Supplementary Material

Overview of Supplementary Material. This supplementary material con-
sists of 6 sections: (1) related literature and context of our paper (Section[]), (2)
details of data creation process (Section [2), (3) additional AnimeCeleb samples
and experimental results (Section [3)), (4) implementation details of the AniMo
and the baselines (Section[d), (5) additional head reenactment results of AniMo
(Section []), and (6) discussions and future work (Section [6).

1 Related Work

With abundance of digital contents, numerous animation datasets collected
from different media are released to community. Focusing on animation head
datasets, there exist multiple studies [1}, |2, |4, 16, |26] that provide the pre-
processed animation heads. Based on these datasets, early animation-related
research [14} [20, 24] mainly focused on recognizing and detecting an anima-
tion character in animation scenes. However, an extension of animation research
to generative modeling is non-trivial. One major bottleneck is that the released
datasets are collected from unlisted online source, thereby containing unexpected
and noisy images (e.g., an occluded head). In this regard, existing datasets are
forced to narrow their application scope; for example, current animation datasets
are not suitable to train head reenactment models |3, |5, [18] [21} [22] [23].

Head reenactment aims to drive a source image to mimic a motion of a
target image while preserving identity of the source image. Most approaches |3,
5, (181 |21} |22, 23] use two frames from the same video during training; an image
conveys the identity-related information while the other provides the motion-
related information, which are combined to produce a final output. Also, multiple
pose representations (e.g., keypoints and 3DMM parameters) play vital roles to
deliver the head motion in previous literature [5} (15} 22, |23]. In fact, the pose
representation is an important aspect for head reenactment approaches as shown
in previous work [3] when training a high-performing model.

Undoubtedly, the collected animation images of current datasets |1l |2 |4,
16}, 126] do not include its detailed pose annotations, and obtaining accurate pose
representations is also non-trivial. In opposition, AnimeCeleb provides numerous
groups of images that have the same identity, and detailed pose annotations,
which bear a potential to be used for various generation tasks.
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Fig. 1: Visualizations of all target morphs and 3D head angles. Given a neutral
image ( Top-left), we apply every annotated target morph independently with the
maximum intensity (i.e., 1.0) to obtain the morph-applied images. We highlight
the locations, where manipulations occur with arrows.

2 Details of Data Creation Process

In this section, we present the details of the data creation process as follows:

— The visualizations of entire pre-defined target morphs that a single character
has (Fig. [1).

— Detailed user interfaces of the annotation system: statistics, group annota-
tion, and individual inspection (Fig. [3) and mapping relationships between
the source morphs and the target morphs after the annotation (Table .

— Detailed description of pose sampling process for generating a pose vector
(Algo. [1).

— Sampling examples from a 3D animation model (Fig. .

Visualizations of Target Morphs. Fig. [l] shows the visualizations of the
manipulated poses and their corresponding target morphs, which are responsible
for annotating the source morphs. For head rotation and mouth annotation, there
is a single value to control each semantic, respectively. On the other hand, for
eyes and eyebrows annotation, we consider left and right part separately and
define three different target morphs: left-related, right-related and both-related
semantics. Note that although we have defined 23 target morphs including six
morphs that control both parts (e.g., closed eyes and raised eyebrows), during
constructing a pose vector, the both-related morphs simultaneously determine
two values of the pose vector (i.e., left and right part). Therefore, the dimensions
of a pose vector become 20 (=17+3) with three additional head angle dimensions.
Semantic Annotation System. Fig. |3| shows the components of semantic
annotation system developed with Vue.js |J_‘|3|Given a group of neutral images and
morph-applied images, our system aims at visualizing the images and the source
morph names. Through the annotation, the source morphs are annotated as the
target morphs, considering a semantic match.

! https://vuejs.org/
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The system consists of three views: statistics, group annotation and individ-

ual inspection. In statistics view, there are the number of models and unique
morph names that the models contain, and annotation progress shows the ra-
tio of the annotated models to the total models. During annotation, we match
the source morphs (e.g., [l 3 and 7% Z #) as their corresponding target morphs
(e.g., lowered eyebrows and closed eyes) by considering given sample images as
seen in the group annotation view of Fig. [3] Next, we manually check the valid-
ity of a single morph one-by-one by examining its corresponding morph-applied
image as shown in individual inspection view of Fig. [3| If the morph-applied
image has an unmatched semantic, we exclude that source morph marking it as
X. We present the annotation results in Table
Pose Sampling Process. Algorithm [T] depicts a detailed process for sampling
a pose vector p € R?0. Note that the annotated target morphs can be differ-
ent depending on the 3D animation model. Given the annotated target morphs
{en}ﬁ[:17 we first select a semantic of each part: eye seye, €yebrow seyeprow, and
mouth S,,ousn. For example, if there exist Mouth (A), Mouth (E) and Mouth
(O) as mouth semantics, we randomly sample one of them as s;,outn. Similar to
this, the pre-defined target morphs are randomly sampled for s¢ye and scyebrow,
respectively. The difference is that we check whether a 3D animation model con-
tains independent morphs that can control left and right part separately or a
single morph to adjust both parts. If there exist the independent morphs, they
are used with priorities. Then, the values sampled from a uniform distribution
are assigned to the selected semantics as well as head angles (i.e., roll, pitch,
and yaw). This results in a pose vector p that works for manipulating a pose of
an animation character.
Sampling Examples. Fig. 2| shows the example pairs of generated images and
pose vectors from a 3D animation model. The output data consists of frontalized-
expression and rotated-expression images and their corresponding pose vectors
that contain 17 different morphs and 3D head angles. In addition, we provide
four different shader styles: (S.1), (S.2), (S.3) and (S.4) to boost the diversity of
images and consider various drawing styles of animation creators.
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Fig.2: Examples of sampled data. Given a 3D animation model, two groups of
images are generated: (1) frontalized-ezpression images using the sampled target
morphs and zero head angles ( Top-right), and (2) rotated-exzpression images after
adding the sampled head angles (Bottom-right). Note that four different shading
styles are applied for image rendering.

Source morphs [Target morphs

b, bbb, H2 Mouth(A)

Z, 2%, 22, 2 Mouth(E)

B, g, 2 » Mouth(I)

B, BB Mouth(O)

9, 99 Mouth(U)

725, X, kA Closed Eyes

V4, 74> 2.001, 74> 72, % =&k |Left Closed Eye

oA IR, k Ak, 74 220, 2h Right Closed Eye
PH, LeH, vHH Unimpressed Eye

L HA Left Unimpressed Eye
LEHA Right Unimpressed Eye
U502, U5, Ex Surprised Eyes

Yo D, s D2k Left Surprised Eye
U-(N2hH, U<V Right Surprised Eye
RN, &2, & Angry Eyebrows

REN I, R ERE, )L Left Angry Eyebrow
B A, &) 4, BDR Right Angry Eyebrow
IS Raised Eyebrows

b, FL Left Raised Eyebrow
F4, ER Right Raised Eyebrow
RS Lowered Eyebrows
WaL, FL, a7, Mk Left Lowered Eyebrow
W24, FR, 4, W3R Right Lowered Eyebrow

Table 1: Examples of mapping relationships between the source morphs and the
target morphs.
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Statistics
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Fig. 3: Simplified semantic annotation system overview.
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Algorithm 1: Pseudo Codes for Pose Sampling

Data: Annotated target morphs {e,}A_;
/* N indicates the number of source morphs of a 3D animation model.
*/
Result: A sampled pose p € R
/* Select eye, eyebrow, mouth semantics and sample the values from
a uniform distribution. */
Seye; Seyebrow; Smouth — Sample({en})
if Jleft-seye, right-seye € {€n} then
U1, U2 ~ L{(O, 1),
left-Seye (V) < uq;
right-Seye (V) < ug;
else
u~U(0,1);
left-Seye(v) < u;
right-seye (V) + u;
end
if Jleft-seyebrow, right-seyebrow € {€n} then
U, U2 ~ U(O, 1);
left-Seyebrow (V)  u1;
right-Seyebrow (V) < us;
else
u~U(0,1);
left-Seyebrow (V) < u;
right-Seyebrow (V) — u;
end
u~U(0,1);
Smouth (V) < u;
/* Sample roll, pitch and yaw from a uniform distribution. */
roll(v), pitch(v), yaw(v) ~ U(—20°,20°);
/* Fill p with sampled values. p[-] denotes an index of each
semantic. */
initialize p = {pm}20_; = {0,0,...,0};
plleft-seye] = left-Seye(v);
p[right-seye] = right-seye(v);
p[left Seyf’brow] left Seyebrow (U)
[right-Seyebrow] = right-Seyebrow (V);
[Smouth} - Smouth( )7
[
[
[ya

roll] = roll(v);
pitch] = pitch(v);

yaw] = yaw(v);

Tt otT T
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3 Additional AnimeCeleb Samples and Experimental
Results

This section presents additional results as follows:

— Other examples sampled from the AnimeCeleb.

— Qualitative head reenactment results on other animation head images ob-
tained from Waifu Labs E| and Danbooru 2019 [2].

— Other applicable tasks using the AnimeCeleb: animation colorization and
image harmonization.

Additional Examples from AnimeCeleb. Fig. [d] shows the sampled images
of eight different characters. As aforementioned, we present two image groups:
frontalized-expression (the first row) and rotated-expression (the second row),
and a difference between two groups lies in whether a head rotation is applied to
the animation heads or not. As seen in Fig.[4] the images rendered with different
shaders are generated with the exact same pose vector ((S.2-4) in Fig. [4)) for the
purpose of providing multiple styles of images.

Other Animation Images Head Reenactment. We present qualitative re-
sults using the PIRenderer [15] trained with the AnimeCeleb on two other an-
imation sample images obtained from the Waifu Labs and the Danbooru 2019.
We choose to use the PIRenderer(w/ pose vector) because it has strong general-
ization capacity compared to other models as seen in main manuscript. As shown
in Fig. [5] the trained model successfully generates the head reenactment results
given a source and a driving image. The PIRenderer(w/ pose vector) produces fa-
vorable outputs, imitating the head poses of driving images. Furthermore, Fig. [0]
shows the outcomes on the Danbooru 2019. Due to the distribution gap be-
tween the AnimeCeleb and the Danbooru 2019, we confirm slight performance
degradation for the samples from the Danbooru 2019.

Additional Applications of AnimeCeleb. To reveal the benefits of the Ani-
meCeleb, we implement additional two tasks: an animation colorization, and
an image harmonization. The third shader (i.e., S.3) styled images are used to
train the colorization and the harmonization models. We clarify an importance
of each task in the animation domain and show experimental results in the fol-
lowing paragraphs.

First, the animation colorization is a practical task for animation creators to
reduce their effort during the labor-intensive painting process. Given a trained
colorization model, creators are able to obtain colorized images given sketch
images. We conduct character colorization tasks using both unconditional and
conditional colorization baselines [7},[10]. As can be seen in Fig. |7} the colorization
models trained with the AnimeCeleb show a promising performance at painting
the animation character sketch images, producing plausible colorization outputs
in an automatic manner or following a given animation reference image. To
demonstrate the broad generalization capacity of the reference-based colorization

2 https://waifulabs.com/
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model [10] trained with the AnimeCeleb, we also use the reference images crawled
from online cartoons. We find that not limited to the AnimeCeleb reference
images, the model achieves high-quality colorization outputs based on other
animation head images.

Second, the image harmonization aims to generate natural composite images
given two images from different domains, achieving a visually pleasing match
for both content and style. We implement a representative optimization-based
approach [25] to explore the applicability of the AnimeCeleb and generate more
realistic animation images. Since the AnimeCeleb images only contain a fore-
ground object (i.e., an animation head), a composition with suitable background
is a natural extension of the AnimeCeleb. Not limited to the background compo-
sition, decorative objects (e.g., sunglasses, caps and masks) are available assets
to be exploited for the composition. We can employ an optimization-based com-
position model [25] that requires a foreground segmentation mask because the
AnimeCeleb includes the segmentation mask. As shown in Fig. [8] both back-
ground and decorative object composition with the AnimeCeleb produce plau-
sible results, demonstrating a potential extension of the AnimeCeleb in that it
can provide the images with diverse backgrounds and multiple objects.
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Fig. 4: Examples of the created images from the AnimeCeleb.
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Fig. 5: Additional animation head reenactment results on the images from Waifu
Labs.
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Fig. 6: Additional animation head reenactment results on the Danbooru 2019.
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Original Reference Colorization (AnimeCeleb)

e

Fig. 7: Colorization results in an automatic and reference-based manner on the
AnimeCeleb and other collected images. A Pix2Pix |7] trained with the Anime-
Celeb successfully outputs a plausible colorized image. Also, a reference-based
model successfully fills a given sketch image with the color maps extracted
from reference images.

F.G. + Acc. F.G. +B.G. F.G. + B.G. + Acc.

Fig. 8: Image harmonization results. F.G., B.G. and Acc. denotes a foreground
object, a background, and an accessory, respectively. The components for image
harmonization (the Ist column) are well-blended, where the backgrounds and
the accessories are refined with similar styles with an animation character.
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4 Implementation Details of the AniMo and Baselines

In this section, we describe the architectures of the motion network, the warping
network, and the editing network in detail, and objective functions for training.
Then, we elaborate the baselines [18, 15, 3] and implementation details of them,
respectively.

z € Z

[ Linear (256), LeakyReLU |

[ Linear (256), LeakyReLU |
Linear (256)

8
m
[ Linear (256), LeakyReLU |

Fig.9: The architecture of the motion network.

Motion Network. As shown in Fig. [0} the motion network has a multi-layer
perceptron structure, which consists of four fully-connected layers that are re-
sponsible for resulting in a latent motion code z € R?%® given the 3DMM pa-
rameters m € R0, The latent motion code z are transformed to estimate the
affine parameters for adaptive instance normalization (AdaIN) [6] operations in
the warping network and the editing network.
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Fig. 10: The architecture of the warping network.

Warping Network. As shown in Fig. the warping network has a encoder-
decoder architecture. In addition, we employ the skip-connection as U-Net [17] to
preserve the spatial information as well as AdaIN operation to inject the motion
information. The optical flow u € R%**64%2 s upsampled or downsampled to fit
the sizes of feature maps in the editing network.

Editing Network. Fig. shows the architecture of the editing network. The
editing network employs the structure of a hourglass network [12], in which in-
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Fig.11: The architecture of the editing network.

termediate encoder feature maps are passed to the decoder layers by an element-
wise addition operation. When propagating the multi-scale feature maps of the
encoder to the decoder, the optical flow u is applied to the multi-scale feature
maps. In addition, as similar to the warping network, we utilize the AdaIN op-
eration to inject the motion information.

Objective Functions. In order to train the AniMo, we follow the PIRen-
derer |15] objective functions as follows.

First, a reconstruction loss encourages the warping network to estimate an
accurate optical flow. For the sake of this, we apply the estimated optical flow
to a source image s, and encourage the warped output to reconstruct a driving
image d. Instead of pixel-level loss, we employ the perceptual loss [§] to minimize
the ¢; distances in latent feature space between the warped source image u(s)
and driving image d. Formally, this can be written as:

Lperels.d) = 3 ||6;0(s.w) = 6;(d)

1)

)
1

where ¢; represents the activation map of j-th layer of the pre-trained VGG-19
network [19] and W denotes a warping operation. This leads to reliable optical
flow prediction of the warping network.

Second, our editing network is trained with two losses: a reconstruction loss

LY., and a style loss Egty. The reconstruction loss is designed to reduce the

errors between the final prediction d and the ground-truth driving image d. This
can be formulated as:

Lhre(d.d) =3 |6(d) - 650 - 2)

Next, the style loss is introduced to match the statistics between the ground
truth driving image d and the final prediction as follows:

; 3)

L2, (d.d) = Y ||C7(d) — i)
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where Cj’ denotes the gram matrix calculated from the activation maps ¢;.
In summary, our full objective function is given as:

ﬁtOtal = )\Z)@TAL:;UGTC(S(Q)’ d(a)) + ‘C;)erc(s(r)a d(r)))
+ A9 (d@, d@y 429, (dT),d"))

pe'r-c(ﬁge’rc perc
+ Ay (L9, (d D, d ) + £9,,(dT),dT)),

sty \"~sty

where A\ A9 and \J;, are hyperparameters that control the relative impor-

tance of three different losses. We set A, ., A9... and XY, as 2.5, 4 and 250,
respectively. Note that our framework is jointly trained on both the AnimeCeleb
and VoxCeleb.

We train the AniMo in two stages, where the motion network and the warping

network are trained for 100 epochs, and we train the entire network for the
additional 100 epochs. We employ the Adam [9] optimizer, one of the widely-
used optimization methods, with the learning rate of 0.0001. The learning rate
is set initially as 0.0001, then decreased to 0.00002 after 150 epochs. The batch
size is set to 12 for all experiments.
Head Reenactment Baselines. We compare the AniMo with state-of-the-art
models [3, |18} |15]. Since we leverage two datasets during training, comparable
baselines are trained on either the VoxCeleb following their original implemen-
tations or both the VoxCeleb and AnimeCeleb.

In the following, we describe each baseline and experimental settings:

— First-Order Motion Model (FOMM) (18] is an unsupervised landmark-
based approach, which internally detects the spatial positions to transform
the source image. We implement two versions of this model: a VoxCeleb-
trained and a jointly-trained model using both the AnimeCeleb and the
VoxCeleb.

— PIRenderer [15] takes the 3DMM parameters to represent a driving mo-
tion and employs the AdalN operation to inject the motion information.
Similar to FOMM, we first implement a VoxCeleb-trained model. Also, we
apply our pose mapping T to use a shared pose representations (i.e., 3DMM
parameters) for the purpose of achieving joint training.

— Latent Pose Descriptor (LPD) [3] relies on the AdaIN operation to
inject a motion information, where the driving image is encoded as latent
pose vector in unsupervised manner. To handle an unseen identity during
inference, a trained model is fine-tuned with the same-identity images to
infer. For evaluation, we utilize a model trained on the VoxCeleb, and fine-
tune it using a group of the same-identity images in the AnimeCeleb.

For the implementations of existing baselines, we follow the hyper-parameters
given in the original papers and codes.

5 Additional Head Reenactment Results of AniMo
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This section contains additional head reenactment results with the AniMo
and the baselines as follows:

— Qualitative results on self-identity (VoxCeleb and AnimeCeleb), cross-identity
(VoxCeleb and AnimeCeleb), and cross-domain head reenactment (Vox. —
Anime. and Anime. — Vox.) tasks.

— Intuitive pose editing of an animation and human head images.

— Qualitative results on cross-domain head reenactment using various unseen
head images.

— A user study to compare the characteristics with iCartoon and head angle
distribution comparison between VoxCeleb.

Additional Qualitative Head Reenactment Results of AniMo. In the ex-
periments, we utilize two different training source: single dataset (VoxCeleb) and
joint datasets (AnimeCeleb and VoxCeleb). We use the single dataset (VoxCeleb)
to compare the original experimental setup of the previous studies [3| |18} |15]. For
qualitative comparisons, we show the results of three tasks: (1) self-identity
head reenactment where the identical being provides both a source and a
driving image, (2) cross-identity head reenactment where the identities of
a source and driving image are different within the same dataset, and (3) cross-
domain head reenactment where two frames of different identities sampled
from the AnimeCeleb and the VoxCeleb alternatively for the sake of serving as
a source and a driving image; for example, Vox. — Anime. denotes a source
and driving image are sampled from the AnimeCeleb and the VoxCeleb, respec-
tively. Note the warping and the editing network for each domain: Wy, G4 and
Wy, Gy are responsible for producing an animation and a real human head
image, respectively.

Fig.[[3|shows qualitative comparisons on self-identity head reenactment using
the VoxCeleb. As seen in Fig. our model produces the outputs that are
perceptually realistic, as good as the baselines. Although the baselines show
similar results on the task, there is a performance gap between the models when
it comes to handling cross-identity inputs. As shown in Fig. the FOMM [18]
often fails to produce photo-realistic results because a head structure of a driving
image is involved to generate results (the 3rd and the 5th columns). Compared
to these results, the models which rely on the 3DMM parameters successfully
handle cross-identity inputs (the 4th, the 6th and the last columns in Fig. .

Meanwhile, when performing on self-identity head reenactment using the
AnimeCeleb, it is obvious that the models trained only with the VoxCeleb do
not work well (the 3rd and the th columuns in Fig. . In contrast, the models
trained with the VoxCeleb and the AnimeCeleb show a promising performance
(the 6th and the last columns in Fig. 7 yet the FOMM still has difficulty
in synthesizing vivid textures of a source image (the 5th column in Fig. [15)). In
addition, Fig.[16|shows similar results on cross-identity head reenactment, where
the models trained with the VoxCeleb have performed poorly (the 3th and the
4th columns). In contrast, the others trained with the AnimeCeleb successfully
synthesize the outputs (the 6th and the last columnsED except for the FOMM

3 Note that both models use our pose mapping method.
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Fig.12: (A) Comparison of head pose statistics between VoxCeleb and Anime-
Celeb. (B) User study results for comparison between iCartoon and AnimeCeleb.
The higher score is better.

(the 5th column). Furthermore, Fig. and demonstrate that our model
generates photo-realistic results compared to the baselines for cross domain head
reenactment.

Intuitive Image Editing. One of the important applications of our model is
to explicit control of a facial expression and head rotation on both the animation
and human domain. As shown in Fig. the AniMo is capable of generating
high-quality images steered by diverse semantics. For example, an animation
and human head can be controlled along roll, pitch and yaw axis (the st row
in Fig. , and manipulating the facial expressions (i.e., eyes and a mouth) is
achievable (the 2nd row in Fig. [L9).

Head Reenactment of Other Animation Images. In this experiment, we
evaluate our model on multiple head image samples collected from different
sources, including Waifu Labs, Naver Webtoonlﬂ Face Sketches [|13], 2D Disney
as seen in Fig. Given the trained W, and G4 of the AniMo, the poses of
other animation images can be controlled with the guidance of driving poses.
However, we also find that there exist problems such as a background distortion
and a lack of detailed expressions. We discuss such problems in Section [f]
Head Angle Comparison and User Study. Fig. (A) shows the ranges of
head angles of 10K samples from each dataset. As can be seen, we determine
the ranges of head poses in the scope of covering most samples of VoxCeleb. For
purpose of quantitative comparison with iCartoon, we conduct a user study to
compare the properties of datasets after see- ing 100 samples from each dataset.
As shown in Fig. [12[ (B), users positively evaluate the style consistency, qualityﬂ
and cleannes{] of AnimeCeleb. Also, the users respond that AnimeCeleb has a
comparable diversity of head pose and expression.

4 https://comic.naver.com/

® https:/ /toonify.photos/

6 A low-resolution or defocused image is considered as low-quality one.

7 If a face is occluded with an object or incompletely cropped, then it is considered as
a noisy image



AnimeCeleb: Large-Scale Animation CelebHeads Dataset 17

Fig.13: Qualitative comparison between our model and the baselines on self-
identity head reenactment given the images of the Voxceleb.

Fig. 14: Qualitative comparison between our model and the baselines on cross-
identity head reenactment given the images of the Voxceleb.
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Fig. 15: Qualitative comparison between our model and the baselines on self-
identity head reenactment given the images of the AnimeCeleb.
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Fig. 16: Qualitative comparison between our model and the baselines on cross-
identity head reenactment given the images of the AnimeCeleb.
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Fig. 17: Qualitative comparison between our model and the baselines on cross-
domain head reenactment given the source image from the VoxCeleb and the
driving image from the AnimeCeleb (Anime. — Vox.).

Source Image DrivingImage | FOMM (Vox.) PIRenderer (Vox.) LPD + Fine-Tuning PIRenderer + 7~

Fig. 18: Qualitative comparison between our model and the baselines on cross-
domain head reenactment given the source image from of the AnimeCeleb and
the driving image from the VoxCeleb (Vox. — Anime.).



20 K. Kim et al.

Source Roll

Source Eye Closed Mouth E Mouth O ource Eye Closed Mouth E Mouth O

Fig. 19: Intuitive image editing results on animation and human heads via con-
trolling the semantics and the head angles.
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(C) 2D Disney (D) Sketches
Fig. 20: Additional head reenactment results on head images from various ani-
mation head samples.
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Fig.21: (A) Examples of rendered images with higher resolution (i.e., 1024 x
1024, 512 x 512, and 256 x 256) in order. (B) We generate additional examples
under different camera viewpoints from spherical coordinate system where the
neck bone is the origin, ranging azimuth [-40°, 40°] and elevation [-40°, 40°].
(C) Similar to (B) we render the images by relocating a light source position,
ranging azimuth [-40°, 40°] and elevation [-40°, 40°] with setting the neck bone
as the origin.
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6 Discussions

In this section, we discuss potential issues and directions for improvement of
the AnimeCeleb and the AniMo in further research.
Extension of Creation Protocol. Due to the limited budget, the proposed
pipeline is designed to generate a group of multi-pose yet single-view animation
head images with the limited poses. However, we believe that the AnimeCeleb
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Fig.22: Additional cross-domain head reenactment results on (A) AnimeCeleb
and (B) other animation datasets.

has room for improvement in three aspects: (1) constructing high-quality images
higher than 256 x 256, (2) obtaining multi-view animation head images by ro-
tating the camera, and (3) building a various light-conditioned animation head
dataset from changing the light source position. To prove these concepts, we
present these samples in Fig. As seen in in Fig. [21] (A), our data creation
pipeline is able to render a higher resolution than 256 x 256 (e.g., 1024 x 1024).
This definitely allow us to construct a high-quality dataset in future research.
Next, the images of AnimeCeleb are created based on the frontal face, and thus
do not span comprehensive appearances that can be created at various camera
angles. This is mainly due to the goal of the AnimeCeleb lies in constructing the
public animation dataset, which is suitable for head reenactment. A straightfor-
ward method to improve our creation process is to render an animation head
at different camera angles in Blender as shown in Fig. (B). Also, as can be
seen in Fig. (C), we can control the illumination for the aim of generating
animation head images under different light conditions.

Diversity of the AnimeCeleb. One of the AnimeCeleb strengths lies in a wide
spanning of animation characters. However, we fixed the camera position with
the aim of capturing frontal faces of animation characters during the AnimeCeleb
generation process. Although this enables us to extract character face easily, the
fixed camera position also constrained dataset diversity especially in terms of a
translation. In addition, we uniformly set a background of the generated image
as 0 (i.e., white color). Obviously, this weakens the capacity of a head reenact-
ment model trained with the AnimeCeleb when handling a center-unaligned or
complicated-background animation head image. Our planned solution to these
limitations is to develop a more flexible architecture that can consider translation
parameters under this constraint.

Limitations of the AniMo. We have found that when using 3DMM param-
eters obtained from the VoxCeleb, the AniMo often fails to reflect the detailed
poses (e.g., eye or mouth pose). Indeed, there are successful examples as shown
in Fig. our finding is that region sizes of lip and eyes are important to gen-
erate diverse images; more dynamics are tend to be entailed when a lip or eyes
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are noticeably large. On the other hand, this is not the case when we use 3DMM
parameters acquired by our pose mapping method with a pose vector from the
AnimeCeleb. We conclude that this behavior mainly stems from the fact that a
pose from the VoxCeleb often does not identify the exact position of an eye or a
mouth. In future work, we will address this problem by considering expression
detail correctness of the outputs during training.

In addition, since the images of the AnimeCeleb are center-aligned and have
no background, it is no surprise that there exists a performance degradation
when an animation head image does not these conditions(e.g., containing com-
plicated background). To be specific, the generated outputs have an artifact at
background and often loss the detailed poses (e.g., eye or mouth pose). This be-
havior is also observed in previous studies [3} |18} |23] when a position of a given
head in an image is far from the training dataset distribution. The solution to
alleviate the problem by shifting a head position of a given source and driving
image in the inference time ﬂ Similar to these approaches, we plan to implement
an additional preprocessing pipeline for an animation source image during the
inference.

8 https://github.com/shrubb/latent-pose-reenactment
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