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Abstract. Optical flow estimation in omnidirectional videos faces two
significant issues: the lack of benchmark datasets and the challenge of
adapting perspective video-based methods to accommodate the omni-
directional nature. This paper proposes the first perceptually natural-
synthetic omnidirectional benchmark dataset with a 360° field of view,
FLOW360, with 40 different videos and 4,000 video frames. We con-
duct comprehensive characteristic analysis and comparisons between our
dataset and existing optical flow datasets, which manifest perceptual re-
alism, uniqueness, and diversity. To accommodate the omnidirectional
nature, we present a novel Siamese representation Learning framework
for Omnidirectional Flow (SLOF). We train our network in a contrastive
manner with a hybrid loss function that combines contrastive loss and
optical flow loss. Extensive experiments verify the proposed framework’s
effectiveness and show up to 40% performance improvement over the
state-of-the-art approaches. Our FLOW360 dataset and code are avail-
able at https://siamlof.github.io/.
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1 Introduction

Optical flow estimation, as a fundamental problem in computer vision, has
been studied over decades by early works [14,34] dated back to 80s. Before the
era of modern deep learning, traditional optical flow estimation methods relied
on hand-crafted features based optimizations [19,5,17], energy-based optimiza-
tions [33,14,56] and variational approaches [15,28,66]. Although deep learning-
based approaches [11,61,70,59,39,35] have shown great advantages over these
classical approaches, most of them are specially tailored for perspective videos.
The availability of perspective optical flow datasets [16,29,30,48,6] heavily sup-
ports the advancement of these modern deep learning-based approaches. The
optical flow datasets are difficult to obtain and requires the generation of natu-
ralistic synthetic dataset like Sintel [16]. As these datasets mark the foundation
for optical flow estimation research, the availability of reliable omnidirectional
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Fig. 1. Siamese Representation Learning for Omnidirectional Flow (SLOF).
Pairs of frame sequence (w/ and w/o random rotation) are passed as inputs to encoder
/ (RAFT as a flow head backbone and a standard convolutional projector layer). A
predictor layer h is an MLP layer. The entire framework is trained by fusing the pre-
training and fine-tuning stage to combine the similarity and flow-loss in a single stage.
The model maximizes the similarity between latent representations of flow information
from two streams and minimizes the flow loss. Training Strategy (right): Here two
different arrows(left, right) represent siamese streams or input pathways to our model.
vl and v2 (either of the stream is subjected to rotational augmentation) are similar
strategies achieving overall better performance.

datasets is equally important to advance the omnidirectional flow estimation re-
search. The need for the datasets brings up the first challenge: there is no such re-
liable (perceptually natural and complex) 360° or omnidirectional video dataset
in the literature collected for omnidirectional optical flow estimation. Another
challenge of omnidirectional optical flow estimation is that current perspective
video-based deep networks fail to accommodate the nature of 360° videos. These
perspective optical flow estimation methods inevitably require fine-tuning due
to the presence of radial distortion [1] on 360° videos. This fine-tuning task
is effort-intensive and requires several transformation techniques to adapt the
distortion [58,23]. An intuitive solution is to fine-tune perspective-based deep
networks under omnidirectional supervised data. However, this brute-force mi-
gration of perspective-based networks often requires enormous supervision and
still leads to significant performance degradation [9].

We address the first challenge of reliable benchmark dataset shortage by
proposing a new dataset named FLOW360. To the best of our knowledge, this is
the first perceptually natural-synthetic 360° video dataset collected for omnidi-
rectional flow estimation. Currently, existing omnidirectional datasets face two
significant issues i.e., lack of full 360° FOV (field of view) and lack of perceptual
realism. Specifically, OmniFlow[52] dataset only has 180° FOV failing to address
the omnidirectional nature, while the dataset proposed in OmniFlowNet[3] lacks
perceptual realism in scene and motion. Meanwhile, perspective optical flow
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datasets such as [6,16,29] have facilitated researchers in investigating perspec-
tive optical flow estimation methods [35,22,39,70,61], where the availability of
such omnidirectional videos dataset is essential to advance this particular field. It
is worth noting that FLOW360 dataset can be used in various other areas such
as continuous flow estimation in 3-frame settings with forward and backward
consistency [13,16,38], depth [71,25] and normal map estimation [65].

The accommodation to the omnidirectional nature generally requires modi-
fication of convolution layers and further refinements on the target dataset due
to the presence of radial distortions [9], which is caused by projecting 360°
videos (spherical) to an equirectangular plane. Existing works design various
convolution layers to address the distortion problem, such as spherical convo-
lution [58,11,20,57], spectral convolution [19,24] and tangent convolution [23].
Although these methods can achieve better performance than classical CNNs,
they require immense effort with layer-wise architecture design, which is imprac-
tical for high-demanding deployment in the real-world setting.

Instead of adding new convolution layers, we design a novel SLOF (Siamese
representation Learning for Omnidirectional Flow) framework (Fig. 1), which
leverages the rotation-invariant property of omnidirectional videos to address
the radial distortion problem. The term rotation-invariant here implies that 360°
videos are rotated in a random projection such that the reverse rotation of such
projection is equal to the original projection. This rotation-invariant property
ensures that omnidirectional videos can be projected to a planar representation
with infinite projections by rotating the spherical videos on three different axis
(X,Y, Z), namely “pitch”, “roll” and “yaw” operations preserving overall infor-
mation. Specifically, we design a siamese representation learning framework for
learning omnidirectional flow from a pair of consecutive frames and their rotated
counterparts, assuming that the representations of these two cases are similar
enough to generate nearly identical optical flow in the spherical domain. Besides,
we design and compare different combinations of rotational augmentation and
derive guidelines for selecting the most effective augmentation scheme.

To summarize, we make three major contributions in this paper: (i) we in-
troduce FLOW360, a new optical flow dataset for omnidirectional videos, to fill
the dataset’s need to advance the omnidirectional flow estimation field. (ii) We
propose SLOF, a novel framework for optical flow estimation in omnidirectional
videos, to mitigate the cumbersome framework adjustments for omnidirectional
flow estimation. (iii) We demonstrate a new distortion-aware error measure for
performance analysis that incorporates the relative error measure based on dis-
tortion. Finally, we compare our method with existing omnidirectional flow es-
timation techniques via kernel transformation [58] to address radial distortions.
The FLOW360 dataset, the SLOF framework, and our experimental results pro-
vide a solid foundation for future exploration in this important field.
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2 Related Work

Optical Flow Datasets. Perspective datasets such as [7,6,45,50,42,27] com-
prise synthetic image sequences along with synthetic and hand-crafted optical
flow. However, these datasets fall short in terms of perceptual realism and com-
plexities. Even though several optical flow datasets have been published recently
in [47,29,30,48], they are primarily used in automotive driving scenarios. The
other relevant dataset in the literature was Sintel [16], which provided a bridge
to contemporary optical flow estimation and synthetic datasets that can be used
in real-world situations.

All datasets, as mentioned earlier, are introduced for perspective videos thus
cannot be used for omnidirectional flow estimation. So to address this problem,
LiteFlowNet360 [9] on omnidirectional flow estimation was released to augment
the Sintel dataset by introducing distortion artifacts for the domain adaptation
task. Nevertheless, these augmented datasets are discontinuous around the edges
and violate the 360° nature of omnidirectional videos. The closest datasets to
ours are OmniFlow [52] and OmniFlowNet [3]. OmniFlow introduced a syn-
thetic 180° FOV dataset, which is limited to indoor scenes and lacks full 360°
FOV. Similarly, OmniFlowNet introduced a full 360° FOV dataset. However,
both datasets lack complexities and evidence for perceptual realism. We show
a detailed comparison of FLOW360, OmniFlow, and OmniFlowNet in Fig. 5.
Compared to existing datasets in the literature, FLOW360 is the first perceptu-
ally natural benchmark 360° dataset and fills the void in current research.
Optical Flow Estimation. Advancements in optical flow estimation techniques
largely rely on the success of data-driven deep learning frameworks. Flownet [22]
marked one of the initial adoption of CNN- based deep learning frameworks for
optical flow estimation. Several other works [39,35,68,63,2,40,62,51] followed the
footsteps with improved results. Generally, these networks adopt an encoder-
decoder framework to learn optical flow in a coarse-to-fine manner. The current
framework RAFT [61] has shown improvements with correlation learning.

The methods mentioned above are insufficient on omnidirectional flow field
estimation as they are designed and trained for perspective datasets. One of
the initial work [53] on omnidirectional flow estimation was presented as flow
estimation by back-projecting image points to the virtually curved retina, thus
called back-projection flow. It showed an improvement over classical algorithms.
Similarly, another classical approach [21] relyed on spherical wavelet to compute
optical flow on omnidirectional videos. However, these methods are limited to
classical approaches as they are not relevant in existing deep learning-based ap-
proaches. One of the recent works, LiteFlowNet360 [9] tried to compute optical
flow on omnidirectional videos using domain adaptation. This method utilized
the kernel transformer technique (KTN [58]) to adapt convolution layers on Lite-
FlowNet [35] and learn correct convolution mapping on spherical data. Similarly,
OmniFlowNet [3] proposed a deep learning-based optical flow estimation tech-
nique for omnidirectional videos. The major drawback of these methods is the
requirement to adapt convolution layers, which takes a substantial amount of
time and makes portability a significant issue. For example, in LiteFlowNet360,
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each convolution layer in LiteFlowNet was transformed using KTN with ad-
ditional training and adjustments. Similar to OmniFlowNet, every convolution
layer in LiteFlowNet2 [36] was transformed using kernel mapping [26] based on
different locations of the spherical image. These techniques incur computational
overheads and limit the use of existing architectures. Such approaches demand
explicit adaptation of convolution layers, which is hard to maintain when more
up-to-date methods are published constantly. Contrary to these methods, we
propose a Siamese Representation Learning for Omnidirectional Flow (SLOF)
method to learn omnidirectional flow by exploiting existing architectures with
designed representation learning objectives, significantly reducing the unneces-
sary effort of transforming or redesigning the convolution layer.

Siamese Representation Learning. Representation learning is a powerful
approach in unsupervised learning. Siamese networks have shown great success
in different vision-related tasks such as verification [12,60,13] and tracking][3].
A recent approach [18] in siamese representation learning showed impressive
results in unsupervised visual representation learning via exploiting different
augmentation views of the same data. They presented their work in pre-training
and fine-tuning stages, where the former being the unsupervised representation
learning. We use the representation learning scheme on omnidirectional data via
rotational augmentations, maximizing the similarity for latent representations
and minimizing the flow loss.

3 FLOWS360 Dataset

FLOWS360 is an optical flow dataset tailored for 360° videos using Blender [10].
This dataset contains naturalistic 360° videos, forward and backward optical
flow, and dynamic depth information. The dataset comprises 40 different videos
extracted from huge 3D-World ‘The Room’, ‘Modern’, ‘Alien Planet’, and ‘City
Rush’. Due to their size, this 3D-World cannot be rendered at once in a sin-
gle video. We render several parts of this 3D-World, which provides enough
qualitative variation in motion and visual perception like 3D-assets, textures,
and illuminations. The nature of this large and diverse animated world provides
relatively enough diversity to qualify for a standard benchmark dataset. The
Fig. 3 shows some of the examples of motion and scene diversity of FLOW360.
Similarly, samples from the dataset of different 3D-World are shown in Fig. 2.
We build these 3D-World using publicly available 3D models [32,67,37] and 3D
animated characters [64,55,1]. Meanwhile, we adopt Blender [10] for additional
rigging and animation for the dataset.

FLOW360 contains 40 video clips extracted from different parts of huge 3D-
World, ‘The Room’, ‘Alien Planet’, ‘City Rush’, and Modern’. The datasets also
contain other information like depth maps and normal fields extracted from the
3D-World. The FLOW360 dataset has 4,000 video frames, 4,000 depth maps, and
3,960 flow fields. We divide the video frames into 2700/1300 train/test split. We
render the video frames with the dimension of (512,1024) to save the rendering
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Fig. 2. The FLOW360 Dataset. Sample frames (first and second column, respec-
tively) from some of the videos with corresponding forward optical flow and dynamic
depth information. Motion in 3D Sphere (fourth column) is computed by transforming
the motion vectors from Equirectangular plane (6, ¢) to unit sphere f(z,y, z). Motion
in the sphere is represented in RGBA color notation. RGB color representation (as
suggested in Middlebury [6]) is encoded using (z,y) components, and the alpha color
is encoded from z of a unit sphere. RGB encoding (fifth column) is an RGB color map
of flow in 3D space. Note: flow fields are clipped for better visualization.

time. However, FLOW360 can be rendered with higher resolution, as 3D models
and Blender add-ons (provided in supplementary material) will also be public.

Diversity. We design FLOW360 datasets to include a diverse situation that
resembles the real world scenario as much as possible. The statistical validity of
the datasets in terms of perceptual realism of scene and motion is presented in
Fig. 5. The datasets contain a wide range of motion complexity from smaller to
larger displacement, occlusion, motion blur, and similar complexities on the scene
using camera focus-defocus, shadow, reflections, and several distortion combina-
tions. As these complexities are quite common in natural videos, the FLOW360
provides similar complexities. Similarly, the datasets cover diverse scenarios like
environmental effects, textures, 3D assets, and diverse illuminations. The quali-
tative presentation of these diversities and complexities are presented in Fig. 3
and Fig. 4 respectively.

Fairness. The FLOW360 dataset contains custom-tailored animated 360 videos.
We plan to release the dataset with the 3D models and our custom Blender add-
ons to provide researchers a platform to create their custom optical flow datasets
for all kinds of environments (perspective, 180° and 360° FOV). However, the
release of 3D world scenes can raise questions regarding fairness. To mitigate



Learning Omnidirectional Flow in 360° Video via Siamese Representation 7

frame

flow

frame

flow

frame

flow
-
)
»

{ R N - ——— h
Fig. 3. Motion and Scene Diversity. Samples from FLOW360 Dataset with random
projection (pitch, roll, yaw, fov) showing scene and motion diversity. The FLOW360

dataset has a vast scene consisting of several lighting scenarios, textures, diverse 3D
assets, and motion complexity in different regions.
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Fig. 4. Complexity of FLOW360 Dataset. Final frames in FLOW360 Dataset
include complex characteristics like camera focus/defocus, motion blur, lens distortion,
shadow, and reflections. Our dataset provides ambiance occlusion and environmental
effects for a realistic visual appearance.

this issue, we will perturb certain parts of 3D world scenes and not release any
camera information related to the test set.
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Fig. 5. Comparision of frames and flow statistics. Top row represents the frames
statistics and comparison with Sintel, Lookalikes, Middlebury, OmniFlow [52] and Om-
niFlowNet [3]. Bottom row represents flow statistics and comparison with Sintel (red),
OmniFlow (magenta) and OmniFlowNet ( ). The table on the top-right shows
a brief comparision of OmniFlow & OmniFlowNet with FLOW360 dataset. Note: (—,
+) represents forward and backward flow fields, respectively.

Render Passes. We exploit several modern features from Blender-v2.92 like
advanced ray-tracing as a render engine along with render passes like vector,
normal, depth, mist, and so on to produce realistic 3D scenes. Additionally, we
incorporate features like ambient occlusion, motion blur, camera focus/defocus,
smooth shading, specular reflection, shadow, and camera distortion to introduce
naturalistic complexity (shown in Fig. 4) in our dataset. Besides optical flow
information, the FLOW360 3D-world may be used to collect several other helpful
information like depth, normal maps, and semantic segmentation.

Dataset Statistics. We conduct a comprehensive analysis and compare our
dataset with Sintel [16], Lookalikes (presented in the original Sintel paper to
compare the image statistics with the simulated dataset), Middlebury [6], Om-
niFlow [52] and OmniFlowNet [3]. The analysis shown in Fig. 5 shows the image
and motion statistics in the top and bottom rows, respectively.

Based on analysis from Sintel, we present frame statistics with three different
analysis: luminance histogram, power spectrum, and spatial derivative. For lu-
minance statistics, we convert the frames to gray-scale, I(z,y)€[0,255] then we
compute histograms of gray-scale images across all pixels in the entire dataset.
The luminance statistics show the FLOW360 has a similar distribution with the
peak in the range between [0—100] and decreasing luminosity beyond that range.
Similarly, we estimate power spectra from the 2D FFT of the 512x512 in the
center of each frame. We compute the average of these power spectra across all
the datasets. We present power spectra analysis separately for the training and
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test set in this analysis. The power spectra analysis closely resembles the Sintel,
Lookalikes, and Middlebury datasets. Based on [27,54], the real-world movies
exhibit a characteristic of a power spectrum slope around -2, which is equivalent
to a 1/f? falloff. FLOW360 with the slope (—2.30,—2.36) on test and training
split shows such characteristics. We do not claim that FLOW360 is realistic, but
it certainly exhibits perceptual similarity with natural movies. The spatial and
temporal derivative analysis additionally supports this characteristic. The Kur-
tosis of frames spatial derivatives range from 32.74 to 57.27, peaked at zero. This
characteristic shows that FLOW360 has a resemblance to natural scenes [27].
Regarding the flow field analysis we directly compare the distribution of
motion u(z,y), speed defined as s(z,y)=+/u(z,y)? + v(z,y)?, flow direction
O(z,y)=tan"! (v(z,y)/u(x,y)) and spatial flow derivative of u and v. The close
resemblance of the flow field statistics between Sintel and FLOW360 suggests
motion field resemblance with natural movies. Based on these comparisons,
FLOW360 exhibits sufficient properties evident enough for its perceptual re-
alism and complexities.
Comparison with OmniFlow and OmniFlowNet. OmniFlow [52] presents
an omnidirectional flow dataset that is roughly similar to FLOW360. However,
the major distinction between these datasets is the FOV. FLOW360 provides
immersive 360° FOV, whereas OmniFlow provides only 180° FOV showing
FLOW360 compared to OmniFlow is the true omnidirectional dataset. Simi-
larly, OmniFlowNet [3] presents synthetic omnidirectional flow dataset with 360°
FOV. However, this dataset contains low poly unnatural scenes, which can be
explained by relatively larger kurtosis (373.55,391.09), characteristic of a power
spectrum and luminance distribution (peaked at 255). The overall statistical
analysis reveals FLOW360’s better perceptual realism and diversity.
Applications. As we mentioned, the FLOW360 dataset contains frames and for-
ward flow field and includes backward flow field, depth maps, and 3D-FLOW360
worlds, providing potential for applications like continuous flow-field estimation
in 3 frames setting. Besides optical flow estimation, the FLOW360 dataset can
be used in other applications such as depth and normal field estimation. More-
over, given 3D-FLOW360 animation data, the researcher can create as many
optical flow datasets as needed.

4 SLOF

SLOF, as shown in Fig. 1, is inspired by the recent work on Siamese repre-
sentation learning [18]. Since the method we rely on acts as a hub between
several methods like contrastive learning, clustering, and siamese networks, it
exhibits two special properties required for our case. First, this method has non-
collapsing behavior. Here, the term collapsing refers to a situation where an
optimizer finds possible minimum -1 similarity loss resulting degenerate solu-
tion (characterized by zero std of lo-normalized output z/||z||2 for each channel)
while training without stop-gradient operations. Stop-gradient yields std value
near % across each channel for all samples preventing such behaviour [18]. Sec-
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ond, it is useful when we have only positive discriminative cases. SLOF does not
consider radial distortion mitigation via changing/transforming the convolution
layers rather learns the equivariant properties of 360 videos via siamese repre-
sentation. We claim that such transformation is trivial, based on the following
fact. First, the omnidirectional videos are projected in angular domain, w.r.t.
polar (), azimuthal(¢); 0c(—75, 5 ), ¢c(—m, ), so we can learn flow fields in
these domains and convert these flow fields to spherical domain using planar to
spherical transformations as shown in Eq. 1 and Eq. 2. Second, the intent of a
convolution operator in optical flow architecture is relatively different from other
applications like classification, detection, or segmentation network, where other
tasks require convolution to learn relevant features (spatially consistent), the rel-
evance of these features should stay consistent (strictly for better performance)
throughout any spatial location of the images/videos. However, the convolu-
tion operation is dedicated to computing the pixel-wise displacement regardless
of spatial inconsistency in the distorted region via equivariant representation
learning [18]. Another important consideration of such a design is to make this
method portable to any existing optical flow architecture. This eliminates the
architecture re-adjustments tasks and make it powerful and portable.
Mapping Flow Field to Unit Sphere. Input to our model are equirectangular
images projected in angular domain polar(f), azimuthal(¢), where these angles
are defined in radian as 0e(—73, %), ¢c(—m, ), thus the predicted optical flow
is in (0, ¢). These flow fields can be converted to unit sphere using planar to
spherical co-ordinate transformation as shown below:

(zs,Ys,2s) = (sinf cos ¢, sin O sin ¢, cos ). (1)

We can compute sphere to catadioptric plane [31] projections to express the flow
field in Cartesian co-ordinates as:

Ts Ys 6 0 .
(x,y)—(l_zs,1_28)—(cot2605¢,cot2smq§). (2)
Design. Given a pair of input image sequence X1=(x1, z2), the rotation head
(R) computes augmented view of this sequence as Xo=(z,x%) with rotation
r using a random combination of “pitch”, “yaw” and “roll” operations. These
two augmented views are passed as an input to an encoder network f, defined
as f=P(R'(O(E(R(X,r))))) where E is a flow prediction module, RAFT [61]
in our case, © is a mapping of 2D flow to unit sphere, R’ is a reverse rotation
operation and P is a convolution based down-sampling head. A prediction head
presented as h (an MLP head), transforms the output from the encoder f from
one stream to match the other stream. The illustration of this process shown in
Equation. 3 as maximization of cosine similarity two views from siamese stream:

left Zright

left _righty _ p .
D", 2 )= [[pteft]| ||Zm'ght||2' (3)

Here, p'*f*2h(fleft(X,)) and 2"9ht = fright(X,) denotes the output vectors to
match from two different streams(f'¢/*, f7%9"*), This maximization problem can
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Fig. 6. Qualitative results on FLOW360 test set. Qualitative results show our
best model SLOF(v1) shows better results compared to fine-tuned RAFT trained with
policy explained in [61]. The dotted (black) rectangle indicates the comparative im-
provements of our model over fine-tuned RAFT. RAFT+KTN method fails to predict
flow-field correctly; instead, it only predicts shallow flow fields from camera motion.
The weakness of our model can be seen on dotted (red) rectangle where smaller motion
segments are missing. Note: Flows information is clipped for better visualization.

be viewed from another direction, with (p"9", 2!/t as the second matching pair
from siamese stream (fT9"t fleft) respectively. Given two matching pairs, we
can use following (Eq. 4) symmetrized similarity loss function L, (note that
Zleft and 279" are treated as a constant term using stop-grad operations to
prevent a degenerate solution due to model collapse [18]). Similarly, the optical
flow loss L0y is computed as a sequence loss [61] over predicted flow field and
ground truth. This loss ({1 distance over predicted and ground truth flow fg;)
is computed and averaged over sequence of predictions iteraterively generated
for the same pair of input frames {f1, fa, ..., fn }=F(R(X,r)) as shown in Equa-
tion. 4, where y=0.8""""1 served as weights over sequence loss. Note that (n, )
denotes number of prediction(n) in sequence and prediction id(¢) in predicted
flow sequences. The design of the weighted schemes ensures different levels of
confidence on predicted flows over time.

1 ) 1 ) n
Lsim - iD(plEftv Z”ght)—’_iD(p”ghta Zleft)a Lflow - Z’VHR(fgtaT) - fl” (4)
=1

Given similarity loss(Ls;y,) and flow loss(L 10, ) We implement a hybrid loss func-
tion L=Lgim+L 10 The overall objective of this loss function is to maximize
the similarity between latent representation of flow information while minimizing
the loss between ground truth and predicted optical flow.

5 Experiments

We evaluate SLOF on the FLOW360 test set. We use pre-trained RAFT on
Sintel [16] and fine-tune on FLOW360 as a comparison baseline. The fine-tuning
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Fig. 7. Distortion density map. Illustrating different distortion intensity due to
equirectangular projections. Left: upper (red) and lower (green) part of projections
shows higher distortion in central part where as the equatorial region ( , ,
blue, gray) exhibit higher distortion rate away from the center of tangential plane.
Right: shows the distortion density from (0, 1). This distortion density map is used to
evaluate the distortion aware EPE (EPE4). Note: Each circle patch in left spherical
projection have same area.

process is done using training protocols suggested in [61]. Moreover, to make a
fair comparison with traditional methods, we transform RAFT (pre-trained) to
adapt spherical convolution using KTN [58]. KTN transforms the convolution
kernel to mitigate the radial distortions via estimating the spherical convolution
function. Additionally, we run ablation studies on different training strategies
and propose a distortion-aware evaluation. We will present details of the training
procedure in the supplemental material.

Scope. The scope of our experiments are two folds: First, create a baseline for
future researchers to explore novel methodologies. Second, address the validity
of our method based on the fair comparison with a flow network designed for a
spherical dataset. We formulate our baseline experiment on perspective optical
flow network RAFT and modified version of RAFT with KTN [58] to compare
the performance. The RAFT+KTN architecture simulates a domain adaptation
similar to approaches like [9,3]. We choose KTN because of its success over
alternative approaches like [19,24,69,20,57]. It is worth noting that the design of
omnidirectional flow estimation can be extended to several techniques involving
mitigation of radial distortions, making it practically impossible to cover all.
Augmentation Strategy. Given the nature of SLOF, we can train it using
two different training strategies (v1,v2) as shown in Fig. 1(right). These strate-
gies can be achieved by performing different rotational augmentation on the
input sequences. The first strategy (v1) can be achieved by using set of inputs
(R(X1,71), R(X2,r2)) where r1=(0,0,0), i.e., X7 does not have any rotational
augmentation, whereas r97#(0,0,0) has rotation defined with random combina-
tions of “pitch”, “roll”, and “yaw” operations. This setting is kept consistent
throughout the training process. Alternatively, identical augmentation can be
achieved by flipping this augmentation protocols. The second rotational scheme
(v2) can be achieved by randomly switching rotation such that when 71 is none,
the ro is some random rotational augmentation and vice versa. This approach
performs on par with v1.

Uy + VeUy + 1

AE:arCCOS(\/u,2_+v3+1\/u§+vg+1.

()
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Table 1. Quantitave results on FLOW360 test set. x* denotes that we use
EPE4/AE, as the metrics; otherwise, the normal EPE and AE. Compared to base-
line, SLOF achieves lower end-point-error and angular error on both distortion aware
(EPEg4 and AE,) and normal scheme. In terms of end-point-error (lower the better) our
model (v1,v2) outperforms all the baseline. Similarly in terms of angular error (lower
the better) our models (v1, v2) perform comparatively similar and outperform all the
baseline. Though RAFT+KTN achieves comparable normal EPE, the distortion aware
(Weighted) metrics (EPE, and AEg) are significantly larger. Note: metrics in range
(all, less than (5, 10, 20) and greater than 20) is computed as an average, based on the
speed (s(x,y):\/u(:c, y)? + v(x,y)?) only in the respective pixel regions.

Mehtod Version Metric Weighted s>0" s>0 s<5 s<10 s<20 s>20
RAFT [01] EPE 3.344 2.058 0.558 0.682 0.838 71.736

AE 1.120 0.820 0.825 0.821 0.819 0.868

S EPE 2.635 1.624 0.314 0.393 0.500 65.340
Baselines| Finetuned RAFT [61]| —ym 0.745 0.522 0.527 0.522 0.520 0.647
EPE 3.809 2.222 0.598 0.742 0.924 76.426

RAFT + KTN [58] |y 2.020 0.912 0.912 0.910 0.911 1.0114

Switch rotation (v2) | EPE 2.626 1.615 0.326 0.401 0.512 64.678

SLOF Lo AE 0.691 0.485 0.489 0.484 0.482 0.659
Single rotation (v1) | EPE 2.548 1.568 0.309 0.387 0.502 62.476

ngle rotation (v AE 0.708 0.497 0.501 0.497 0.495 0.607

Evaluation Strategy. We evaluate our method based on 2D-raw flow. Besides,
using EPE (End Point Error in Eq. 6), i.e., Euclidean distance between the pre-
dicted flow and ground truth flow, as a single evaluation metric, we incorporate
AE (Angular Error) as shown in Eq. 5 as the second measure. To explain the
error in the omnidirectional setting, we introduce a distortion-aware measure
called EPE; as in Eq. 6. This metric penalizes the error in the distorted area
based on the distortion density map.

1 o 1 s [ fpred = fatll
red t]2
EPE = = > [[fprea = forll2, EPEq = & ) | =242, (6)

As EPEy, AE, is calculated as % va f‘_—Ed where, d represents the distortion
density map illustrated in Fig. 7, fprea=(te,ve) represents predicted flow, and
Jgt=(ur,v,) represents ground truth flow. Note that, to maintain lower met-
rics scale the distortion density is mapped between [0.500, 1.000) from (0.0, 1.0].
Please refer to supplemental for additional details on distortion density map.
Results. Fig. 6, Fig. 8 and Table 1 summarize our experimental results. The
overall summary of qualitative results is presented in Fig. 6. SLOF performs
better than baseline RAFT and kernel transformed RAFT+KTN methods. This
result is evident enough to show that siamese representation learning can exploit
the rotational properties of 360° videos to learn omnidirectional optical flow
regardless of explicit architecture adjustments.

Our methods, SLOF (v1,v2) perform better than presented baselines. Among
these methods v1 has the best EPE score whereas, v2 has better AE score. How-
ever, AE on both vl and v2 are relatively similar, suggesting v1 as our best
method. This is clearly visible in qualitative results shown in Fig. 6.
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Fig. 8. Error distribution plot. Illustrating error (EPE and AE) in different distor-
tion density ranges. SLOF relatively performs better in all distortion density ranges.

By investigating distortion-aware EPE, we can see that RAFT with KTN
achieves significantly higher EPE regardless of comparable normal EPE with
the other methods. This clearly explains why RAFT+KTN methods could not
predict the motion around the distorted area; instead, it predicts shallow flow
fields due to camera motion only. Moreover, comparing qualitative results in
Fig. 6 and EPE measure in different distortion ranges in Fig. 8, we can see
that our best method can predict smoother flow fields compared to baseline
methods. These fields in the polar region are comparatively better and have
better motion consistency in the edge region. However, our model might fail
to predict relatively smaller motion regions in some cases, which leaves room
for future improvements based on the proposed method. This concludes that
RAFT+KTN requires additional re-engineering and domain adaptation, which
is out of the scope of current work.

6 Conclusion

Omnidirectional flow estimation remains in its infancy because of the shortage
of reliable benchmark datasets and tedious tasks dealing with inescapable radial
distortions. This paper proposes the first perceptually natural-synthetic bench-
mark dataset, FLOW360, to close the gap, where comprehensive analysis shows
excellent advantages over other datasets. Our dataset can be extended for other
non-motion applications like segmentation and normal estimation task as well.
Moreover, we introduce a siamese representation learning approach for omni-
directional flow (SLOF) instead of redesigning the convolution layer to adapt
omnidirectional nature. Our method leverages the invariant rotation property of
360° videos to learn similar flow representation on various video augmentations.
Meanwhile, we study the effect of different rotations on the final flow estimation,
which provides a guideline for future work. Overall, the elimination of network
redesigns aids researchers in exploiting existing architectures without significant
modification leading faster deployment in real world setting.
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reflects the opinions and conclusions of its authors and not the funding agents.



Learning Omnidirectional Flow in 360° Video via Siamese Representation 15

References

10.
11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Adobe: Mixamo, https://www.mixamo.com/ 5

Ahmadi, A., Patras, I.: Unsupervised convolutional neural networks for motion
estimation. In: ICIP (2016) 4

Artizzu, C.O., Zhang, H., Allibert, G., Demonceaux, C.: Omniflownet: a perspec-
tive neural network adaptation for optical flow estimation in omnidirectional im-
ages. In: ICPR (2021) 2, 4, 8, 9, 12

Azevedo, R., Birkbeck, N., Simone, F., Janatra, I., Adsumilli, B., Frossard, P.:
Visual distortions in 360-degree videos. TCSVT 2019(8), 2524-2537 (2020) 2
Bailer, C., Taetz, B., Stricker, D.: Flow fields: Dense correspondence fields for
highly accurate large displacement optical flow estimation. In: ICCV (2015) 1
Baker, S., Roth, S., Scharstein, D., Black, M.J., Lewis, J., Szeliski, R.: A database
and evaluation methodology for optical flow. In: ICCV (2007) 1, 3, 4, 6, 8
Barron, J.L., Fleet, D.J., Beauchemin, S.S.: Performance of optical flow techniques.
1JCV 12(1), 43-77 (1994) 4

Bertinetto, L., Valmadre, J., Henriques, J.F.; Vedaldi, A., Torr, P.H.: Fully-
convolutional siamese networks for object tracking. In: ECCV (2016) 5
Bhandari, K., Zong, Z., Yan, Y.: Revisiting optical flow estimation in 360 videos.
In: ICPR (2021) 2, 3, 4, 12

Blender: Https://www.blender.org/ 5

Boomsma, W., Frellsen, J.: Spherical convolutions and their application in molec-
ular modelling. In: NeurIPS (2017) 3

Bromley, J., Bentz, J.W., Bottou, L., Guyon, I., LeCun, Y., Moore, C., Sackinger,
E., Shah, R.: Signature verification using a “siamese” time delay neural network.
IJPRAI 7(04), 669-688 (1993) 5

Bromley, J., Bentz, J.W., Bottou, L., Guyon, 1., LeCun, Y., Moore, C., Sackinger,
E., Shah, R.: Signature verification using a “siamese” time delay neural network.
IJPRAI 7(04), 669-688 (1993) 5

Brox, T., Bruhn, A., Papenberg, N., Weickert, J.: High accuracy optical flow esti-
mation based on a theory for warping. In: ECCV (2004) 1

Brox, T., Malik, J.: Large displacement optical flow: descriptor matching in vari-
ational motion estimation. TPAMI 33(3), 500-513 (2010) 1

Butler, D.J., Wulff, J., Stanley, G.B., Black, M.J.: A naturalistic open source movie
for optical flow evaluation. In: ECCV (2012) 1, 3, 4, 8, 11

Chen, Q., Koltun, V.: Full flow: Optical flow estimation by global optimization
over regular grids. In: CVPR (2016) 1

Chen, X., He, K.: Exploring simple siamese representation learning. In: CVPR
(2021) 5, 9, 10, 11

Cohen, T.S., Geiger, M., Koehler, J., Welling, M.: Spherical cnns. arXiv (2018) 3,
12

Coors, B., Condurache, A.P., Geiger, A.: Spherenet: Learning spherical representa-
tions for detection and classification in omnidirectional images. In: ECCV (2018)
3, 12

Demonceaux, C., Kachi-Akkouche, D.: Optical flow estimation in omnidirectional
images using wavelet approach. In: CVPRW (2003) 4

Dosovitskiy, A., Fischer, P., Ilg, E., Hausser, P., Hazirbas, C., Golkov, V., Van
Der Smagt, P., Cremers, D., Brox, T.: Flownet: Learning optical flow with convo-
lutional networks. In: ICCV (2015) 3, 4



16

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.
38.

39.

40.

41.

42.

43.

44.

45.

46.

K. Bhandari et al.

Eder, M., Shvets, M., Lim, J., Frahm, J.M.: Tangent images for mitigating spherical
distortion. In: CVPR (2020) 2, 3

Esteves, C., Allen-Blanchette, C., Makadia, A., Daniilidis, K.: Learning so (3)
equivariant representations with spherical cnns. In: ECCV (2018) 3, 12

Feng, B.Y., Yao, W., Liu, Z., Varshney, A.: Deep depth estimation on 360° images
with a double quaternion loss. In: 3DV (2020) 3

Fernandez-Labrador, C., Facil, J.M., Perez-Yus, A., Demonceaux, C., Civera, J.,
Guerrero, J.J.: Corners for layout: End-to-end layout recovery from 360 images.
RA-L 5(2), 1255-1262 (2020) 5

Field, D.J.: Relations between the statistics of natural images and the response
properties of cortical cells. Josa a 4(12), 2379-2394 (1987) 4, 9

Garg, R., Roussos, A., Agapito, L.: A variational approach to video registration
with subspace constraints. IJCV 104(3), 286-314 (2013) 1

Geiger, A., Lenz, P.; Stiller, C.,; Urtasun, R.: Vision meets robotics: The kitti
dataset. IJRR 32(11), 1231-1237 (2013) 1, 3, 4

Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? the kitti
vision benchmark suite. In: CVPR (2012) 1, 4

Geyer, C., Daniilidis, K.: A unifying theory for central panoramic systems and
practical implications. In: ECCV (2000) 10

Goralczyk, A.: Nishita sky demo (2020), creative Commons CCO (Public Domain)
- Blender Studio - cloud.blender.org 5

Horn, B.K., Schunck, B.G.: Determining optical flow. AT 17(1-3), 185-203 (1981)
1

Horn, B., Schunck, B.: Techniques and applications of image understanding (1981)
1

Hui, T.W., Tang, X., Loy, C.C.: Liteflownet: A lightweight convolutional neural
network for optical flow estimation. In: CVPR (2018) 1, 3, 4

Hui, T.W., Tang, X., Loy, C.C.: A lightweight optical flow cnn —revisiting data
fidelity and regularization. TPAMI 43(8), 2555-2569 (2021) 5

Hulle, S.V.: Bconl9 (2019), 2019 Blender Conference - cloud.blender.org 5

Hur, J., Roth, S.: Mirrorflow: Exploiting symmetries in joint optical flow and oc-
clusion estimation. In: ICCV (2017) 3

Ilg, E., Mayer, N., Saikia, T., Keuper, M., Dosovitskiy, A., Brox, T.: Flownet 2.0:
Evolution of optical flow estimation with deep networks. In: CVPR (2017) 1, 3, 4
Jason, J.Y., Harley, A.W., Derpanis, K.G.: Back to basics: Unsupervised learning
of optical flow via brightness constancy and motion smoothness. In: ECCV (2016)
4

Jiang, S., Campbell, D., Lu, Y., Li, H., Hartley, R.: Learning to estimate hidden
motions with global motion aggregation. arXiv (2021) 1

Liu, C., Freeman, W.T., Adelson, E.H., Weiss, Y.: Human-assisted motion anno-
tation. In: CVPR (2008) 4

Liu, P., Lyu, M., King, I., Xu, J.: Selflow: Self-supervised learning of optical flow.
In: CVPR (2019) 3

Lucas, B.D., Kanade, T.: An iterative image registration technique with an appli-
cation to stereo vision. In: IJCAI vol. 2 (1981) 1

McCane, B., Novins, K., Crannitch, D., Galvin, B.: On benchmarking optical flow.
CVIU 84(1) (2001) 4

Meister, S., Hur, J., Roth, S.: Unflow: Unsupervised learning of optical flow with
a bidirectional census loss. In: AAAT (2018) 3



47.

48.

49.

50.

51.

52.

53.

54.

55.
56.

57.

58.

59.

60.

61.

62.

63.

64.
65.

66.

67.
68.

69.

70.

71.

Learning Omnidirectional Flow in 360° Video via Siamese Representation 17

Meister, S., Jdhne, B., Kondermann, D.: Outdoor stereo camera system for the
generation of real-world benchmark data sets. Optical Engineering 51(2), 021107
(2012) 4

Menze, M., Geiger, A.: Object scene flow for autonomous vehicles. In: CVPR, (2015)
1,4

Menze, M., Heipke, C., Geiger, A.: Discrete optimization for optical flow. In: GCPR
(2015) 1

Otte, M., Nagel, H.H.: Optical flow estimation: advances and comparisons. In:
ECCV (1994) 4

Ranjan, A., Black, M.J.: Optical flow estimation using a spatial pyramid network.
In: CVPR (2017) 4

Seidel, R., Apitzsch, A., Hirtz, G.: Omniflow: Human omnidirectional optical flow.
In: CVPR (2021) 2, 4, 8, 9

Shakernia, O., Vidal, R., Sastry, S.: Omnidirectional egomotion estimation from
back-projection flow. In: CVPRW (2003) 4

Simoncelli, E.P.; Olshausen, B.A.: Natural image statistics and neural representa-
tion. Annual review of neuroscience 24(1), 1193-1216 (2001) 9

Sketchfab: Https://sketchfab.com/ 5

Steinbriicker, F., Pock, T., Cremers, D.: Large displacement optical flow compu-
tation withoutwarping. In: ICCV (2009) 1

Su, Y.C., Grauman, K.: Learning spherical convolution for fast features from
360°imagery. In: NeurIPS (2017) 3, 12

Su, Y.C., Grauman, K.: Kernel transformer networks for compact spherical con-
volution. In: CVPR (2019) 2, 3, 4, 12, 13

Sun, D., Yang, X., Liu, M.Y., Kautz, J.: Models matter, so does training: An
empirical study of cnns for optical flow estimation. TPAMI 42(6), 1408-1423 (2019)
1

Taigman, Y., Yang, M., Ranzato, M., Wolf, L..: Deepface: Closing the gap to human-
level performance in face verification. In: CVPR (2014) 5

Teed, Z., Deng, J.: Raft: Recurrent all-pairs field transforms for optical flow. In:
ECCV (2020) 1, 3, 4, 10, 11, 12, 13

Teney, D., Hebert, M.: Learning to extract motion from videos in convolutional
neural networks. In: ACCV (2016) 4

Tran, D., Bourdev, L., Fergus, R., Torresani, L., Paluri, M.: Deep end2end
voxel2voxel prediction. In: CVPRW (2016) 4

Turbosquid: Https://www.turbosquid.com 5

Wang, R., Geraghty, D., Matzen, K., Szeliski, R., Frahm, J.M.: Vplnet: Deep single
view normal estimation with vanishing points and lines. In: CVPR (2020) 3
Weinzaepfel, P., Revaud, J., Harchaoui, Z., Schmid, C.: Deepflow: Large displace-
ment optical flow with deep matching. In: ICCV (2013) 1

Woliniski, M.: City - 3d model, sketchfab.com 5

Wulff, J., Black, M.J.: Efficient sparse-to-dense optical flow estimation using a
learned basis and layers. In: CVPR (2015) 4

Zhang, Z., Xu, Y., Yu, J., Gao, S.: Saliency detection in 360 videos. In: ECCV
(2018) 12

Zhao, S., Sheng, Y., Dong, Y., Chang, E.I., Xu, Y., et al.: Maskflownet: Asymmetric
feature matching with learnable occlusion mask. In: CVPR (2020) 1, 3

Zioulis, N., Karakottas, A., Zarpalas, D., Daras, P.: Omnidepth: Dense depth es-
timation for indoors spherical panoramas. In: ECCV (2018) 3



	Learning Omnidirectional Flow in 360 Video via Siamese Representation

