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In this supplementary material we provide additional details, experimental
setup and descriptions for the employed methodology of the main body. The
structure is as follows:

A. Experimental setup and training hyper-parameters.
B. Additional plots for initial experiments on different batch-sizes and architec-

tures, as well as expected random agreement and a discussion of an alterna-
tive agreement definition, as well as importance of our findings in the light
of data shuffling during training.

C. Additional discussion of the reasons for the weakness of correlations for CI-
FAR10, as well as experimental results for Pascal trained on ResNet, omitted
in the main body. In this context also an explanation of the relationship be-
tween Pearson correlation coefficient and the p-value.

D. More precise description of the computed dataset metrics, as well as addi-
tional visualization thereof.

E. Visualization of dataset metrics histograms
F. Discussion on correlation vs. causation

A Experimental details

Since our aim is to analyze the training process on the original images, we did
not use data augmentation techniques, apart from random cropping for train and
center cropping for test images on Pascal, ImageNet and KTH-TIPS2b due to
the difference in size between images in these datasets. For Pascal and ImageNet,
we resize the smaller size to 256 and randomly crop to obtain patches of width
and height 224 pixels [6, 9]. For KTH-TIPS2b, in analogy we resize to 200 and
then randomly crop to the size 190 pixels. Note that we perform dataset metrics
computation on the original non-cropped (training) images. Only for ImageNet’s
entropy and frequency calculation we downsample the images to 128x128 for
computational reasons.

ForCIFAR10, we trained (5 times) LeNet5 (with added batch normalization
after each layer), VGG16, ResNet50 and DenseNet121 on original labels using
SGD with momentum 0.9 for 60 epochs with batch-size 128, batch-normalization
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10−5 and weight-decay 5∗10−4, cosine annealing scheduler [7] with initial learn-
ing rate 0.1 and minimal learning rate 5 ∗ 10−4, which lowers the learning rate
from the initial to the minimal one over the training epochs (without warm
restarts). For the random label experiment, we have lowered the initial learning
rate to 0.001 to ensure a quicker convergence. We use Kaiming normal weight
initialization [3] for all experiments.

For KTH-TIPS2b, we used the sample a of each class for testing and the
rest for training. We trained DenseNet121 for 60 epochs with batch-size 64,
Adam with momentum 0.9, batch-norm 10−5, weight-decay 10−5 and a one
cycle learning rate scheduler [10, 11] in which the learning rate first increases
from a minimal one to a maximal one of 10−4 and then decreases over the
rest of epochs to an even lower minimum. Standard Pytorch implementation
parameters for OneCycleLR have been used to determine the initial and final
learning rate.

For Pascal, we used train and validation splits of 2007 and 2012 for training
and 2007 test split (in which we disregarded difficult label instances) for test-
ing. We trained DenseNet121 and ResNet50 for 150 epochs with batch-size 128,
SGD with momentum 0.9, batch-norm 10−5, weight-decay 5 ∗ 10−4 and a step
learning rate scheduler [7] which lowers the initial learning rate of 0.1 every 50
steps by a factor of 0.2. For ImageNet, we trained DenseNet121 for 100 epochs
with batch-size 128, SGD with momentum 0.9, batch-norm 10−5, weight-decay
10−5 and a step learning rate scheduler which lowers the initial learning rate
of 0.1 every 30 steps by a factor of 0.1. The training procedure for Pascal and
ImageNet is inspired by Huang et al.[4]. We used single NVIDIA A100 GPU to
run Pascal/ImageNet style experiments with DenseNet or ResNet.

B Initial experiments: additional plots

First and foremost, let us add a few word about why our findings are important in
the light of the stochasticity of gradient descent. During training, train instances
are usually shuffeled (once per epoch) and gradient descent is performed in mini-
batches. An epoch is defined as a period during which the learner has seen
all train instances once. So, in every epoch the order, in which instances are
presented, is not fixed (due to this shuffling process). Minibatch-size defines
how many instances are seen before a gradient update is performed and, hence,
when the information about this instances influences the gradients. If the order,
in which instances are presented, changes, but the same instances are classified
correctly by all networks, it means that the information contained in this instance
was more important to be learned than in others at that stage of the learning
process. To find out, which information it is, we chose the dataset metrics to
correlate agreement with.

In addition to the lower bound presented in the paper, we also computed
expected random agreement by multiplying the network accuracies (divided by
100 to the range between 0 and 1) in a given epoch. This gives us an assessment of
how probable it is that networks randomly agree on dataset instances which they
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classify correctly, assuming that they classify dataset instances independently.
We observe in fig. 1 that expected random agreement is higher than our lower
bound, but still lower than the actual agreement.
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0 10 20 30 40 50 60 70 80 90
Epochs

0

20

40

60

80

100

Pe
rc

en
t

Agreement (correct)
Accuracy
Expected agreement
Lower bound

(c) ImageNet

Fig. 1: Ablation study: Computing expected random agreement, in comparison
to agreement and lower bound. Expected random agreement is higher than the
lower bound, but still lower than agreement. For Pascal we see in fig. 2 that the
deviation on agreement and the expected random agreement is rather small too.

As mentioned in the main body, we also conducted an experiment to calculate
the standard deviation on agreement, similarly to the way we computed the
deviation on accuracy. For Pascal, we ran the experimental setup 5 times, hence
training 25 neural networks in total, to be able to calculate the deviation on
agreement (and the lower bound). fig. 2 visualizes that it is quite small.
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Fig. 2: Pascal DenseNet: Agreement visualization on train set, with expected
random agreement, as well as standard deviation on agreement, expected random
agreement and the lower bound.

Second, let us strenghten the argument in favor of our definition of agree-
ment even further. In the main body we have mentioned Cohen’s kappa and
PABAK as measures for the reliability of agreement. Usually, both operate on
the notion of observed agreement, which considers not only true positives, but
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(a) Pascal DenseNet
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(b) KTH-TIPS2b DenseNet

Fig. 3: Visualization of PABAK on train set for a 2-class scenario (correctly
classified vs. incorrectly classified). PABAK ’s range is between -1 and 1. PABAK
measure is 0 when observed agreement is 50%.

also true negatives. We focus only on true positives, because already taking into
account true negatives makes the analysis more complex, since several trends are
evaluated simultaneously. In addition, Cohen’s kappa and PABAK operate over
only 2 estimators. Since we have 5 networks, we have to either choose another
measure, or to compute the average over all pairs of estimators. One measure
for more than 2 estimators is Fleiss kappa, but it assumes that instead of a fixed
number of estimators, estimators are sampled from a larger pool such that it is
not the case that every dataset instance is classified by the same estimators.
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(a) Batch-size 16
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(b) Batch-size 64
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Fig. 4: Ablation study on CIFAR10: training with different batch-sizes

To get a feel for observed agreement, let us consider a simplified scenario in
which there are 2 classes - correctly classified and wrongly classified. We can
then sum instances both estimators classify correctly and incorrectly, normalize
by the total number of instances. We then linearly transform it to counteract
the prevalence bias as described in [1] and average over pairs of estimators. We
see in fig. 3a that if the accuracy grows slowly, we get a U-shape. First, PABAK
is high due to the number of true negatives - it is the case when both estimators
classify wrongly,- then it gets higher due to the number of instances pairs of
estimators classify correctly. In fig. 3b we can see that if accuracy grows fast,
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(a) LeNet5, batch-size 128
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(b) VGG16, batch-size 128
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(c) ResNet50, batch-size 128

Fig. 5: Ablation study on CIFAR10: training with differnt architectures

PABAK curve resembles the true positive agreement we defined. However, the
exact values of agreement we defined and PABAK cannot be compared as easily,
because PABAK ranges between -1 and 1 and is 0 when observed agreement
(which incorporates true positives and negatives) is 50%. Note that the 2 class
scenario is a crude simplification, as we would actually want to know in a multi-
scenario, whether estimators missclassify in the same way (into the same wrong
class).

Third, we further conducted agreement experiments for CIFAR10 on DenseNet
for several batch-sizes (5 networks for every batch-size, in analogy to the main
body experiments), see fig. 4. We also trained 5 networks each for CIFAR10 on
LeNet5, VGG16 and ResNet50, in addition to DenseNet, see fig. 5. Comparison
of both figures shows that agreement is present for different batch-sizes and ar-
chitectures, as well as that the agreement curve changes similarly for growing
batch-sizes and architecture complexity.
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Fig. 6: ImageNet DenseNet: Agreement visualization on test set

In fig. 7, we exemplary visualize the test agreement for the three datasets
CIFAR10, Pascal and KTH-TIPS2b and in fig. 6 for ImageNet. We observe that
for all four datasets there is sufficiently high agreement on the test set. Not sur-
prisingly, the standard deviation of the accuracy is higher than for all train sets.
In analogy to Pascal train set results, we see jumps in accuracy and agreement
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(a) CIFAR10 Uncertainty
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(b) Pascal Image Entropy
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(c) KTH-TIPS2b Illumi-
nation

Fig. 7: Agreement and selected dataset metrics on the test sets of CIFAR10, Pas-
cal, and KTH-TIPS2b, based on DenseNet. Metric values are shown in purple
(right y-axis), in correlation to accuracy (red), agreement (blue curve) and its
difference to lower-bound (shaded blue area) (left y-axis).

where the learning rate has been lowered in steps. Tentatively, for CIFAR10,
Pascal and KTH-TIPS we visualize some dataset metric correlations on the test
set too. For CIFAR10, we visualize the entropy of the soft labels as a metric.
It has been computed by Peterson et al.[8] only for the test set. We see a slight
downward tendency such that the entropy of soft labels decreases over the course
of training. For Pascal, we see that similarly to the train entropy in fig. 4 of the
main body, there is a correlation present for the test entropy. Even more inter-
esting is the correlation of illumination on the KTH-TIPS2b dataset. Further, in
fig. 5e of the main body we have seen that frontal illumination is learned slower
than other kinds of illumination on the train set, in fig. 7 we see that for the
test set this tendency is even more nuanced such that agreement is highest on
the ambient illumination type and lowest on the frontal illumination type. A
thourough analysis though, when dataset metric correlations are present/absent
on the test data and how well they correlate with those on the train data is left
for future work.

C Additional evaluation of correlations for CIFAR10 and
Pascal

As mentioned in the main section, the range of fluctuations of CIFAR10 dataset
metrics is negligible and therefore it is hard to judge the correlations between
agreement and dataset metrics. To elaborate, the entropy is almost the same
around 6.5, while sum of edge strenghts, segment count and percentage of DCT
coefficients decrease slightly. The CIFAR10 distributions of dataset metrics indi-
cate that for entropy, uncertainty and segment count, the distribution of values
centers on a couple of values and, hence, there is no diversity, which can be
reflected in agreement correlations. Further, since the dataset contains highly
downsampled images, neither the presence of high frequencies, nor meaningful
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Fig. 8: Pascal ResNet: Agreement
visualization on train set
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Fig. 9: Pascal ResNet: Dataset met-
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Fig. 10: Pascal ResNet: Agreement and dataset metrics correlations

edge strengths are expected. Hence, the direction of correlations is the same as
for the texture dataset KTH-TIPS2b and opposite of Pascal, which also contains
objects as CIFAR10 does.

To further support our results we, in addition to DenseNet, trained 5 ResNet50
networks on Pascal and computed with the same experimental setup the agree-
ment (see fig. 8), as well as the dataset metrics correlations (see fig. 9). We see
that ResNet learns more slowly than DenseNet (with the experimental setup
chosen for DenseNet), but the general metrics tendency, when agreement ap-
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proximately reaches 20%, remains the same as for DenseNet in fig. 4 of the main
body. The strength of the correlation, measured by the Pearson correlation co-
efficient, is not as high for ResNet, as for DenseNet. For the frequency dataset
metric it is even absent. The value is in brackets, because the corresponding
2-tailed p-value is bigger than 0.001. For Pearson correlation coefficient between
agreement and the given dataset metric, the null hypothesis is that both are
uncorrelated. The higher the p-value, the more the null hypothesis is supported,
The lower p-value supports the presence of a correlation.

It would be interesting to further study both the initial learning phase when
agreement is low, as well as the subsequent learning phase which this paper
primarely was focused on.

D Dataset metrics

In this section we first give more details on how exactly we computed the dataset
metrics and then visualize them on the example of ImageNet, in addition to the
Pascal examples presented in the main paper, as well as visualize the matrices
of DCT coefficients for those examples.

Let us start with the computation of the dataset metrics, evaluated in the
main paper:

– Segment count: Felzenszwalb and Huttenlocher [2] introduce a graph-
based image segmentation algorithm into regions, which can be summed
up to get a segment count - a numer of segments in the image. First, images
are smoothed with a Gaussian kernel of σ standard deviation, then image
regions are compared for similarity at a certain scale k and merged if simi-
lar, subsequently small regions of size min are filtered out. Hence, the most
important parameter is the scale k, larger value means preference for larger
components. We used default parameters for the segmentation.

– Sum of edge strengths: Isola et al.[5] compute semantically meaningful
boundaries (between objects) in an image based on statistical pixel depen-
dencies (pointwise mutual information). The resulting edge strengths (edge
contours) can be summed to get one value characterizing the amount of edges
in the image.

– Mean image intensity entropy: Image intensity entropy for grayscale
images is computed by sliding a window of a certain size k (in our case 10)
and then averaging the local entropies. Similar to the case of segment count,
the window-size reflects how much noise to ignore in the image.

– Percentage of important DCT coefficients: DCT coefficient matrix
quantifies the spatical frequency in vertical and horizontal directions. Usu-
ally, lower frequency coefficients exhibit greater values. On the basis of this
matrix we compute the percentage of DCT coefficients which contain 99.98%
of the energy in the image, computed by comparing the norm of the first c
sorted absolute values of DCT coefficients against the norm of all coefficients.
In other words, this metric calculates how many coefficients are needed to
reconstruct the image to a sufficiently high degree.
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(a) Image (b) Edge strengths (c) Entropy (d) Segments

Fig. 11: Visualization of metrics on ImageNet
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Fig. 12: Visualization of DCT matrix on ImageNet and Pascal examples

Similar to fig. 3 of the main body, which visualizes the computed dataset
metrics on two selected images from the Pascal dataset, we also selected an
’easy’ and ’difficult’ image from ImageNet to visualize the metrics in fig. 11,
as well as computed the DCT coefficients matrix for both chosen Pascal and
ImageNet examples in fig. 12. What we see is that the more cluttered the image,
the more irregular the entropy and segment image becomes. Cluttered images
lead to higher amount of edges, but the edge strenghts of non-cluttered ones
can be more prominent, which in summation may lead to similar sum of edge
strengths. The DCT coefficients in fig. 12 show that the more clutter there is, the
higher the coefficients in all directions. With less clutter, but more prominent
horizontal or vertical variations in the image, like the wings of the bird, lead
to higher values in the DCT coefficient matrix for these horizontal and vertical
directions.



10 I. Pliushch et al.

5.4 5.6 5.8 6.0 6.2 6.4 6.6
Bits

0

100

200

300

400

500

600

700

800
Co

un
t

Entropy

0 50 100 150 200 250 300
Segment count

0

200

400

600

800

1000

Co
un

t

Segment count

0 10 20 30 40 50 60 70 80
Frequency % coeff needed

0

50

100

150

200

250

Co
un

t

Frequency

2000 3000 4000 5000 6000 7000 8000 9000
Summed edge strengths

0

25

50

75

100

125

150

175

Co
un

t

Edge strengths

Fig. 13: KTH-TIPS2b:
Dataset metrics his-
tograms on train set
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Fig. 14: CIFAR10:
Dataset metrics his-
tograms

0 1 2 3 4 5 6
Bits

0

50000

100000

150000

200000

250000

300000

350000

400000

Co
un

t

Entropy

0 500 1000 1500 2000
Count

0

100000

200000

300000

400000

500000

600000

Co
un

t

Segment count

0 20 40 60 80
Frequency % coeff needed

0

10000

20000

30000

40000

50000

60000

Co
un

t

Frequency

Fig. 15: ImageNet:
Dataset metrics his-
tograms on train set

Fig. 16: Dataset metrics histograms on train set for KTH-TIPS2b, CIFAR10
and ImageNet, as well as for the Pred. entropy of human uncertainty on the
test set of CIFAR10
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Fig. 17: Pascal: Dataset metrics histograms on train set

E Dataset metrics histograms

In order to assess the relevance of the results reported in the main body, we
computed the histograms of the dataset metrics for CIFAR10 (fig. 14), Pascal
(fig. 17), KTH-TIPS2b (fig. 13) and ImageNet (fig. 15) train sets. TheCIFAR10
histograms show that the frequency and edge strengths distributions are Gaus-
sian, while the entropy and segment count are more or less centered on one value.
Particularly for the metrics, which do not recognizably follow a certain distribu-
tion, the interpretation of the correlations is more difficult. The histogram for
the predictive entropy of human uncertainty is not for the train, but for the test
set, the corresponding correlation is in fig. 7a. We see that predictive entropy is
low for most instances.

The ImageNet histograms in fig. 15 resemble those of CIFAR10 more than
those of KTH-TIPS2b or Pascal, in that there is no skew of the frequency Gaus-
sian and the segment count distribution is irregular-shaped.

The KTH-TIPS2b histograms in fig. 13 are more nuanced. The frequency
and edge strengths distributions show several peaks, while the entropy and seg-
ment count exhibit an exponential course.

The Pascal histograms in fig. 17 are skewed Gaussians for entropy, seg-
ment count, frequency and human response time, multi-peak Gaussian for edge
strenghts, similar to KTH-TIPS2b, as well as more or less centered around one
value for number of instances and bounding box area.
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F Discussion on correlation vs. causation

An important extention of the study is identifying causal links instead of mere
correlations. Our results in the main body and additional visualizations in the
appendix demonstrate agreement during the learning process of neural networks,
as well as its correlation to several dataset metrics. Still, there are several differ-
ences between chosen datasets, which makes an analysis of why a certain corre-
lation (and in which direction) was present difficult. To control the variation in
the data, one could as a next step generate data with specific image statistics,
which allows for an intervention into the data-generating process. In this way,
one can study the influence of specific data-generating factors on agreement,
while keeping all the others constant, in order to understand, which changes in
the data caused which observed correlations.
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