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Abstract. Multimodal video-audio-text understanding and generation
can benefit from datasets that are narrow but rich. The narrowness allows
bite-sized challenges that the research community can make progress on.
The richness ensures we are making progress along the core challenges.
To this end, we present a large-scale video-audio-text dataset MUGEN,
collected using the open-sourced platform game CoinRun. We made sub-
stantial modifications to make the game richer by introducing audio and
enabling new interactions. We trained RL agents with different objec-
tives to navigate the game and interact with 13 objects and characters.
This allows us to automatically extract a large collection of diverse videos
and associated audio. We sample 375K video clips (3.2s each) and collect
text descriptions from human annotators. Each video has additional an-
notations that are extracted automatically from the game engine, such
as accurate semantic maps for each frame and templated textual descrip-
tions. Altogether, MUGEN can help progress research in many tasks in
multimodal understanding and generation. We benchmark representative
approaches on tasks involving video-audio-text retrieval and generation.
Our dataset and code are released at: https://mugen-org.github.io/.
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1 Introduction

Research in multimodal understanding and generation brings together the sub-
fields of vision and language in AI. Significant progress has been made on image-
text understanding and generation tasks, such as CLIP [54] for image-text re-
trieval and DALL-E [55] for text-to-image generation. This progress has been
made possible with large-scale image-text datasets [6,53,61,64,73] that are col-
lected from the web. However, progress in the video-text domain lags due to
challenges in data collection and modeling of spatiotemporal information.

⋆ equal contribution, ordered alphabetically

https://mugen-org.github.io/.
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Mugen walks to the right and collects a few coins, and jumps to the right and killed a snail, and walks a bit.

Semantic 

Maps

Video

Audio

Manual Text

Auto Text

Mugen runs to the right gathering coins as it goes. It bounces and lands on a snail, smashing it.

Fig. 1: An example from our dataset. For each 3.2s video clip, we have rich annotations
including accurate semantic maps, synchronized audio, manual text collected from
human annotators, and auto-text generated based on certain rules.

Many existing video-text datasets [68,40,79,50] are collected in the wild and
are proposed for understanding tasks such as video-text retrieval [50], video
question answering [40], and generation tasks like video captioning [68]. Yet the
performance on these tasks is still far behind their image counterparts [10,42,76]
due to the challenges in understanding the complex dynamics in these in-the-
wild videos. Moreover, such video-text pairs are too challenging for text-to-video
generation, where more constrained datasets are used instead, e.g., bouncing
MNIST [33], KTH [51] and UCF-101 [48]. However, these are limited in actions
and interactions between entities which are crucial to modeling real-world videos.

In this paper, we introduce MUGEN, a large-scale controllable video-audio-
text dataset with rich annotations for multimodal understanding and generation.
MUGEN is collected in a closed world based on the open-sourced platform game
CoinRun [11]. We have made substantial modifications to the game engine to
make the videos more diverse (and delightful) by introducing audio, adjusting
camera zoom and stabilization, and enabling new interactions between charac-
ters. We name the protagonist “Mugen”, and collected videos about Mugen’s
interactions with the other characters and objects.

To collect videos, we train reinforcement learning (RL) agents to navigate the
world and record gameplay. To increase video diversity and reduce bias towards
the actions of any single agent, we trained 14 RL agents with different objectives.
We record 233K videos of gameplay where the game environment is procedurally
generated, so there are no video duplicates. We then sample 375K 3.2s video clips
from this video set to collect text descriptions from human annotators (which
we call “manual text”). For each video clip, there are additional annotations
that come for free: 1) audio is generated from a set of background music and
foreground sound effects; 2) accurate semantic maps are generated for each frame
using the game assets; 3) automatic text descriptions (“auto-text”) are generated
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Table 1: Comparison between MUGEN and other video-text datasets. Sent., Sem.
and Cust. represent sentence, semantic and customizable. M, A, W and ASR represent
descriptions that are manually annotated, alt-text collected from the web, and trans-
lated from speech. R and G represent sound recorded with the video and generated
based on the video.

Dataset
Video Sent. Number of Properties

Content Source Sent. Videos Clips Sem. Audio Cust.

BMNIST [33] digit A - - - ✗ ✗ ✓

KTH [51] human action A 2K - 2K ✗ ✗ ✗

TVR [41] TV show M 11K - 22K ✗ R ✗

YouCook2 [79] cooking M 14K 2K 14K ✗ R ✗

MSVD [7] open M 70K - 2K ✗ R ✗

A2D [67] human action M 7K - 4K ✓ R ✗

Charades [62] daily life M 16K - 10K ✗ R ✗

FLINTSTONES [25] cartoon M 25K - 25K ✓ R ✗

MSRVTT [68] human activity M 200K 7180 10K ✗ R ✗

WebVid-10M [5] open W 10.7M - 10.7M ✗ R ✗

HowTo100M [50] instructional ASR 136M 1.2M 136M ✗ R ✗

HD-VILA-100M [69] open ASR 100M 3.3M 100M ✗ R ✗

MUGEN (ours) platform game M+A 379K 233K 375K ✓ G ✓

based on Mugen’s actions and language templates. This results in 375K video-
audio-text samples in the MUGEN dataset. One example is shown in Figure 1.

Table 1 shows a comparison between MUGEN and other multimodal datasets.
There are several advantages of MUGEN. First, the videos in MUGEN are col-
lected in a closed world with a limited set of visually simple objects and scenes
(i.e., simpler than in-the-wild datasets) but with diverse motions and interactions
between entities that capture some of the core challenges in video understanding
and generation (i.e., richer than other closed world datasets). Not only does the
narrowness allow for bite-sized challenges to make progress on, it also alleviates
the need for web-scale data and correspondingly massive compute resources in
studying multimodal understanding and generation. Second, there are rich an-
notations for each video including accurate semantic maps, synchronized audio,
and auto-text and manual text descriptions that can enable a wide variety of
tasks in multimodal research. Third, the game engine setup allows us to render
videos at different resolutions on the fly, which is more flexible and storage ef-
ficient. Fourth, the game engine is modifiable, and once released, will allow the
research community to collect more data to study a diverse set of problems.

MUGEN enables study of many multimodal video-audio-text tasks. In this
paper, we focus on several tasks including retrieval and generation between all
pairs of modalities. For the research community to make progress, it is vital
to have consistent evaluation protocols. While many automatic metrics have
been proposed for evaluation of generative models, human judgement is still
the gold standard. Prior works have compared to ground-truth for text [12]
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or audio generation [9], but video generation evaluation is usually conducted
by comparing to baselines because ground-truth is too challenging. This makes
it difficult to compare methods and calibrate progress over time. Given that
MUGEN is a closed world dataset with simplified visual elements, it is possible
to compare to ground-truth videos for evaluation. In this paper, we conduct a
comprehensive human evaluation for various cross-modal generation baselines.
We evaluate both the generation quality as well as faithfulness to input modality.
We hope this evaluation protocol will be adopted by the community. We will
make our evaluation interfaces publicly available.

We summarize the contributions of this paper as follows:

– We propose MUGEN, a large-scale dataset of 375K video-audio-text samples
with additional annotations of semantic maps and auto-text to facilitate
research in multimodal understanding and generation.

– We benchmark the performance of video-audio-text retrieval and generation
between every pair of modalities in a unified framework. To our knowledge,
this is the first work that benchmarks all these tasks on one dataset.

– We formulate a standard protocol for human evaluation of quality and faith-
fulness for four generation tasks.

– We will release the dataset and the game platform so the community can
generate more data for a variety of tasks to push the field forward.

2 Related Work

Multimodal Datasets. Existing multimodal datasets belong to two categories
based on the visual content: open world (in-the-wild environments) and closed
world (constrained environments). Open world datasets such as MSCOCO [45],
ConceptualCaptions [6], and WIT [64] are widely used for image-text research.
CLEVR [30] is a closed world dataset collected by arranging different 3D shapes
on a clean background, which enables systematic progress in visual reasoning by
reducing the complexity and bias from the real world.

Most video-text datasets are open world. MSRVTT [68], ANetCap [37],
MSVD [7], and DiDeMo [3] contain videos of sports and human actions col-
lected from the web. YouCook2 [79] and HowTo100M [50] contain instructional
videos collected from YouTube. TVR [41], TVQA [40], and LSMDC [57] are
collected from TV series and movies. Ego4D [24] is collected by people wearing
an egocentric camera recording everyday activities around the world. Videos in
these datasets contain complex backgrounds and diverse events, which makes
them very challenging. Datasets from constrained environments, e.g. Bouncing
MNIST (BMNIST) [33] and KTH [51], have been proposed. These datasets don’t
capture some of the core challenges in videos such as multiple entities interact-
ing with each other in meaningful ways. FLINTSTONES [25] is created from
an animated series, but the scenes are too diverse for the size of the dataset. In
contrast, MUGEN simplifies the visual complexities of the scenes and objects,
but captures complex motion and interactions between multiple entities.
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The text in existing datasets are either collected from humans [25,68,79] or
extracted from speech [50]. Besides human descriptions, MUGEN also allows
generating templated auto-text descriptions for videos of arbitrary lengths.

Most open world video-text datasets are associated with audio recorded from
human speech and/or events. AudioSet [22] and VGGSound [8] are collected with
video-audio pairs for audio event recognition. However, the video and audio are
often not well-aligned. (E.g., the speech may describe things not related to or
aligned with the video and background noise is common.) In contrast, the video
and audio in MUGEN are synchronized based on Mugen’s actions, making it
feasible to study less explored tasks like audio generation from video or text.
Multimodal Understanding and Generation. Multimodal research typi-
cally involves four modalities: image, video, audio and text. Image-text tasks
are widely studied, such as VQA [4], image captioning [1,31,72], image-text re-
trieval [32], visual storytelling [27], text-to-image generation [56], etc. Earlier
methods aimed to design effective models for specific tasks [23,43,52,71]. Later
work [10,42,78] focused on large-scale pre-training to learn cross-modal repre-
sentations that can be transferred to various downstream tasks. More recently,
CLIP [54], CogView [14], and DALL-E [55] leverage even larger-scale training
to improve model generalization and zero-shot learning. FLAVA [63] and Flo-
rence [74] were proposed as foundation models for both vision and language.

Many video-text tasks have been proposed, such as video QA [40], video-text
retrieval [68], video grounding [19], video captioning [68], text-to-video gener-
ation [25], etc. Similar to image-text research, early approaches focused on a
single task [20,17,38,77]. Some recent work proposed novel architectures to learn
task-agnostic video-text embeddings, such as MIL-NCE [49] and ClipBERT [39].
Compared to video-text retrieval and video captioning, text-to-video generation
is relatively understudied, largely due to a lack of feasible datasets. Early meth-
ods [51,44,46] were evaluated on simple datasets like BMNIST [33] and KTH [51].
Mazaheri and Shah [48] annotated 10 action classes from UCF-101 [48]. However,
the limited motion in these datasets restricts the diversity of the collected text
descriptions, making them sub-optimal for studying text-to-video generation.

There are also efforts on audio, such as audio-text retrieval [36], audio cap-
tioning [35], audio-to-video generation [47], video-to-audio generation [28], etc.
We explore video-audio-text retrieval and generation between all pairs of modali-
ties on MUGEN, and conduct extensive evaluations including human evaluation.

3 MUGEN Dataset

Environment. In-the-wild video understanding and generation poses several
challenges, including understanding motion of objects, interactions among ob-
jects, physics, camera vs. object and scene motion, 3D depth of scenes, diverse
object appearances and semantics, lighting conditions, etc. Our goal was to de-
velop a dataset that is rich along some of these dimensions, but narrower along
others, to enable focused advances in some of the core challenges of multimodal
video research. Specifically, we desired a closed world dataset where physics
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are simplified, the camera angle is fixed, the number of objects is limited, and
lighting is consistent. Yet, we sought diverse motions and interactions between
entities (dataset statistics are shown in Figure 2). For these purposes, we chose
an open source video game which (1) enables training RL agents to collect video
data at scale and (2) gives access to the game engine that provides additional
high quality annotations for free, such as precise frame-level semantic maps and
automatic text descriptions. Amongst open source games, we chose OpenAI’s
CoinRun [11] because of its ease of modification.

OpenAI’s CoinRun is a platform game developed for quantifying generaliza-
tion of RL agents [11,15,29]. The game has a single main character (who we call
Mugen) with the objective to collect coins without being killed by monsters.
Each level has a number of coins and monsters, and the level ends when Mugen
collects all coins, Mugen is killed by a monster, or the level times out after 21
seconds. The environment is procedurally generated, with each level having a
unique configuration of platforms, coins, and monsters.

We made a number of modifications to increase the diversity of game events
and enhance richness, such as adding audio, slowing game physics, adjusting
camera zoom and stabilization, and enabling new interactions between charac-
ters. Altogether, our updated version of CoinRun features Mugen, 10 monsters,
coin and gem objects, and 2 world themes, space and snow. Mugen can take 16
different actions (see Figure 2c for the most frequent actions). Monsters differ
in their action vocabulary; some walk, others hop, and one flies. A full list of
modifications, before and after videos highlighting these changes, and images of
these characters, objects, and themes can be found in the appendix.

Audio. The audio consists of two layers, sound effects and background music. We
chose 8 sound effects corresponding to Mugen’s core actions: walk, jump, collect
coin, kill monster, power-up, climb ladder, bump head, die. Each sound effect
is triggered by these actions, and one sound effect plays at a time. Background
music features 2 themes for the space and snow game themes. Background music
is layered with the sound effect audio to produce the full audio track.

Video Collection. We train RL agents to navigate the environment and collect
gameplay videos. We use an IMPALA-CNN architecture [16] and train agents
with Proximal Policy Optimization [59]. Inputs to the agent include the current
game frame and the agent’s velocity. The agent’s performance in the game is
immaterial to us; we care about maximizing the diversity of video data. To this
end, we trained 14 agents with modified reward functions to achieve different
behaviors. For example, decreasing the reward discount factor makes the agent
more myopic and risk-tolerant, so the agent dies frequently. Figure 2b shows the
distribution of Mugen’s poses for each agent where the variation in time spent
in different poses indicates differing actions. To further increase diversity, we
ensured that the seed for map procedural generation is always unique. We have
verified there are no duplicate videos in MUGEN.

To efficiently handle large-scale game video data and enable easy data cus-
tomization (e.g., swapping characters or objects, changing background), we do
not save the rendered videos. Instead, we save all metadata such as world lay-
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(a) Characters and objects in video and text.

(b) Mugen’s poses across the 14 RL agents.

(c) Characters, objects, actions and interactions in three splits and their occurrence per video.

Fig. 2: Distribution of characters, objects, actions and interactions.

out and character movements in a json format, from which we can render RGB
frames and pixel-accurate segmentation maps at any resolution up to 1400×1400
on-the-fly, resulting in more efficient data storage. 1

We recorded 233K videos of gameplay ranging from 3.2s to 21s (level timeout)
at 30 frames per second. Each video corresponds to a whole level of gameplay.
We will release the game engine so others can customize the data environment
or agents for their own purposes.
Manual Text. We split the 233K videos into 3.2s (96 frames) clips and ask
annotators to describe in 1-2 sentences what happens in the short video. After
filtering low quality annotations, MUGEN consists of 378, 902 text descriptions
for 375, 368 video clips. 2 Refer to the appendix for the annotation interface and
details on annotation quality control.
Auto-Text. In addition to collecting human annotation, we also developed
a template-based algorithm to automatically generate textual descriptions for
videos based on game engine metadata. See the appendix for details.

Note that both video and auto-text can be generated automatically. We can
generate arbitrary amounts of video-text data with arbitrary lengths. This makes
it feasible to study more tasks where manual annotations are expensive to ac-
quire, such as text-conditioned long video generation [21], video grounding [75],
and dense video captioning [37]. Auto-text is also highly structured in nature.
This simplifies the text and improves model explainability since each action and
interaction in the video has a unique description in the text.
Dataset Statistics. In total, MUGEN consists of 375K 3.2s video clips paired
with 379K manual text descriptions, as well as 233K longer (3.2s to 21s) videos.

1 Storage is > 100× smaller than 1024× 1024 videos stored with lossless encoding.
2 A very small portion of the clips have more than one description.
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Each video clip or long video also comes with semantic maps, auto-text, and
audio. There are 11 characters, 2 objects, 16 different actions for Mugen, and
4 classes of interactions with other objects and characters: collect coin, collect
gem (power up), kill monster, killed by monster.

We first analyze the occurrences of characters and objects in video, manual
text, and auto-text in Figure 2a. 3 We observe that not all characters and objects
appearing in the video are mentioned in the text. This is because annotators are
more likely to describe characters that interact with Mugen than those in the
background. Given the unbalanced distribution of characters and objects, when
splitting our dataset, we sample fewer videos featuring only Mugen or Mugen’s
interaction with coins for the validation and test sets. Both validation and test
sets contain only one manual text per video. This results in 349, 666, 12, 851,
12, 851 video clips in training, validation, and test sets, respectively.

The distributions of characters and objects, actions, and interactions are
shown in Figure 2c. “Jump” and “collect” are the top 2 most frequent actions,
consistent with “collect coin” being the most frequent class of interaction (this
is CoinRun after all!). The rarest interaction type is Mugen being killed by a
monster. We also show the distribution of the number of characters and objects,
actions, and interactions in each video. Most videos contain 2-4 characters and
objects, 2-4 actions, and 2-3 interactions. This is more diverse than other closed
world datasets with one or two digits moving [33] or a single person moving in
a scene [51]. We also show the location heatmap of each charchater/object and
temporal heatmap of each action/interaction in the appendix.

As shown in Table 1, MUGEN is several orders of magnitude larger than
existing closed world datasets such as BMNIST [33], KTH [51] and FLINT-
STONES [25]. While it is smaller than some open world datasets including
HowTo100M [50] and WebVid-2M [5], it is also visually less diverse, making
it feasible to train effective models without having to work with web-scale data.
Moreover, our dataset provides audio aligned with video, accurate frame-level se-
mantic maps, and automatically generated text descriptions which enable study-
ing a variety of tasks. Finally, this dataset is customizable with the released game
engine, so the community can generate more data of different distributions.

4 Video-Audio-Text Retrieval and Generation

While MUGEN can enable many tasks, we focus on retrieval and generation be-
tween every pair of modalities. We first present the cross-modal retrieval frame-
work and then a unified pipeline for cross-modal generation.

4.1 Video-Audio-Text Retrieval

Cross-modal retrieval, which retrieves samples from one modality given a query
from another, is a fundamental task with many real-world applications. For
example, text-to-video retrieval is widely used for video search.

3 The occurrence of one character is counted at most once in each video/text.
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Fig. 3: A unified framework for generation between every pairs of modalities. The right
part shows an example of video-to-audio generation.

We use an encoder Fx to map input x of each modality to a feature vector
fx = Fx(x). It is projected into a joint embedding space ex = fx · Wx, where
Wx are the learnable parameters. Given inputs p and q from two modalities
P and Q, the similarity can be computed by a scaled cosine function, s(p, q) =
cos(ep, eq)·eτPQ , where τPQ is a learnable temperature parameter. The matching
loss LPQ is computed as:

LPQ = − 1

2N

N∑
i=1

(log(
es(pi,qi)∑N
j=1 e

s(pi,qj)
) + log(

es(pi,qi)∑N
k=1 e

s(pk,qi)
)), (1)

where N is the number of samples in a batch, pi and qi represent the ith sample
from P and Q modalities within the batch.

We train three models with LV A, LV T and LAT separately for video(V)-
audio(A), video-text(T), and audio-text retrieval. For comparison, we also sum
three losses to learn a joint model.

During inference, to retrieve samples from modality P given a query from
modality Q, we rank the samples based on the similarities s(p, q). To retrieve
modality P based on queries from two modalities Q and R, we sum the similarity
from two modalities, s(p, q)+s(p, r). s(p, q) and s(p, r) can either come from two
models independently trained by LPQ and LPR or the joint model.

4.2 Video-Audio-Text Generation

Cross-modal generation has gained increasing interest in recent years. Amongst
video-audio-text cross-modal generation tasks, video-to-text generation (video
captioning) is most studied, while other tasks (video-to-audio, text-to-video,
etc.) are relatively under-explored.
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Table 2: Performance comparison on video(V)-audio(A)-text(T) retrieval. For re-
trieval in modality P , Q+R denotes the ensemble of two models independently trained
by LPQ and LPR; Q+R∗ denotes the joint model. Recalls are shown in percentage(%).

Query Video Retrieval

Type R1 R5 R10

A 58.59 88.83 94.41
T 8.54 22.50 31.71

A+T 81.50 96.10 98.26
A+T* 62.54 87.33 92.62

Query Audio Retrieval

Type R1 R5 R10

V 61.14 88.99 94.59
T 2.40 8.35 13.38

V+T 69.59 92.48 96.42
V+T* 41.83 73.04 82.68

Query Text Retrieval

Type R1 R5 R10

V 10.61 25.72 34.70
A 2.95 9.36 14.80

V+A 11.68 27.13 36.60
V+A* 10.95 26.24 35.33

Inspired by the success of using a VQ-VAE [65] and transformer for image [55]
and video [70] generation, we adopt a similar and unified framework for cross-
modal generation, as shown in Figure 3. For each modality, we first learn a
discrete codebook to encode the data. Then an decoder-only transformer is used
to learn token generation from one modality to another.
Learning Token Representations. For video representation, we train a 3D
VQ-VAE to learn a codebook following the training losses in [70]. The encoder
is used to encode videos as inputs for the transformer during training, and the
decoder is used for video generation during inference. Similarly, we train a 1D
VQ-VAE to learn audio compression following the training losses in [13]. For
text representation, we learn a tokenizer from manual text in the training set.
Generating Tokens. We use a decoder-only transformer to do auto-regressive
token generation. During training, the input to the transformer is a sequence of
tokens concatenated from modality P and Q. Video tokens are flattened from
3D latent codes into 1D. Text tokens are truncated or padded to have the same
length. Causal attention is used where each token can only attend to prior to-
kens. The transformer learns to predict the token ids at every location. The loss
functions for the two modalities are summed, similar to DALL-E [55]. During
inference, given the tokens from P , we auto-regressively generate all tokens for
Q. For audio or video, we use the predicted tokens to look up the codebook
embeddings and feed them into VQ-VAE’s decoder to reconstruct the video or
audio. For text, the vocabulary is used to reconstruct the sentences.

5 Experiments

5.1 Video-Audio-Text Retrieval

The retrieval task is to find the true match from the test set in one modality,
given queries of either one of the other modalities or both modalities. For retrieval
based on queries from two modalities, we compare the ensemble of two separately
trained models and the joint model. We report recall at rank 1, 5 and 10. For
all experiments, if not specified, the video dimension is 256×256×32, where the
32 frames are evenly sampled from the 96 frames to save computation.
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Implementation Details. Pre-trained models are used as initialization includ-
ing ResNet-18 [26] pre-trained on VGGSound [8] for the audio encoder, S3D [66]
pre-trained on Kinetics 400 [34] for the video encoder, and DistilBERT [58] for
the text encoder. The parameters in the text encoder are fixed 4 and the other
two encoders are learnable. The temperature τPQ is initialized as 0.07 and the
maximum is 100, the learning rate is 0.001, and batch size is 16. All models are
trained for 400K steps and checkpoints are selected based on the validation set.

Results. The results are shown in Table 2. We have the following observations:
1) across all single modality retrieval tasks, video-to-audio and audio-to-video
retrieval perform the best and text-to-audio and audio-to-text perform the worst.
This is because video and audio are synchronized, while audio and text are only
sparsely aligned on Mugen’s actions and interactions; different text descriptions
can map to similar audio samples. 2) retrieval based on two modalities with an
ensemble of models (P +Q) consistently outperforms single modality retrieval.
This is because the other modality can provide complementary information. For
example, text contains information of Mugen’s moving direction that is available
in video but not audio. 3) the performance of the joint model (P +Q∗) typically
falls between the separately trained models, which indicates that it is challenging
to learn a joint embedding space for all modalities.

5.2 Video-Audio-Text Generation

We evaluate cross-modal generation for all pairs of modalities. We use V, A,
T to denote video, audio, text, and P2Q to represent the task (e.g., T2V for
text-to-video generation). We focus on quantitative evaluations of the quality of
the output and faithfulness to the input.

Implementation Details. The 3D VQ-VAE is similar to [70] except that we
use a kernel size of 3, which significantly sped up training compared to the
original kernel size of 4. We use a down-sample ratio of 32×32×4 for video
compression and a vocabulary of size 2048. The 3D VQ-VAE is trained for 600K
steps with a learning rate of 0.003 and a batch size of 8. The 1D VQ-VAE for
audio features non-causal, dilated 1D convolutions where the dilation is grown
by a factor of 3. The vocabulary size is 1024. Audio sample rate is 22kHz.
The 1D VQ-VAE is trained for 1M steps with a learning rate of 0.0003 and a
batch size of 4. We use Byte-Pair Encoding (BPE) [60,18] for text tokenization
and train a tokenizer from the manual text annotations in the training set. All
P2Q generation models are trained with the same transformer architecture and
optimization hyper-parameters. For the transformer, we use 12 layers with a
hidden dimension of 768 and 8 attention heads. All models are trained for 600K
steps with a learning rate of 0.0003 and batch size of 4. Model checkpoints are
selected based on the performance on the validation set.

Inference. During inference, we perform token sampling from the estimated
distribution with filtering. For video or audio generation, we use top-k= 100 and

4 Our initial experiments show unstable training with learnable text encoder.
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Table 3: Performance comparison on all generation tasks. D.S. denotes the down-
sampled training set. F(V/A)D denotes FVD for video quality and FAD for audio
quality. R.Sim. denotes the Relative Similarity to evaluate the faithfulness to the input.
“B4”, “M.”, “R.” and “C.” denote BLEU4, METEOR, ROUGE and CIDEr. “Q.” and
“F.” stand for quality and faithfulness. Video frame lengths map to different frame rates
(8/16/32 represent 2.5/5/10 frames per second). Audio token lengths map to different
compression ratios (68/137/275/551 represent 1024/512/256/128 compression ratios in
VQ-VAE). All metrics except F(V/A)D are shown in percentage (%). All metrics are
better when higher except F(V/A)D, which is the lower the better.

Out In Train Out In Text Auto Human

Mod. Mod. Data Len. Len. Type F(V/A)D R.Sim. B4 M. R. C. Q. F.

Text

Video Full -
8

M -
83.5 7.4 20.2 27.9 18.2 - -

16 101.5 7.8 20.8 28.7 20.2 - -
32 108.0 7.8 21.3 29.1 19.9 31.3 42.6

Audio Full -

68

M -

101.0 6.0 19.3 26.5 14.1

- -
137 103.9 6.3 19.3 26.6 14.4
275 106.7 6.5 19.3 26.8 14.7
551 107.5 6.7 19.4 27.1 15.5

Video

Text

Full

8

-

M 112.7±0.2 39.5 5.1 15.2 21.7 11.1 - -
16 M 72.7±2.0 63.9 7.3 18.5 26.5 15.3 - -
32 M 61.0±0.6 64.9 8.1 19.9 28.1 19.2 17.0 31.6
32 A 140.7±3.1 14.3 6.4 17.8 25.3 14.9 9.2 11.7
32 M+A 61.4±1.0 66.5 8.2 20.0 28.2 19.1 - -

D.S.

8

-

M 112.7±1.1 42.0 5.0 15.3 21.9 11.0 - -
16 M 72.2±1.7 69.5 7.3 18.6 26.7 15.8 - -
32 M 62.0±0.7 70.6 7.9 20.0 28.2 19.0 18.8 35.7
32 A 151.7±3.4 20.5 6.2 17.7 24.9 14.2 12.1 13.1
32 M+A 61.0±1.4 72.2 8.2 20.2 28.4 19.7 - -

Audio Full 32

68

-

64.0±0.9 79.9

- - - -

- -
137 66.4±0.4 91.4 - -
275 63.4±0.4 93.1 17.6 37.1
551 64.5±1.0 93.6 - -

Audio

Video Full

68

32 -

523.8±1.0 86.5

- - - -

- -
137 128.5±0.4 95.4 - -
275 52.3±0.5 96.7 15.2 31.1
551 50.0±0.8 92.7 - -

Text Full

68

- M

574.0±2.8 91.3 7.0 18.5 26.5 15.3

- -
137 171.1±2.2 88.8 6.9 18.5 26.5 15.0
275 93.7±1.6 86.9 7.1 18.5 26.9 16.2
551 109.4±2.3 78.7 6.9 18.1 26.1 15.9

top-p= 0.9 for filtering. For text generation, we use top-k= 1, which is the same
as beam search [2] with size 1 in the common captioning setup.
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Automatic Evaluation. For text generation, we use metrics that are widely
used in captioning evaluation including BLEU4, METEOR, ROUGE, and CIDEr.
For video quality, we follow prior practices and use I3D pre-trained on Kinetics
400 to calculate FVD. For audio quality, we use the pre-trained audio encoder
on VGGSound to calculate FAD. To automatically evaluate faithfulness to in-
put, we propose a new metric Relative Similarity (R.Sim.) that leverages the
retrieval models. Specifically, we calculate the average similarity between the
input and output divided by the average similarity between the input and the
ground truth. For T2V and T2A generation, we use the V2T and A2T models
applied on the generated video/audio to calculate the captioning metrics.

Human Evaluation. We establish a human evaluation protocol to calibrate
towards the Ground Truth (GT). We randomly selected 512 samples from the
test set and manually inspected the descriptions to ensure the samples were
diverse and not too simple (e.g., to avoid multiple samples where Mugen simply
jumps onto a platform). For each task, we evaluate both quality and faithfulness.
We use “quality” 5 to measure the single modality quality and “faithfulness” to
measure the alignment between the input and output modality. As it is not
straightforward for humans to judge the alignment between audio and text, we
do not evaluate T2A and A2T but focus on the other cross-modal generation
tasks. For quality, we ask human judges to select the higher quality sample
(video, audio, or text) between the generation and GT. For faithfulness, human
judges are asked to select the media which better aligns with the input 6. Each
comparison is evaluated by 5 judges and the majority vote is taken. We report
the percentage of samples that are chosen over the GT as the final metric. The
upper bound for these evaluations is around 50% when a human judge cannot
tell the difference between the generation and the GT.

We took several steps to mitigate bias and improve replicability in human
evaluation. We shuffle sample order, shuffle the presentation order of models,
anonymize model generations, and recruit diverse raters with Amazon Mechan-
ical Turk. We also remove confounding factors. For instance, for video compari-
son, we render the GT video using the same theme (snow or space), frame rate,
and resolution as the generated video. For generated text, several post-processing
steps are used: capitalize the first letter of the first word in each sentence, use
“Mugen” to replace “mugen”, and remove duplicated spaces.

Text Generation from Video or Audio. As shown in Table 3, we vary the
video frame rate and audio compression ratio (a higher compression ratio results
in fewer tokens) for comparison. For V2T generation, higher frame rate leads to
stronger performance. Human evaluation shows high faithfulness with 42.6% of
samples chosen over GT, and relatively lower quality with 31.25% of samples
considered more realistic than GT. For A2T generation, a smaller compression
ratio (more tokens) is better. A2T performs worse than V2T as video-text are
more densely aligned than audio-text.

5 Even within “quality”, there are different kinds of deficiencies and more fine-grained
evaluation could be part of future work.

6 We will release the annotation UIs for others to follow this protocol.
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Video Generation from Audio or Text. For T2V generation, we experiment
with training using manual text and auto-text. As mentioned earlier, we balanced
the characters in the validation and test sets. Correspondingly, to study the ef-
fects of data balancing, we also generate a smaller training set with 233K samples
by down-sampling videos with Mugen or Mugen and coins only. As shown in Ta-
ble 3, for T2V generation, we have the following observations: 1) Larger frame
rate leads to better performance in all automatic metrics. 2) Auto-text performs
worse than manual text and cannot noticeably improve performance when com-
bined with manual text. This is because we evaluate on manual text for all
comparisons. We hypothesize that auto-text may be useful when manual text
is not available or is limited. 3) Models trained on the down-sampled training
set consistently outperform those on the full set. Future work can explore other
sampling strategies to fully utilize the training set. 4) Human evaluation results
show better faithfulness compared to quality. The trends between automatic
metrics and human evaluation results are similar.

For A2V generation, a smaller compression ratio (longer token sequence)
leads to better quality and faithfulness in the automatic metrics. Human evalu-
ation shows higher faithfulness compared to quality, similar to the T2V task.
Audio Generation from Video or Text. For audio generation, generating
a longer audio sequence (less compression) leads to better quality in FAD for
both T2A and V2A. But the R.Sim. may not follow the same trend. Human
evaluation also shows higher faithfulness than quality, similar to other tasks.

When comparing the human evaluation results for all tasks, we see V2T
is the easiest with the highest quality and faithfulness. V2T is also the most
studied task in literature. For the other three tasks, faithfulness is considerably
higher than quality. Improving video and audio reconstruction in VQ-VAE can
potentially lead to higher quality. This also suggests that humans can reason-
ably ignore generation quality in faithfulness evaluation. We also compare the
diversity of generated samples in Appendix C.

6 Conclusion

We introduce MUGEN – a closed world, large-scale multimodal dataset based on
a significantly enhanced version of the platform game CoinRun [11]. MUGEN has
videos, human-annotated text descriptions, automatically generated templated
text descriptions, frame-level pixel-accurate semantic segmentation maps, as well
as audio. The multiple modalities and rich annotations in MUGEN enable re-
search progress in various tasks in multimodal understanding and generation
without requiring web-scale data or massive compute. We explore retrieval and
generation between every pair of modalities. To evaluate generative models, we
establish a human evaluation protocol by calibrating towards the ground-truth
samples, making it easier to compare performance and show progress. The MU-
GEN dataset, the modified game engine, our training code and models, and the
human evaluation UIs can be found at: https://mugen-org.github.io/.

https://mugen-org.github.io/
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