our heavy cluttered,
and translucent covered test scenes is the multi-layer appearance of transparent
objects. As shown in Figure because of transparency /translucency, some image
pixels could belong to more than one object. New detection and segmentation
annotation rules, such as bounding box non-maximum suppression threshold,
or segmentation mask format over the image, could be proposed and explored
based on our dataset as future work.

6 Conclusions

In this paper, we described the contribution of ClearPose, a new large-scale
RGB-D transparent object dataset with annotated poses, masks, and associated
labels created using a recently proposed pipeline. We performed a set of bench-
marking experiments on depth completion and object pose estimation tasks us-
ing state-of-the-art methods over 6 different generalization test cases that are
common in practical scenarios. Results from our experiments demonstrate that
there is still much room for improvement in some cases, such as heavy clutter,
transparent objects filled with liquid, or being covered by other translucent sur-
faces. The dataset and benchmark code implementations will be made public
with the intention to support further research progress in transparent RGB-D
visual perception.

Acknowledgement. We thank greatly the support from Dr. Peter Gaskell and
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