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Abstract. A key algorithm for understanding the world is material seg-
mentation, which assigns a label (metal, glass, etc.) to each pixel. We find
that a model trained on existing data underperforms in some settings and
propose to address this with a large-scale dataset of 3.2 million dense seg-
ments on 44,560 indoor and outdoor images, which is 23x more segments
than existing data. Our data covers a more diverse set of scenes, objects,
viewpoints and materials, and contains a more fair distribution of skin
types. We show that a model trained on our data outperforms a state-of-
the-art model across datasets and viewpoints. We propose a large-scale
scene parsing benchmark and baseline of 0.729 per-pixel accuracy, 0.585
mean class accuracy and 0.420 mean IoU across 46 materials.

1 Introduction

A goal of computer vision is to develop the cognitive ability to plan manipulation
of something and predict how it will respond to stimuli. This is informed by the
properties of what something is made of. Those properties can be discovered by
segmenting a photograph into recognized materials. Material recognition can be
understood through the science of material perception starting with Adelson’s [1]
proposal to divide the world into things (countable objects) and stuff (materials).
Adelson argued stuff is important because of its ubiquity in everyday life. Ritchie
et al. [25] describe material perception in two parts. The first part is categorical
recognition of what something is made of. The second part is recognizing material
properties (e.g., glossy, flexible, sound absorbent, sticky) which tells us how
something will feel or how it will interact with other objects. While Schwartz et
al. [30] proposed to recognize properties from local image patches we follow Bell
et al. [3] who segmented images by recognizing material classes.

Deep learning-based material recognition builds on some key developments.
Sharan et al. [31] showed that people can recognize 10 kinds of materials in the
wild [32] with 85% accuracy. Bell et al. [2], following [27], built an efficient an-
notation tool to create a large-scale material database from crowds and Internet
photos. Next, Bell et al. [3] introduced large-scale training data and a deep learn-
ing approach leading to material segmentation as a building-block for haptics,
material assignment, robotic navigation, acoustic simulation and context-aware
mixed reality [11,23,29,43,4,8]. Xiao et al. [37] introduced a multi-task scene
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Fig. 1. Densely annotated materials. Our annotations are full-scene, highly de-
tailed and enable prediction of 46 kinds of materials.

parsing model which endows a photograph with a rich prediction of scene type,
objects, object parts, materials and textures.

Despite widespread adoption of material segmentation, a lack of large-scale
data means evaluation rests on the only large-scale segmentation dataset, Open-
Surfaces [2]. We find there is room for improvement and propose the Dense Ma-
terial Segmentation dataset (DMS) which has 3.2 million segments across 44k
densely annotated images, and show empirically that our data leads to models
which further close the gap between computer vision and human perception.

There are goals to consider for a material dataset. First, we need a general-
purpose set of material labels. We want to mimic human perception so we choose
distinguishable materials even if they are of the same type. For example, we sep-
arate clear from opaque plastic rather than have a single label for all plastics. We
define fine-grained labels which have useful properties, physical or otherwise. For
example, a painted whiteboard surface has utility not found in a paint label—it
is appropriate for writing, cleaning and virtual content display. These functional
properties come from how the material is applied rather than its physical struc-
ture. Ultimately we choose a set of 52 labels based on prior work and useful
materials we found in photographs (details in Section 3.1).

Following [30], we also want indoor and outdoor scenes. Counter-intuitively,
this could be unnecessary. Material is recognizable regardless of where it occurs in
the world, and deep learning methods aim to create a model which generalizes to
unseen cases. Thus, an indoor residential dataset [2] could be sufficient. We find
this is not the case. In Section 4.1 we show that a model trained on [2] performs
worse on outdoor scenes. This is a key finding which impacts all algorithms
which use [2] for training. We also show that a model trained on our dataset is
consistent across indoor and outdoor scenes.

We want our database to support many scene parsing tasks so we need broad
coverage of objects and scene attributes (which include activities, e.g., eating).
In Section 3.2 we show that we achieve better coverage compared to [2].

We propose nine kinds of photographic types which distinguish different view-
points and circumstances. Our motivation was to quantitatively evaluate cases
where we had observed poor performance. This data can reveal new insights on
how a model performs. We find that a state-of-the-art model underperforms in
some settings whereas a model fit to our data performs well on all nine types.

Our final goal is to have diversity in skin types. Skin is associated with race
and ethnicity so it is crucial to have fair representation across different types
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Table 1. Large-scale datasets. We propose a dataset with 23x more segments, more
classes and 2.3x more images as the largest segment-annotated dataset.

Dataset Annotation Classes Images Scenes

OpenSurfaces [2] 137k segments 37 19,447 Indoor residential
Materials in Context [3] 3M points 23 436,749 Home interior & exterior
Local Materials [30] 9.4k segments 16 5,845 Indoor & outdoor
DMS (Ours) 3.2M segments 52 44,560 Indoor & outdoor

of skin. We compare our skin type data to OpenSurfaces [2] in Section 3.2 and
show our data has practical benefits for training in Section 4.2.

The paper is organized as follows. In Section 2 we review datasets. In Sec-
tion 3 we describe how we collected data to achieve our goals. In Section 4 we
compare our dataset to state-of-the-art data and a state-of-the-art model, study
the impact of skin types on training, propose a material segmentation bench-
mark, and demonstrate material segmentation on real world photos.

In summary, our contributions are:

– We introduce DMS, a large-scale densely-annotated material segmentation
dataset and show it is diverse with extensive analysis (Section 3).

– We advance fairness toward skin types in material datasets (Section 3.2).

– We introduce photographic types which reveal new insights on prior work
and show that a model fit to our data performs better across datasets and
viewpoints compared to the state-of-the-art (Section 4.1).

– We propose a new large-scale indoor and outdoor material segmentation
benchmark of 46 materials and present a baseline result (Section 4.3).

2 Related Work

Material Segmentation Datasets. The largest dataset is OpenSurfaces [2]
which collected richly annotated polygons of residential indoor surfaces on 19k
images, including 37 kinds of materials. The largest material recognition dataset
is the Materials in Context Database [3] which is 3M point annotations of 23
kinds of materials across 437k images. This data enables material segmentation
by CNN and a dense CRF tuned on OpenSurfaces segments. The Local Materials
Database [30] collected segmentations, with the goal of studying materials using
only local patches, of 16 kinds of materials across 5,845 images sourced from
existing datasets. The Light-Field Material Dataset [35] is 1,200 4D indoor and
outdoor images of 12 kinds of materials. The Multi-Illumination dataset [21]
captured 1,016 indoor scenes under 25 lighting conditions and annotated the
images with 35 kinds of materials. Table 1 lists the largest datasets.

Materials have appeared in purpose-built datasets. The Ground Terrain in
Outdoor Scenes (GTOS) database [39] and GTOS-mobile [38] are 30k images of
hundreds of instances of 40 kinds of ground materials and 81 videos of 31 kinds of
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ground materials, respectively. The Materials in Paintings dataset [34] is bound-
ing box annotations and extracted segmentations on 19k paintings of 15 kinds
of materials depicted by artists, partly distinguished into 50 fine-grained cate-
gories. COCO-Stuff [6] is segmentations of 91 kinds of stuff on 164k COCO [18]
images. While this is a source of material data, it is not a general-purpose ma-
terial dataset because important surfaces (e.g., objects labeled in COCO) are
not assigned material labels. ClearGrasp [28] is a dataset of 50k synthetic and
286 real RGB-D images of glass objects built for robotic manipulation of trans-
parent objects. The Glass Detection Dataset [20] is 3,916 indoor and outdoor
images of segmented glass surfaces. The Mirror Segmentation Dataset [41] is
4,018 images with segmented mirror surfaces across indoor and outdoor scenes.
Fashionpedia [15] is a database of segmented clothing images of which 10k are
annotated with fashion attributes which include fine-grained clothing materials.
Figaro [33] is 840 images of people with segmented hair distinguished into 7
kinds of hairstyles.

Categorical Material Names. Bell et al. [2] created a set of names by ask-
ing annotators to enter free-form labels which were merged into a list of material
names. This approach is based on the appearance of surfaces as perceived by the
annotators. Schwartz et al. [30] created a three-level hierarchy of material names
where materials are organized by their physical properties. Some categories were
added for materials which could not be placed in the hierarchy. In practice, both
approaches resulted in a similar set of entry-level [22] names which also closely
agree with prior studies of categorical materials in Internet images [32,14].

3 Data Collection

DMS is a set of dense polygon annotations of 52 material classes across 44,560
images, which are a subset of OpenImages [17]. We followed a four step process.
First, a set of labels was defined. Next, a large set of images was studied by
people and algorithms to select images for annotation. Next, the selected images
were fully segmented and labeled by a human annotator. Finally, each segmented
image was relabeled by multiple people and a final label map was created by
fusing all labels. The last three steps were followed multiple times.

3.1 Material Labels

We choose to predefine a label set which is the approach of COCO-Stuff [6]. This
encourages annotators to create consistent labels suitable for machine learning.
We instructed annotators to assign not on list to recognized materials which do
not fit in any category and I cannot tell to unknown and unrecognizable surfaces
(e.g., watermarks and under-/over-saturated pixels).

We defined a label set based on appearance, which is the approach of Open-
Surfaces [2]. A label can represent a solid substance (e.g., wood), a distinctive
arrangement of substances (e.g., brickwork), a liquid (e.g., water) or a useful non-
material (e.g., sky). We used 35 labels from OpenSurfaces and asphalt from [30].
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Fig. 2. Image diversity. We plot number of categories (y-axis) vs. occurrence in
images (log-scale x-axis) of Places365 scene type (a), COCO objects (b), and SUN
attributes (c). Our dataset (blue) is larger, more diverse and more balanced across
categories (higher slope) compared to the largest segmentation dataset (orange).

We added 2 fine-grained people and animal categories (bone and animal skin).
We introduced 3 labels for workplaces (ceiling tile, whiteboard and fiberglass
wool), 6 for indoor scenes (artwork , clutter , non-water liquid , soap, pearl and
gemstone) and 4 for outdoors (sand , snow , ice and tree wood). Artwork identifies
an imitative surface which is photographic or fine art—affording further analysis
by Materials In Paintings [34]. Clutter is a region of visually indistinguishable
manufactured stuff (typically a mixture of metal, plastic and paper) which occurs
in trash piles. Lastly, we defined a label called engineered stone for artificial
surfaces which imitate stone, which includes untextured and laminated solid
surfaces. See Figure 4 for an example of each label.

3.2 Image Selection

Bell et al. [3] found that a balanced set of material labels can achieve nearly
the same performance as a 9x larger imbalanced set. Since we collect dense
annotations we cannot directly balance classes. Instead, we searched 191k images
for rare materials and assumed common materials would co-occur. Furthermore,
we ran Detectron [12] to detect COCO [18] objects, and Places365 [45] to classify
scenes and recognize SUN [24] attributes. EXIF information was used to infer
country. These detections were used to select images of underrepresented scenes,
objects and countries. Figure 2 compares the diversity of the 45k images in
DMS to the 19k images in OpenSurfaces by a plot of the number of categories,
y, which have at least x occurrences. Occurrences of scene type, object and SUN
attribute are plotted. Note that the x-axis is logarithmic scale. We find our
dataset is more diverse having more classes present in greater amounts (more
than can be explained by the 2.24x difference in image count).

We balance the distribution of skin appearance in DMS so that algorithms
trained with our data perform well on all kinds of skin [5]. We use Fitzpatrick [10]
skin type to categorize skin into 3 groups, inspired by an approach used by [40].
We ran the DLIB [16] face detector and labeled a subset of the faces. Our 157
manual annotations were used to calibrate a preexisting face attribute predictor
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Table 2. Skin types. We report estimated occurrences. Our dataset has 12x more
occurrences of the smallest group and 4.8x more fair representation by ratio.

OpenSurfaces DMS (Ours)

Type I-II (light) 2,332 4,535
Type III-IV (medium) 3,889 9,776
Type V-VI (dark) 375 5,899

Ratio of largest to smallest group 10.37 : 1 2.16 : 1

Table 3. Photographic types. Our data contains indoor views (top), outdoor views
(middle), and close-up and unusual views (bottom).

Photographic Type Images

An area with visible enclosure 16,013
A collection of indoor things 6,064
A tightly cropped indoor thing 2,634

A ground-level view of reachable outdoor things 3,127
A tightly cropped outdoor thing 1,196
Distant unreachable outdoor things 971

A real surface without context 847
Not a real photo 805
An obstructed or distorted view 204

(trained on a different dataset) which was then used to predict skin types for the
rest of DMS. We found that the ratio of the largest group to the smallest was
9.4. Next, we selected images which would increase the most underrepresented
skin type group and found this reduced the ratio to 2.2. We calibrated the same
detector for OpenSurfaces faces and measured its ratio as 10.4. According to
the findings of [5], we expect skin classifiers trained on OpenSurfaces would
underperform on dark skin. Table 2 shows the distribution of skin types.

We used Places365 scene type detection to select outdoor images but we
found this did not lead to outdoor materials. We took two steps to address
this. First, we annotated our images with one of nine photographic types which
distinguish outdoor from indoor from unreal images. Table 3 shows the annotated
types. Next, we used these labels to select outdoor scenes and underrepresented
viewpoints. This was effective—growing the dataset by 17% more than doubled
9 kinds of outdoor materials: ice (3x), sand (4.4x), sky (8x), snow (9.5x), soil
(3x), natural stone (2.4x), water (2.5x), tree wood (2.3x) and asphalt (9.2x).

3.3 Segmentation and Instances

Images were given to annotators for polygon segmentation of the entire image.
We instructed annotators to segment parts larger than a fingertip, ignore gaps
smaller than a finger, and to follow material boundaries tightly while ignoring
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Table 4. Annotator agreement rates. High rates indicate consistent label assign-
ment. Low rates indicate disagreement, confusion or unstructured error.

Hair 0.95 Glass 0.80 Wood 0.67 Non-clear plastic 0.60
Skin 0.93 Paper 0.76 Tree wood 0.66 Leather 0.53
Foliage 0.86 Carpet/rug 0.73 Tile 0.66 Cardboard 0.53
Sky 0.86 Nat. stone 0.72 Metal 0.65 Artwork 0.51
Food 0.84 Ceramic 0.70 Paint/plaster 0.62 Clear plastic 0.50
Fabric/cloth 0.82 Mirror 0.68 Rubber 0.61 Concrete 0.45

geometry and shadow boundaries. Following [2], annotators were instructed to
segment glass and mirror surfaces rather than the covered or reflected surfaces.
Unreal elements such as borders and watermarks were segmented separately.
Images with objectionable content (e.g., violence) were not annotated.

Annotators segmented resized images, with median longest edge of 1024 pix-
els, creating over 3.2 million segments (counting only those larger than 100 pix-
els) with a mean of 72 segments per image. The created segments are detailed—
wires, jewelry, teeth, eyebrows, shoe soles, wheel rims, door hinges, clasps, but-
tons and latches are some of the small and thin materials segmented separately.
See Figure 1 and Figure 3 for examples of detailed segmentations.

We defined a material instance as materials of the same type from the same
manufacturing source. For example a wooden cabinet should be segmented sep-
arately from a wood floor but the planks making up a single-source floor would
be one instance. DMS is the first large-scale densely segmented dataset to have
detailed material instances.

3.4 Labeling

The annotator who segmented an image also assigned labels based on their judg-
ment and our instruction. We found that surfaces coated with another material
or colored by absorbing ink required clarification. Appearance-changing coatings
were labeled paint while clear or appearance-enhancing coatings (e.g., varnish,
cosmetics, sheer hosiery) were labeled as the underlying material. Small amounts
of ink (e.g., printed text) are disregarded. Some surfaces imitate the appearance
of other materials (e.g., laminate). High-quality imitations were labeled as the
imitated material and low-quality imitations as the real material.

Our instructions were refined in each iteration and incorrect labels from early
iterations were corrected. Some cases needed special instruction. We instructed
annotators to label electronic displays as glass and vinyl projection screens as
not on list . Uncovered artwork or photographs were to be labeled artwork while
glass-covered art should be labeled glass. In ambiguous cases, we assume framed
artwork has a glass cover. Sky includes day sky, night sky and aerial phenomenon
(e.g., clouds, stars, moon, and sun).

We collected more opinions by presenting a segmentation, after removing
labels, to a different annotator who relabeled the segments. The relabeling an-
notator could fix bad segments by adjusting polygons or assign special labels to
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Fig. 3. Fused labels. We show segmentation quality and variety of scenes, activities
and materials (left to right: building exterior, workplace, road, swimming pool, shop,
dining room). See Table 5 for color legend. Black pixels are unlabeled (no consensus).

Table 5. Material occurrence in images. We report the number of images in which
a label occurs. The colors are used for visualizations.

Paint/plaster 39,323 Sky 3,306 Chalkboard 668
Fabric/cloth 31,489 Mirror 3,242 Asphalt 474
Non-clear plas 30,506 Cardboard 3,150 Fire 412
Metal 30,504 Food 2,908 Gemstone 369
Glass 28,934 Concrete 2,853 Sponge 326
Wood 24,248 Ceiling tile 2,524 Eng. stone 299
Paper 20,763 Natural stone 2,076 Liquid 294
Skin 18,524 Water 2,063 Pearl 282
Hair 17,766 Tree wood 2,026 Cork 273
Foliage 11,384 Wicker 1,895 Sand 272
Tile 10,173 Soil/mud 1,855 Snow 191
Carpet/rug 9,516 Pol. stone 1,831 Soap 154
Ceramic 8,314 Brickwork 1,654 Clutter 128
Rubber 7,811 Fur 1,567 Ice 96
Leather 7,354 Whiteboard 1,171 Styrofoam 88
Clear plastic 6,431 Wax 1,107 Fiberglass wool 33
Artwork 4,344 Wallpaper 1,076
Bone/horn 3,751 Animal skin 1,007

indicate a segment does not follow boundaries or is made of multiple material
types. We collected 98,526 opinions across 44,560 images consisting of 8.2 million
segment labels (counting only segments larger than 100 pixels).

We studied label agreement by counting occurrences of a segment label and
matching pixel-wise dominant label by a different annotator. We found an agree-
ment rate of 0.675. In cases of agreement, 8.9% were unrecognizable (I cannot
tell) and 0.6% were not on list . Table 4 shows the agreement rate for classes
larger than the median number of segments per class. Among the largest classes
the most agreed-upon labels are hair , skin, foliage, sky , and food . We only ana-
lyze the largest classes since unstructured error (e.g., misclicks) can overwhelm
the statistics of small classes, which are up to 2,720 times smaller.

3.5 Label Fusion

Each annotator’s segments are rendered to create a label map. Label maps were
inspected for correctness and we fixed incorrect labels in 1,803 images. Next,
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Fig. 4. Material labels. For each label we show a cut-out example.

we create a single fused label map for each image. First, we combined label
maps pixel-wise by taking the strict majority label. Next, we overlaid manual
corrections and reassigned non-semantic labels (e.g., I cannot tell) to no label .
The fused maps have a mean labeled area fraction of 0.784. For comparison, we
created fused label maps for OpenSurfaces and found its density is 0.210. DMS is
2.3x larger and 3.7x denser, which is 8.4x more labeled area. Compared to the 3M
points in MINC [3], DMS has 3.2M fused segments which carry more information
about shape, boundary and co-occurrences. While MINC annotations span 10x
more images, point annotations cannot evaluate segmentation boundaries for
scene parsing tasks. Example fused maps and class occurrences are shown in
Figure 3 and Table 5. The smallest class appears in 33 images whereas the
largest class, paint , appears in 39,323 images, which is 88% of the images.
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4 Experiments

First, we investigate the impact of our data on training deep learning models with
a cross-dataset comparison (Section 4.1). Then, we compare the impact of skin
type distributions on fairness of skin recognition (Section 4.2). Next, we estab-
lish a material segmentation benchmark for 46 kinds of materials (Section 4.3).
Finally, we show predictions on real world images (Section 4.4).

Splits. We created train, validation and test splits for our data by assigning
images according to material occurrence. The smallest classes are assigned a
ratio of 1 : 1 : 1, which increases to 2.5 : 1 : 1 for the largest. An image assignment
impacts the ratio of multiple classes so small classes are assigned first. There are
24,255 training images, 10,139 validation images and 10,166 test images.

4.1 Cross-Dataset Comparison

Does training with our data lead to a better model? This experiment compares
a model fit to our data against two baselines fit to OpenSurfaces data—the
strongest published model [37] and a model with the same architecture as ours.
There are two sources of data. The first is OpenSurfaces data with the splits
and 25 labels proposed by [37]. The second is comparable DMS training and
validation data ([37] does not define a test split) created by translating our la-
bels to match [37]. The evaluation set, which we call Avg-Val, is made of both
parts—the validation sets of OpenSurfaces and DMS, called OS-Val and DMS-
Val, respectively—weighted equally. For evaluation of our data we fit models to
DMS training data and choose the model that performs best on DMS-Val. This
model, which we call DMS-25, is a ResNet-50 architecture [13] with dilated con-
volutions [7,42] as the encoder, and Pyramid Pooling Module from PSPNet [44]
as the decoder. The first baseline (Table 6, row 2) is UPerNet [37], a multitask
scene parsing model which uses cross-domain knowledge to boost material seg-
mentation performance. The second baseline (Table 6, row 3), called OS-25, has
the same architecture as DMS-25 but is fit to OpenSurfaces training data. Ta-
ble 6 shows the results. We report per-pixel accuracy (Acc), mean class accuracy
(mAcc), mean intersection-over-union (mIoU) and ∆, the absolute difference in
a metric across DMS-Val and OS-Val. A low ∆ indicates a model is more con-
sistent across datasets. We find that fitting a model to DMS training data leads
to higher performance and lower ∆ on all metrics. We also report the metrics on
each validation set and find that both baselines underperform on DMS-Val. We
find that DMS-25 performs 0.01 lower on OS-Val mAcc compared to a model
trained on OpenSurfaces data. This may be due to differences in annotation
and image variety. We use our photographic type labels to investigate the larger
performance gaps on DMS-Val.

Why do models trained with OpenSurfaces underperform on our validation
images? In Table 7 we report per-pixel accuracy of DMS-25, UPerNet, and OS-
25 across nine categories. We find that DMS-25 performs consistently across
categories with the lowest performing category (unreal images) 0.071 below the
highest performing category (images of enclosed areas). UPerNet shows lower
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Table 6. Training data evaluation. We compare segmentation of 25 materials with
our training data (row 1) to OpenSurfaces data with two kinds of models (rows 2 and
3). Avg-Val is the equally-weighted validation sets of each dataset, DMS-Val and OS-
Val. ∆ is the difference in a metric across datasets. A convnet fit to our data achieves
higher performance and is more consistent across datasets.

Training data Model Metric Avg-Val ↑ ∆ ↓ DMS-Val ↑ OS-Val ↑

Acc 0.777 0.047 0.753 0.800
DMS (Ours) DMS-25 mAcc 0.689 0.006 0.686 0.692

mIoU 0.500 0.014 0.507 0.493

Acc 0.682 0.310 0.527 0.837
OpenSurfaces [2] UPerNet [37] mAcc 0.486 0.274 0.349 0.623

mIoU 0.379 0.298 0.230 0.528

Acc 0.705 0.231 0.589 0.820
OpenSurfaces [2] OS-25 mAcc 0.606 0.193 0.509 0.702

mIoU 0.416 0.199 0.316 0.515

performance across all categories with a drop of 0.426 from images of enclosed
areas to images of distant outdoor things. And OS-25 shows similar performance
with a drop of 0.407. We observe that both UPerNet and OS-25 have low per-
formance on outdoor images and images without any context. This study shows
that photographic types can improve our understanding of how material seg-
mentation models perform in different settings. And, these results justify our
decision to collect outdoor images and images of different photographic types.

4.2 Recognition of Different Skin Types

Models trained on face datasets composed of unbalanced skin types exhibit clas-
sification disparities [5]. Does this impact skin recognition? Without any cor-
rections for skin type imbalance we find that DMS-25 has a 3% accuracy gap
among different skin types on DMS-val (Type I-II: 0.933, Type III-IV: 0.924,
Type V-VI: 0.903) while OS-25 has a larger gap of 13.3% (Type I-II: 0.627,
Type III-IV: 0.571, Type V-VI: 0.494). This confirms that skin type imbalance
impacts skin recognition. Our contribution lies in providing more data for all skin
types (Table 2), which makes it easier for practitioners to create fair models.

4.3 A Material Segmentation Benchmark

It is common practice to select large categories and combine smaller ones (our
smallest occurs in only 12 training images) for a benchmark. Yet, we cannot know
a priori how much training data is sufficient to learn a category. We choose to
be guided by the validation data. We fit many models to all 52 categories then
inspect the results to determine which categories can be reliably learned. We
select ResNet50 [13] with dilated convolutions [7,42] as the encoder, and Pyramid



12 P. Upchurch & R. Niu

Table 7. Performance analysis with photographic types. Amodel fit to our data,
DMS-25 (Table 6, row 1), performs well on all photographic types whereas two models
fit to OpenSurfaces, UPerNet and OS-25 (Table 6, rows 2-3) have low performance
outdoors (middle) and on surfaces without any context (row 7).

Photographic Type Per-Pixel Accuracy

DMS-25 (Ours) UPerNet [37] OS-25

An area with visible enclosure 0.756 0.615 0.632
A collection of indoor things 0.752 0.546 0.622
A tightly cropped indoor thing 0.710 0.441 0.561

A view of reachable outdoor things 0.750 0.265 0.388
A tightly cropped outdoor thing 0.731 0.221 0.359
Distant unreachable outdoor things 0.736 0.189 0.225

A real surface without context 0.691 0.222 0.348
Not a real photo 0.685 0.528 0.551
An obstructed or distorted view 0.729 0.370 0.496

Pooling Module from PSPNet [44] as the decoder. We choose this architecture
because it has been shown to be effective for scene parsing [44,47]. Our best
model, which we call DMS-52, predicts 52 materials with per-pixel accuracy
0.735, mean class accuracy 0.535 and mIoU 0.392 on DMS-val.

We inspected a few strongest DMS-52 fitted models and found that 6 cat-
egories consistently stood out as underperforming—having 0 accuracy in some
cases and, at best, not much higher than chance. Those categories are non-water
liquid , fiberglass, sponge, pearl , soap and styrofoam, which occur in 129, 12, 149,
129, 58 and 33 training images, respectively. Guided by this discovery we select
the other 46 material labels for a benchmark.

We train a model, called DMS-46, to predict the selected categories, with
the same architecture as DMS-52. We use a batch size of 64 and stochastic gra-
dient descent optimizer with 1e-3 base learning rate and 1e-4 weight decay. We
use ImageNet pretraining [46,47] to initialize the encoder weights, and scale the
learning rate for the encoder by 0.25. We update the learning rate with a cosine
annealing schedule with warm restart [19] every 30 epochs for 60 epochs. Be-
cause the classes are imbalanced we use weighted symmetric cross entropy [36],
computed across DMS training images, as the loss function, which gives more
weight to classes with fewer ground truth pixels. We apply stochastic transfor-
mations for data augmentation (scale, horizontal and vertical flips, color jitter,
Gaussian noise, Gaussian blur, rotation and crop), scale inputs into [0, 1], and
normalize with mean = [0.485, 0.456, 0.406] and std = [0.229, 0.224, 0.225] from
ImageNet [9]. The training tensor has height and width of 512.

DMS-46 predicts 46 materials with per-pixel accuracy 0.731/0.729, mean
class accuracy 0.598/0.585 and mIoU 0.435/0.420 on DMS-val/DMS-test re-
spectively. We report the test set per-class accuracy and IoU in Table 8. We find
that sky , fur , foliage, skin and hair have the highest recognition rates, similar to
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Table 8. Test set results. We report metrics for our model, DMS-46. 17 materials,
in italics, are new—not predicted by prior general-purpose models [3,37,30].

Category Acc IoU Category Acc IoU Category Acc IoU

Sky 0.962 0.892 Chalkboard 0.712 0.548 Artwork 0.454 0.301
Fur 0.910 0.707 Paint/plaster 0.694 0.632 Mirror 0.452 0.278
Foliage 0.902 0.761 Wicker 0.674 0.460 Sand 0.444 0.340
Skin 0.886 0.640 Natural stone 0.665 0.436 Ice 0.440 0.362
Hair 0.881 0.673 Glass 0.653 0.483 Tree wood 0.428 0.261
Food 0.868 0.668 Asphalt 0.628 0.442 Pol. stone 0.379 0.236
Ceiling tile 0.867 0.611 Leather 0.615 0.373 Clear plastic 0.360 0.222
Water 0.866 0.712 Snow 0.610 0.465 Rubber 0.255 0.163
Carpet/rug 0.849 0.592 Concrete 0.603 0.304 Clutter 0.182 0.152
Whiteboard 0.838 0.506 Metal 0.575 0.303 Fire 0.176 0.147
Fabric/cloth 0.801 0.692 Wax 0.573 0.371 Gemstone 0.116 0.096
Wood 0.797 0.635 Cardboard 0.570 0.363 Eng. stone 0.088 0.071
Ceramic 0.757 0.427 Wallpaper 0.544 0.329 Cork 0.082 0.066
Brickwork 0.746 0.491 Non-clear plastic 0.519 0.321 Bone/horn 0.074 0.070
Paper 0.729 0.508 Soil/mud 0.511 0.332
Tile 0.722 0.550 Animal skin 0.472 0.308

the findings of [3]. 17 materials do not appear in any prior large-scale material
benchmarks. Among these new materials we report high recognition rates for
ceiling tile, whiteboard and chalkboard . To our knowledge, DMS-46 is the first
material segmentation model evaluated on large-scale dense segmentations and
predicts more classes than any general-purpose model.

4.4 Real-World Examples

In Figure 5 we demonstrate DMS-46 on indoor and outdoor photos from daily
life. Our model recognizes and localizes food on ceramic plates, workplace ma-
terials (whiteboard and ceiling tile), ground cover materials (soil , stone, foliage
and snow), unprocessed tree wood , and fire on a wax candle.

A Failure Case. The last image is a failure case where our model is con-
fused by decorative tile artwork. We also see opportunities for further improving
boundaries and localizing small surfaces.

5 Discussion and Conclusion

Dense Annotation. Prior works [2,3,30] instruct annotators to locate and seg-
ment regions made of a given material. Our approach is different. We instruct
annotators to segment and label the entire image. This approach collects different
data because annotators address all surfaces—not just those which are readily
recognized. We hypothesize this creates a more difficult dataset, and propose this
approach is necessary for evaluation of scene parsing, which predicts all pixels.
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Fig. 5. Real-world examples. Our model, DMS-46, predicts 46 kinds of indoor and
outdoor materials. See Table 5 for color legend.

Real vs. Synthetic. Synthetic data has achieved high levels of realism (e.g.,
Hypersim [26]) and may be a valuable generator of training data. We opted to
label real photos because models trained on synthetic data need a real evaluation
dataset to confirm the domain gap from synthetic to real has been bridged.

Privacy. Material predictions can be personal. Knowing a limb is not made
of skin reveals a prosthetic. The amount of body hair reveals one aspect of
appearance. Precious materials in a home reveals socio-economic status. Clothing
material indicates degree of nakedness. Care is needed if material segmentation
is tied to identity. Limiting predicted materials to only those needed by an
application or separating personal materials from identity are two ways, among
many possible ways, to strengthen privacy and protect personal information.

6 Conclusion

We present the first large-scale densely-annotated material segmentation dataset
which can train or evaluate indoor and outdoor scene parsing models. 1 We pro-
pose a benchmark on 46 kinds of materials. Our data can be a foundation for
algorithms which utilize material type, make use of physical properties for simu-
lations or functional properties for planning and human-computer interactions.
We look forward to expanding the number of materials, finding new methods to
reach even better full-scene material segmentation, and combining the point-wise
annotations of MINC [3] with our data in future work.

Acknowledgements.We thank Allison Vanderby, Hillary Strickland, Laura
Snarr, Mya Exum, Subhash Sudan, Sneha Deshpande, and Doris Guo for their
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1 Our data is available at https://github.com/apple/ml-dms-dataset.
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