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Abstract. We introduce a few-shot localization dataset originating from
photographers who authentically were trying to learn about the visual
content in the images they took. It includes nearly 10,000 segmentations
of 100 categories in over 4,500 images that were taken by people with
visual impairments. Compared to existing few-shot object detection and
instance segmentation datasets, our dataset is the first to locate holes
in objects (e.g., found in 12.3% of our segmentations), it shows objects
that occupy a much larger range of sizes relative to the images, and
text is over five times more common in our objects (e.g., found in 22.4%
of our segmentations). Analysis of three modern few-shot localization
algorithms demonstrates that they generalize poorly to our new dataset.
The algorithms commonly struggle to locate objects with holes, very
small and very large objects, and objects lacking text. To encourage a
larger community to work on these unsolved challenges, we publicly share
our annotated few-shot dataset at https://vizwiz.org.
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1 Introduction

Our paper is motivated by the belief that people who are blind or with low vision
(BLV) would benefit from the ability to locate objects in images that they take,
whether with a bounding box or fine-grained segmentation. For people with low
vision, localization would enhance their use of magnification tools [4, 30] by au-
tomatically enlarging the content of interest. For all BLV users, they could have
stronger privacy guarantees with services1 that describe their images if object
localization algorithms were used in place of recognition algorithms. That is be-
cause services could use localizations to obfuscate all content except the detected
regions needed to justify predictions2 and so remove accidentally captured pri-
vate information in the background of images, which is a common occurrence for
people with vision impairments [16]. Finally, automatic localization would also

1 Visual assistance services include Microsoft’s Seeing AI, Google’s Lookout, and Tap-
TapSee. The popularity of such services is exemplified by companies’ reports about
hundreds of thousands of users and tens of millions of requests [9, 22, 12].

2 Recorded evidence can be needed by companies for legal reasons.
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Fig. 1: Examples from our VizWiz-FewShot dataset showing instance segmen-
tation annotations we collected for images taken by people with vision impair-
ments. Annotated categories span those that are in common with prior work (left
green box) and unique to our dataset (right blue box). These examples highlight
novel aspects of our dataset, including that holes are permitted in our objects,
objects vary considerably in how much of the image they occupy, and objects
often feature text. (Annotation overlay colors were selected based on the order
the instance segmentations appear in our dataset, and so not object categories.)

support users to independently edit their images, which is a feature some BLV
photographers have requested.

Observing that BLV photographers take pictures showing a large number
of objects (e.g., 16,400 nouns were used to describe less than 40,000 images
taken by BLV photographers [18]), we are interested in the problem of few-
shot learning. Casting the problem as a few-shot learning problem means that
developers can efficiently scale up the number of categories supported in order
to locate the long-tail of categories. That is because few-shot learning methods
learn to locate a novel object category by observing only K annotated examples,
where K is typically 1, 5, or 10 examples.

To support our aim, we introduce a few-shot localization dataset that consists
of 100 segmented categories in over 4,500 images taken by people with vision
impairments. The images were taken in authentic use cases where the photog-
raphers were soliciting human assistance to learn about their visual surround-
ings [3]. Examples of annotated images in our dataset are shown in Figure 1.

We next analyze how our dataset compares to the four existing few-shot
localization datasets [1, 28, 26, 13, 23] to reveal both how our dataset is similar
to and different from prior work. We observe several unique aspects about our
dataset. First, it is the only dataset that indicates when and where holes are
located in objects. Holes are observed in 12.3% of our instance segmentations.
Second, our dataset’s objects exhibit a much larger range of sizes relative to the
image sizes. Finally, our dataset’s objects contain text much more frequently.
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Specifically, our analysis shows that 22.4% of objects in our dataset contain text
versus 4.6% of the objects in the related instance sementation dataset, COCO-
20i [26]. We suspect the latter two unique aspects of our dataset stem from how
images were curated. While our images come from a real-world application where
photographers were authentically trying to learn about their visual surroundings,
existing datasets were contrived by scraping images from photo-sharing websites.
Altogether, we believe that our new dataset fills important gaps of existing
datasets in the vision community by capturing a greater diversity of challenges
that can arise in real-world applications.

We also benchmark top-performing few-shot learning object detection and
instance segmentation algorithms on our new dataset. We find that the algo-
rithms perform poorly overall. Our fine-grained analysis reveals that the algo-
rithms commonly fail for objects that contain holes, very small and very large
objects, and objects that lack text.

In summary, our contributions include: (1) a new few-shot localization dataset
based on images that were taken in a real-world application, (2) the first few-shot
localization dataset with metadata showing where holes are located in objects,
(3) fine-grained analysis revealing unique aspects of our dataset compared to ex-
isting few-shot localization datasets, and (4) analysis of top-performing few-shot
localization algorithms that reveals open algorithmic challenges for the vision
community. We expect this work will encourage the development of algorithms
that can handle a greater diversity of challenges that arise in real-world appli-
cations. We expect these advancements will, in turn, benefit a larger audience
by facilitating the improvement of algorithms for application domains, such as
robotics and wearable lifelogging, that face similar challenges including holes in
objects, varying object sizes, and presence of text.

2 Related Work

Few-Shot Learning Datasets for Image Localization. Several dataset challenges
have been proposed for few-shot object detection and few-shot instance seg-
mentation: PASCAL-5i [1], COCO-20i [28, 26], ImageNet-LOC [8], and FSOD
Dataset [13]. A limitation of existing datasets is that images come from con-
trived settings rather than authentic use cases where people are seeking to learn
about their images. Specifically, images were curated by scraping images from
the Internet that were tagged with pre-defined categories of interest. To our
knowledge, we are introducing the first few-shot dataset challenges based on
images that originate from authentic use cases where people took pictures to
learn about the content. Our dataset offers new categories that are applicable
to real-world applications. In addition, our dataset provides metadata showing
holes in objects, which is a unique feature that creates new challenges toward
few-shot problems. Finally, it provides additional real-world challenges such as
a larger range of object sizes and a higher prevalence of objects containing text.

Few-Shot Algorithms for Image Localization. Few-shot learning was introduced
to the community in 2017 for object detection [10] and in 2018 for instance seg-



4 Y.-Y. Tseng et al.

mentation [26]. Since, a large number of algorithms have been proposed that
largely are based on two types of approaches: meta-learning and fine-tuning.
To assess how state-of-the-art methods perform on our new dataset, we bench-
mark the top-performing few-shot object detection and instance segmentation
algorithms for which code is publicly-available. Overall, we observe poor perfor-
mance from these algorithms [29, 26, 27, 5]. From our fine-grained analysis, we
find this dataset is challenging for algorithms due to the presence of holes in
objects, very small objects, very large objects, and objects that lack text.

Datasets Originating from People With Vision Impairments. In recent years, a
growing number of publicly-available datasets have been proposed to facilitate
the development of algorithms that can work well on images taken by peo-
ple with vision impairments [2, 6, 7, 17–19, 25, 15, 16, 32]. For example, existing
datasets support the development of algorithms for predicting answers to visual
questions [17, 19], recognizing objects in videos [25], and describing images with
captions [18]. Complementing prior work, we introduce a dataset for localizing
objects in images taken by BLV photographers, either using a bounding box
or segmentation. We expect success with developing localization algorithms for
images taken by BLV photographers to directly benefit BLV photographers and
to, more generally, support a larger number of real-world applications that en-
counter similar visual characteristics found in our dataset, such as robotics and
wearable lifelogging applications.

3 VizWiz-FewShot Dataset

We introduce a dataset that we call “VizWiz-FewShot”. It consists of local-
ization annotations for images taken by people with vision impairments who
authentically were trying to learn about their visual surroundings.

3.1 Dataset Creation

Data Source. Our dataset extends the VizWiz-Captions dataset [18], which con-
sists of images taken by people with vision impairments paired with five crowd-
sourced captions per image. The photographers took and shared these images in
order to solicit assistance from remote humans in recognizing the contents in the
images [3]. We leverage the data in both the train and validation splits, which
offers a starting point of 31,181 captioned images.

Category Selection. We chose 100 categories to locate in the images. These cat-
egories both support backward compatibility with popular few-shot localization
datasets and reflect important categories for people with vision impairments. To
select the categories, we first quantified the frequency of all nouns that appeared
in at least two of the five captions per image for our images. We then selected 72
non-ambiguous categories that overlap with four existing few-shot localization
datasets: MS COCO [24], PASCAL VOC [11], FSS-1000 [23], and FSOD [13].
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We also selected 28 non-ambiguous categories that are unique to our target pop-
ulation, by choosing categories that refer to physical objects. All 100 selected
categories have at least 10 examples.

Data Filtering. We next filtered the images to only retain those that contained at
least one of our 100 categories. First, we removed images which did not mention
any of our categories within at least two of their respective captions. Then,
the authors subsequently verified that each remaining image contained at least
one object that fit the precise definition of at least one of our categories. For
example, our automatic collection of images with the category “pen” retrieved
some images of pencils without pens and so we removed those images. After
filtering, we had total of 4, 930 images.

Annotation Tasks. After iterative prototyping, we settled on a workflow similar
to prior work [24], such that we first used an image classification task to flag
which categories of interest are present in each image and then an instance
segmentation task to locate every instance of each category. For both tasks, we
utilized templates provided by Amazon Mechanical Turk (AMT).

For image classification, crowdworkers were shown an image and asked to
select all categories that were present, if any. Since showing all 100 categories
at the same time could overwhelm crowdworkers and ultimately lead to lower
quality results, we instead showed a subset of categories at a time (i.e., ∼20).

For instance segmentation, crowdworkers were shown an image with the list
of categories known to be present from the image classification task and asked
to locate each instance of every category. Like prior work, our annotation tool
supported users to create a series of clicks to generate polygons. Going beyond
prior work, in addition to being able to draw ‘positive’ polygons to locate object
boundaries, our tool also enabled users to create ‘negative’ polygons in order
to capture when objects contained holes. We offered extensive instructions with
our task to cover edge-case scenarios, including how to annotate the presence of
holes and how to handle occlusions.

Annotation Collection. We implemented several quality control methods to sup-
port our collection of high-quality annotations. First, we only accepted workers
who already had completed at least 500 AMT tasks with at least a 99% approval
rating. For the more complex instance segmentation task, we also required work-
ers to successfully pass a qualification test consisting of nine challenging annota-
tion edge cases (described in the Supplementary Materials). We then collected
redundant results from multiple unique workers for both tasks. For image clas-
sification, we collected three results per image and flagged a category as present
if at least one worker indicated so. For instance segmentation, we collected two
sets of annotations per image-category pair and then computed intersection over
union (IoU) scores to determine how to establish a ground truth segmentation
per image. When IoU ≥ 0.8, we randomly chose one of the annotations as the
ground truth. Otherwise, the authors reviewed the pair of annotations to choose
one as the ground truth (or, in exceptional cases, discarded both annotations).



6 Y.-Y. Tseng et al.

Finally, we paid above minimum wage to better incentivize the workers.3 Upon
completion, we had a total of 9,861 segmented objects in 4,622 images.

3.2 Dataset Analysis

We now analyze the VizWiz-FewShot dataset and compare it to the other main-
stream few-shot localization datasets.

VizWiz-FewShot-IS (Instance Segmentation). We first characterize our few-shot
instance segmentation dataset and compare it to the only other few-shot instance
segmentation dataset we are aware of: COCO-20i [24], which has a total of 80
categories. We compute for every instance segmentation the following metrics:

– Mass center: location of the center of mass pixel for each object rela-
tive to the image coordinates. Consequently, an object’s x-coordinate and
y-coordinate values can range from 0 to 1.

– Boundary complexity: ratio of the area of an instance to the length of its
perimeter, also known as isoperimetric inequality. Values range from 0 to 1,
with lower values representing more complex boundaries.

– Image coverage: percentage of pixels each instance segmentation occupies
from the entire image.

– Prevalence of text: flag indicating if Microsoft Azure’s optical character
recognition (OCR) API returned text for an image, after masking out all
content except for the instance segmentation.

– Prevalence of holes: flag indicating if any holes are present paired with
the percentage of pixels each hole occupies from the instance segmentation
when any holes are present.

In what follows, we report the statistics summarizing the results for all instance
segmentations for each dataset.4

Results for boundary complexity, object location (i.e., mass center), and im-
age coverage are shown in Figure 2(a). Amongst these metrics, the only major
difference between the two datasets is image coverage. For example, objects in
our dataset represent on average roughly six times more relative area in images
than those in COCO-20i. We exemplify this finding qualitatively by showing
in Figure 2(b) how annotations of two types of content, “sink” and “oven”,
dramatically differ in image coverage across the two datasets. We attribute the
prevalence of larger relative object sizes in our dataset to the fact that photog-
raphers in an authentic use case where they are trying to learn about content
take up-close pictures of the content. Another key distinction about our dataset
is that we observe a considerably larger variability for the image coverage in
our dataset. Qualitative results in Figure 3 exemplify this range of relative area
occupied by segmentations in our dataset. This finding highlights that a benefit
of our dataset is that it encourages the design of algorithms that will be able to
handle a larger range of relative object sizes in images.

3 Average hourly wage was $8.00 and $9.61 for classification and IS respectively.
4 For efficiency, we evaluated the presence of text for a random sample of images in
COCO-20i that is comparable to the number of images in our dataset: 8,000.
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Fig. 2: Comparison of our dataset with the only existing few-shot instance seg-
mentation dataset, COCO-20i. (a) Summary statistics for all segmented objects
in each dataset are shown in the box plot with respect to the location (i.e., rela-
tive x-coordinates and y-coordinates for mass center), boundary complexity, and
image coverage. The box plot’s central mark denotes the median score, box edges
the 25th and 75th percentiles scores, whiskers the most extreme data points not
considered outliers, and individually plotted points the outliers. (b) Annotations
from both datasets exemplify our quantitative finding that an object with larger
image coverage is an outlier in COCO-20i while common in our dataset.

Fig. 3: Examples from our VizWiz-FewShot dataset illustrating its unique as-
pects, specifically the high variability of object size relative to images, high
prevalence of text in objects, and inclusion of holes in segmentations.
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When analyzing the prevalence of text, we find that 22.4% of instances in our
dataset include text compared to only 4.6% in COCO-20i. We show examples of
objects in our dataset that contain text in Figure 3, including of cups, menus,
cereal boxes, and albums. We also show in Figure 4 the frequency at which text is
found in a sample of our categories. Categories that more commonly contain text
include ramen, food menu, packet, and gift card. Categories that rarely contain
text include dog, vase, house, and spoon. We hypothesize from our findings that
algorithm developers working on COCO-20i may have a bias to disregard text.
We expect our dataset will inspire developers to consider how to take advantage
of text recognition methods as potential predictive cues for locating objects with
few-shot localization algorithms.

Finally, a unique feature of our dataset that is not supported in COCO-20i is
locating the holes in objects. We define a hole as any area in an object that does
not belong to the object itself since our goal is to locate all pixels belonging to
each category of interest. Thus, a hole may manifest as a property of an object
itself (i.e. a ring), an object’s orientation (i.e. a side view of an open armrest
on a chair), or an occlusion on the object (i.e. a plate partially occluded by
food). In total, 12.3% of the instances in our VizWiz-FewShot-IS contain holes.
As shown in Figure 5, some of the object categories with the highest proportion

Fig. 4: Proportion of instances with text on a per-category basis for each third
category in our dataset, sorted them by frequency of text.

Fig. 5: Proportion of instances with holes on a per-category basis for each third
category in our dataset, sorted by frequency of holes.
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of instance segmentations that contain holes are chairs, sandals, bracelets, and
bowls. For instance, 21.1% of the bowl instances have holes, likely because bowls
typically contain food in them. We attribute the high frequency of holes to two
causes. First, is that the objects intrinsically contain them; e.g., chairs, stools,
and sandals. The second reason is that large-appearing objects get occluded by
foreground objects, such as occlusions on rugs, bowls, and plates. Corroborating
this hypothesis, we find that the percentage of instances with holes increases with
object size, suggesting that larger objects tend to have hole-type occlusions more
frequently than smaller objects (results shown in the Supplementary Materials).
We also observe that certain categories regularly have a larger percentage of hole
pixels in them, such as bowls which typically are occluded by a large amount of
food (results are shown in the Supplementary Materials). We anticipate the need
to recognize holes will increase our dataset’s difficulty for computer vision models
since they will need to go beyond merely locating the outermost boundary of
objects to also understanding which interior pixels should belong to the objects.

VizWiz-FewShot-OD (Object Detection). We next characterize our dataset in
the object detection setting and how it compares to the three mainstream few-
shot object detection datasets: COCO-20i [28], PASCAL-5i [1], and FSOD [13].5

To support comparison, we convert each instance segmentation in our dataset
into its bounding box representation. For every dataset, we compute for each
object detection its relative position and image coverage.6 Summary statistics
for each dataset are shown in Figure 6.

One key distinction of our dataset is the greater variability in the relative
positions of its objects. This finding contrasts a common photographer’s bias

5 We use both the train and validation splits from each of the mainstream datasets
for analysis. We randomly sample 10% of the annotations from COCO-20i due to
its large size, and we use all annotations from PASCAL-5i and FSOD.

6 We exclude from consideration the other three metrics used to analyze the instance
segmentations because boundary complexity is no longer relevant, text prevalence
could be incorrect due to the bounding box extending beyond an object’s boundaries,
and none of the other datasets located holes in objects.

Fig. 6: Box plot showing how objects in our dataset compare to those in the three
existing few-shot object detection datasets with respect to relative position and
image coverage.
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of beautifully capturing the contents of interest near the center of images. We
suspect this greater diversity of object positions stems from the inability of BLV
photographers to inspect the images to guarantee that they are centering the
contents of interest in their images and their inability to verify that clutter gets
excluded from the background of their images.

Another distinction in our dataset is its bias towards having objects posi-
tioned on the left side of images, as exemplified by the mean and median relative
horizontal position being 0.45 and 0.39 respectively. One possible reason for this
bias may be a commonality in how the photographers take images. Specifically,
when a person is trying to learn about a particular object often the person holds
the content of interest in the left hand while taking a picture of it with the right
hand. This scenario assumes a tendency in society for people to be right-handed.

Finally, we observe that bounding boxes in our dataset tend to cover more of
an image than two of the four existing datasets: COCO-20i and FSOD. Image
coverage of objects in our dataset is comparable to PASCAL, which we attribute
to PASCAL’s focus on iconic images with salient objects [24] and our dataset’s
inclusion of images of objects taken up-close for visual assistance.

4 Algorithm Benchmarking

We now present our results from benchmarking top-performing computer vision
algorithms on our VizWiz-FewShot dataset.

To support use of our annotated data for few-shot localization tasks, we
create a 4-fold cross-validation format and split our 100 object categories into
four sets, where i = 0, 1, 2, 3 for the ith fold. This approach mimics the settings
used for the few-shot datasets PASCAL-5i [1] and COCO-20i [28, 26]. We refer
to the resulting datasets for few-shot instance segmentation and few-shot object
detection as VizWiz-FewShot-IS-25i and VizWiz-FewShot-OD-25i respectively.

We evaluate the trained models using mAP and mAP50. mAP originates
from the MS COCO object detection challenge [24] and is frequently used to
evaluate algorithms for FSIS [26, 31, 14, 27] and FSOD [20]. mAP refers to the
mean of Average Precision (AP ) for all categories and is an average across the
IoU threshold of 0.5 : 0.05 : 0.95 for ground truth and prediction regions. The
only difference betweent FSOD and FSID is that that former is evaluated based
on bounding boxes while the latter is evaluated based on mask areas. We also
present results with respect to mAP50, where only threshold 0.5 is used, since
this approach facilitates the comparison with datasets such as Pascal VOC. Our
evaluation is based on when K = 1, 3, 5, 10 shots are available.

4.1 Few-shot Instance Segmentation Algorithms

We benchmarked the top-performing FSIS algorithm for which code is publicly-
available and can be successfully deployed on modern GPUs7. Specifically, we

7 We discuss the limitations of other FSIS algorithms for benchmarking on our dataset
in the Supplementary Materials.
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evaluated the algorithm YOLACT [5], which was originally proposed outside
of a few-shot setting, and then was subsequently shown to yield strong results
on COCO-20i when fine-tuned for FSIS [27]. When using the codebase as is on
our new FSIS dataset, the performance on novel classes is consistently negligible
(i.e., mAP around 0). We found this occurs because the default hyperparameters
leads to training loss explosion. Consequently, we tested with different hyper-
parameters. Specifically, we (1) explored four learning rates in decreasing order
from the original setting (i.e., 1e-3) to a value where saw convergence (i.e., 2e-5),
(2) explored weights for the bounding box loss and mask loss in increasing order
from 0 to 15 with an increment size of 1, (3) resized all images to match MS
COCO’s resolutions (i.e., 640× 480), and (4) removed object instances of which
the areas exceed that of MS COCO (i.e., instances are filtered based on the size
range in MS COCO).

Overall performance: Results are shown in Table 1. We report results with re-
spect to each fold as well as the mean across all folds.

Overall, the model performs poorly on VizWiz-FewShot-IS-25i. Moreover,
the performance is much worse on our dataset than observed on the original
dataset for which it was proposed [27]; e.g., mAP50 score of 2.48 compared to
17.1 for 1-shot and 5.17 compared to 18.9 for 5-shot for VizWiz-FewShot-IS-25i

and COCO-20i respectively. These findings motivate the benefit of our dataset
in providing a challenging problem for the vision community.

Fine-grained analysis: To identify what make the dataset difficult, we next ana-
lyze the model’s performances with respect to (1) image quality, (2) object size,

Table 1: Overall performance of the few-shot algorithms on our VizWiz-FewShot
dataset presented in 4-fold validation style. The FSIS algorithm is benchmarked
on VizWiz-FewShot-IS-25i, and the FSOD algorithms are benchmarked on
VizWiz-FewShot-OD-25i.

250 251 252 253 mean
shots mAP mAP50 mAP mAP50 mAP mAP50 mAP mAP50 mAP mAP50

F
S
IS

Y
O
L
A
C
T k = 1 1.87 2.5 2.91 3.51 1.39 1.79 1.08 2.13 1.81 2.48

k = 3 2.31 2.81 4.48 5.24 2.35 2.78 3.59 4.52 3.18 3.84
k = 5 3.45 4.30 4.84 5.67 4.34 5.14 4.39 5.56 4.25 5.17
k = 10 5.97 7.69 7.71 9.02 6.18 7.18 5.82 7.38 6.42 7.82

F
S
O
D

D
eF

R
C
N k = 1 3.45 5.80 4.67 8.33 3.51 5.10 4.51 8.19 4.03 6.85

k = 3 6.80 11.65 7.81 13.85 7.26 11.74 7.88 14.05 7.43 12.82
k = 5 8.99 15.19 11.26 19.13 10.60 16.95 11.23 19.11 10.52 17.60
k = 10 11.24 21.34 13.36 25.68 11.94 22.07 13.91 24.76 12.61 23.46

F
S
O
D

Y
O
L
A
C
T k = 1 2.05 2.61 2.84 3.66 1.61 1.97 1.91 2.26 2.10 2.63
k = 3 2.45 3.05 4.41 5.53 2.58 3.22 3.94 4.89 3.35 4.17
k = 5 3.46 4.44 4.87 5.88 4.82 5.68 4.72 5.81 4.47 5.45
k = 10 6.27 7.89 7.60 9.29 6.61 7.90 6.06 7.86 6.64 8.24
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and (3) presence of text. To do so, we distribute the test examples into subsets
with respect to each of the following factors:

– Image quality: Leveraging metadata from prior work [18] which indicates
how many from five crowdworkers indicated an image is insufficient qual-
ity to recognize the content, we classify an image as “high quality” when
none indicate insufficient quality and “medium quality” when one or two
crowdworkers flagged the image as insufficient quality. We exclude even lower
quality images from our analysis since these are rare in our test set.

– Object size: The target object size is calculated based on the number of pix-
els in the instance segmentations. We divide the dataset into small, medium,
and large sizes, such that the numbers of images in each set are evenly dis-
tributed. This resulted in the following thresholds: 3502 and 9002.

– Presence of text: We used the metadata collected for Section 3 that deter-
mined whether an object has text on it using OCR on background-masked
instance images to flag whether text is present.

– Presence of hole(s): We used additional metadata from Section 3, indicat-
ing if each instance segmentation contains a hole, to flag if a hole is present.

All fine-grained analysis results for YOLACT are shown in Table 2.
With respect to image quality and object size, our findings reinforce those

of prior work. Specifically, like prior work [18], the algorithm typically performs
better on images with higher quality. Like other prior work [21, 33], algorithms
typically perform worse for smaller objects. However, our findings extend those
reported in [21, 33] since we define object sizes differently; i.e., they use smaller
thresholds of 322 and 962. To our knowledge, our work is the first to offer insights

Table 2: Fine-grained analysis on the performance of FSIS and FSOD models
on VizWiz-FewShot presented in mAP .

Image Quality Object Size Presence of Text Presence of Holes
shots Medium High Small Medium Large Yes No Yes No

F
S
IS

Y
O
L
A
C
T k = 1 1.24 2.11 1.38 2.19 1.74 1.83 1.62 1.48 1.99

k = 3 3.31 3.19 2.24 3.44 3.80 3.26 2.84 2.91 3.21
k = 5 3.72 4.29 2.64 3.88 5.19 3.78 4.05 3.06 4.22
k = 10 6.11 6.50 3.94 6.53 7.30 6.16 5.28 5.82 6.29

F
S
O
D

D
eF

R
C
N k = 1 2.46 2.22 2.67 2.96 3.57 4.97 2.29 0.875 3.99

k = 3 4.97 5.26 6.13 5.41 6.81 7.93 7.60 2.15 7.60
k = 5 10.69 10.27 6.83 16.95 8.90 13.48 12.70 2.56 9.78
k = 10 12.82 13.62 12.23 18.18 11.48 17.45 15.96 5.37 12.49

F
S
O
D

Y
O
L
A
C
T k = 1 1.36 2.23 1.49 2.16 1.93 2.06 1.72 1.71 2.10

k = 3 3.42 3.36 2.51 3.42 4.05 3.44 3.05 3.30 3.33
k = 5 3.99 4.51 3.02 3.80 5.24 3.78 4.31 3.40 4.40
k = 10 6.19 6.70 4.43 6.36 7.31 6.18 5.60 6.09 6.45
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into performance on larger objects due to the novel presence of such larger
instances in our dataset.

With respect to the presence of text, overall the performance is slightly better
for instances that contain text. Initially, we found this surprising. We expected
the opposite trend since we suspected that the limited prevalence of text in
prior datasets would have led algorithm designers to not consider the presence
of text in their algorithm designs. We suspect part of the reason for our finding
is that, if the text on the objects is clear enough to be visible, then the image
is high quality. Additionally, the high frequency information from text regions
in instance segmentations may be valuable predictive cues, despite the absence
of the ability to recognize the text as text. Finally, the presence of text has a
strong correlation with particular categories, which may influence our findings.

Finally, with respect to the presence of holes, the performance is consis-
tently worse for objects that contain holes. The presence of holes raises the task
complexity dramatically by requiring algorithms to go beyond locating object
boundaries to also have a semantic understanding of all pixels within the object
boundary. According to our analysis in Section 3 and the Supplementary Ma-
terials, objects with larger sizes tend to have more coverage by holes, including
due to occlusion. Therefore, we suspect that the poor performance that we ob-
served for larger sized objects could be correlated with the poor performance we
observing with our analysis here on objects with holes.

4.2 Few-Shot Object Detection

We benchmarked two FSOD algorithms for which code is publicly-available.
First, we chose Decoupled Faster R-CNN (DeFRCN ) with its default hyperpa-
rameters [29], since it is the state-of-the-art FSOD model. It follows a two-stage
fine-tuning paradigm. For our k-shot experiments, we randomly sample k images
to use for fine-tuning the model. We also benchmark the YOLACT model used
for FSIS by converting its segmentation results into bounding boxes.

Overall performance: Overall results are shown in Table 1. These results resemble
those observed for FSIS. Specifically, both algorithms perform poorly on our
dataset and much worse on our dataset than reported for the original dataset on
which they were evaluated. These results reinforce that our new dataset offers
distinct challenges from existing datasets for FSOD algorithms.

Fine-grained analysis: We perform the same fine-grained analysis conducted for
FSIS with the two benchmarked FSOD models, and results are also reported in
Table 2. While we observe that the level of image quality does not correlate with
algorithm performance, we do observe performance trends for the other three
factors. Moreover, these trends match those discussed for FSIS. Specifically, both
benchmarked models tend to perform the worst for small objects, perform better
when text is present, and perform worse when holes are present.
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Table 3: Generalization of models trained on MS COCO for few-shot object
detection to matching categories in our VizWiz-Fewshot-OD dataset.

mAP mAP50

model testing set 1 3 5 10 1 3 5 10

DeFRCN
MS COCO 6.63 12.32 14.20 16.69 12.50 21.69 24.87 29.15
VizWiz 1.32 3.43 2.17 4.57 2.74 5.86 3.39 6.53

Cross-dataset analysis: Finally, we evaluated DeFRCN’s generalization perfor-
mance across datasets.8 To do, so we randomly selected 20 of the 37 categories
found in both MS COCO and VizWiz-FewShot-OD-25i as novel classes. Next,
we trained DeFRCN on the remaining 60 MS COCO classes and then fine-tuned
it with k-shot images randomly sampled from the 20 novel classes in MS COCO.
The resulting model was evaluated on both the MS COCO test set as well as
our VizWiz-FewShot-OD-25i test set. Results are shown in Table 3. We observe
significant gaps between scores on MS COCO and our dataset revealing that the
algorithm generalizes poorly when encountering the domain shift between the
two datasets. These findings reinforce that images in our dataset offers distinct
algorithmic challenges from those observed in MS COCO.

5 Conclusions

We introduce the VizWiz-FewShot dataset to facilitate the community in de-
signing few-shot learning models for object detection and instance segmentation
that work well for the diverse set of challenges that emerge in real-world appli-
cations. Our benchmarking of top few-shot localization algorithms reveal that
valuable directions for future work are to better support objects that contain
holes, very small and very large objects, and objects that lack text.
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8 Of note, we also conducted cross-dataset experiments with YOLACT in the FSIS
and FSOD settings however the cross-dataset performance was negligible. We at-
tribute it to unsuccessful training with the chosen hyperparameters, both because
the loss plateaued rather than converging with the new YOLACT hyperparameter
values used in this paper and the loss exploded when using the original YOLACT
values (i.e., the performance of YOLACT reported in the original paper could not
be replicated when using the different set of training categories from MS COCO). In
summary, the cross-dataset analysis results of YOLACT reinforce our initial findings
that YOLACT performance is extremely sensitive to chosen hyperparameters and
the training data, with custom tuning for each change.
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