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Abstract. Point clouds and RGB images are two general perceptional
sources in autonomous driving. The former can provide accurate local-
ization of objects, and the latter is denser and richer in semantic infor-
mation. Recently, AutoAlign [6] presents a learnable paradigm in com-
bining these two modalities for 3D object detection. However, it suffers
from high computational cost introduced by the global-wise attention.
To solve the problem, we propose Cross-Domain DeformCAFA module in
this work. It attends to sparse learnable sampling points for cross-modal
relational modeling, which enhances the tolerance to calibration error
and greatly speeds up the feature aggregation across different modalities.
To overcome the complex GT-AUG under multi-modal settings, we de-
sign a simple yet effective cross-modal augmentation strategy on convex
combination of image patches given their depth information. Moreover,
by carrying out a novel image-level dropout training scheme, our model is
able to infer in a dynamic manner. To this end, we propose AutoAlignV2,
a faster and stronger multi-modal 3D detection framework, built on top of
AutoAlign. Extensive experiments on nuScenes benchmark demonstrate
the effectiveness and efficiency of AutoAlignV2. Notably, our best model
reaches 72.4 NDS on nuScenes test leaderboard, achieving new state-
of-the-art results among all published multi-modal 3D object detectors.
Code will be available at https://github.com/zehuichen123/AutoAlignV2.

Keywords: 3D Object Detection, Multi-Modal Learning, Sensor Fu-
sion, Camera Sensor, LiDAR Sensor

1 Introduction

3D object detection serves as a fundamental computer vision task in autonomous
driving. Modern 3D object detectors [33,13,24,20] have demonstrated promising
performance on competitive benchmarks including KITTI [10], Waymo [28], and
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Fig. 1. The comparison between AutoAlignV2 and AutoAlign. AutoAlignV2 hints at
the alignment module with general mapping relationship guaranteed by determinis-
tic projection matrix, and simultaneously reserves the ability to automatically adjust
the positions of feature aggregation. Due to the lightweight computational cost, Au-
toAlignV2 is able to aggregate multi-layer features for hierarchical imagery information.

nuScenes [2] datasets. Despite the rapid progress in detection accuracy, the room
for further improvement is still large. Recently, an upsurging stream in com-
bining RGB images and LiDAR points for accurate detection has drawn many
attentions [31,39,16,15,1,19]. Different from the point clouds which are beneficial
for spatial localization, imagery data are more superior in providing semantic
and textural information, i.e., more suitable for classification. Therefore, it is
believed that these two modalities are complementary to each other and can
further promote the detection accuracy.

However, how to effectively combine these heterogeneous representations for
3D object detection has not been fully explored. In this work, we mainly attribute
the current difficulties of training cross-modal detectors to two aspects. On one
hand, the fusion strategy in combining imagery and spatial information remains
sub-optimal. Due to the heterogeneous representations between RGB images
and point clouds, features need to be carefully aligned before being aggregated
together. This is often achieved by establishing deterministic correspondence
between the point and the image pixel through LiDAR-camera projection ma-
trix [27,31,39]. AutoAlign [6] proposes a learnable global-wise alignment module
for automatic registration and achieves good performance. However, it has to
be trained with the help of CSFI module to acquire the inner positional match-
ing relationship between points and image pixels. Besides, the complexity of
attention-style operation is quadratic to the image size, making it impractical to
apply queries on high-resolution feature maps (e.g., C2, C3). Such a limitation
can lead to coarse and inaccurate image information and the loss of hierarchical
representations brought by FPN (See Figure 1). On the other hand, data aug-
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Fig. 2. The overall framework of AutoAlignV2. It differs from AutoAlign in three
aspects: (i) the proposed Cross-Domain DeformCAFA module enhances the represen-
tations with better imagery features and improves the efficiency of the fusion process,
(ii) the Depth-Aware GT-AUG algorithm greatly simplifies the synchronization issue
among 2D-3D joint augmentations, and (iii) the adoption of image-level dropout train-
ing strategy enables our model to infer in a dynamic fusion manner.

mentation, especially GT-AUG [33], is a crucial step for 3D detectors to achieve
competitive results. In terms of multi-modal methods, an important problem is
how to keep synchronization between images and point clouds when conducting
cut and paste operations. MoCa [39] uses labor-intensive mask annotations in
2D domain for accurate image features. Box-level annotations are also applicable
but delicate and complex points filtering is required [31].

In this work, we propose AutoAlignV2 to mitigate the aforementioned issues
in a much simpler and more effective way. It hints at the alignment module with
the general mapping relationship guaranteed by deterministic projection matrix
and simultaneously reserves the ability to automatically adjust the positions of
feature aggregation. As for the synchronization issue in 2D-3D joint augmenta-
tion, a novel depth-aware GT-AUG algorithm is introduced to cope with object
occlusion in the image domain, getting rid of the complex point cloud filter-
ing or the need for delicate mask annotations. We also present a new training
scheme named image-level dropout strategy, which enables the model to infer
results dynamically even without images. Through extensive experiments, we
validate the effectiveness of AutoAlignV2 on two representative 3D detectors:
Object DGCNN [32] and CenterPoint [36], and achieve new state-of-the-art per-
formance on the competitive nuScenes benchmark.

2 Related Work

2.1 Object Detection with Point Cloud

Existing 3D object detectors can be broadly categorized as point-based and
voxel-based approaches. Point-based methods directly predict the regression
boxes from points [35,26]. For example, Point R-CNN [25] adopts a semantic
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network to segment the point clouds and then generates the proposals at each
foreground point. 3DSSD [34] fully applies point-level predictions on the one-
stage architecture, where an anchor-free head is designed after the PointNet-like
feature extraction. Although the accurate 3D localization information is main-
tained, these algorithms often suffer from high computational cost [24]. Differ-
ent from the point-wise detection, voxel-based approaches transform sets of un-
ordered points into 2D feature map through voxelization, which can be directly
applied with convolutional neural networks [41,22,8]. For instance, VoxelNet [41]
is a widely-used paradigm where a VFE layer is proposed to extract unified fea-
tures for each 3D voxel. Based on this, CenterPoint [36] presents a center-based
label assignment strategy, achieving competitive performance in 3D object de-
tection.

2.2 Multi-Modal 3D Object Detection

Recently, there has been an increasing attention on multi-modal data for 3D
object detection [17,21]. AVOD [12] and MV3D [5] are two pioneer works in this
field, where 2D and 3D RoI are directly concatenated before box prediction. Qi
et al. [23] utilized images to generate 2D proposals and then lifted them up to 3D
space (frustum), which narrows the searching space in point clouds. 3D-CVF [37]
and EPNet [11] explore the fusion strategy on feature maps across different
modalities with a learned calibration matrix. Though easy-to-implement, they
are likely to suffer from coarse feature aggregation. To mitigate this issue, var-
ious approaches [27,39,29] fetch pixel-wise image features with camera-LiDAR
projection matrix given by 3D coordinates. As an example, MVX-Net [27] pro-
vides an easy-to-extend framework for cross-modal 3D object detection with
joint optimization in 2D and 3D branches. AutoAlign [6] formulates the pro-
jection relationship as an attention map and automates the learning of such an
alignment through the network. In this work, we explore a faster and more effi-
cient alignment strategy to further boost the performance of point-wise feature
aggregation.

3 AutoAlignV2

The aim of AutoAlignV2 is to effectively aggregate image features for further
performance enhancement of 3D object detectors. We start with the basic archi-
tecture of AutoAlign: the paired images are input into a light-weight backbone,
ResNet [30], followed by FPN [18] to get the feature maps. Then, relevant im-
agery information is aggregated through a learnable alignment map to enrich the
3D representations of non-empty voxels during the voxelization phase. Finally,
the enhanced features will be fed into the subsequent 3D detection pipeline to
generate the instance predictions.

Such a paradigm could aggregate heterogeneous features in a data-driven
way. However, there are two main bottlenecks that still hinder the performance.
The first one is inefficient feature aggregation. Although global-wise attention
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map automates the feature alignment between RGB images and LiDAR points,
the computational cost is high: given the voxel number N and the size of image
feature W × H, the complexity is O(NWH). Due to the large value of WH,
AutoAlign discards other layers except C5 to reduce the cost. The second one
is complex data augmentation synchronization between image and points. GT-
AUG is an essential step for high-performance 3D object detectors, but how to
keep the semantic consistency between the points and the image during training
remains a complicated problem.

In this section, we show that the aforementioned challenges can be effectively
resolved through the proposed AutoAlignV2, which consists of two parts: Cross-
Domain DeformCAFA module and Depth-Aware GT-AUG data augmentation
strategy (see Figure 2). We also present a novel image-level dropout training
strategy, which enables our model to infer in a more dynamic manner.

3.1 Deformable Feature Aggregation

Revisiting to CAFA We first revisit the Cross-Attention Feature Alignment
module proposed in AutoAlign. Instead of establishing deterministic correspon-
dence with the camera-LiDAR projection matrix, it models the mapping rela-
tionship with a learnable alignment map, which enables the network to automate
the alignment of non-homogenous features in a dynamic and data-driven man-
ner. Specifically, given the feature map F = {f1, f2, ..., fhw}(fi indicates the
image feature of the ith spatial position) and voxel features P = {p1, p2, ..., pJ}
(pj indicates each non-empty voxel feature) extracted from raw point clouds,
each voxel feature pj will query the whole image pixels and generate the atten-
tion weights based on the dot-product similarity between the voxel feature and
the pixel feature. The final output of each voxel feature is the linear combina-
tion of values on all the pixel features according to the attention weights. Such
a paradigm enables the model to aggregate semantically relevant spatial pixels
to update pj and demonstrates superior performance compared to bilinear in-
terpolation of features. However, the huge computational cost limits the query
candidate to C5 only, losing the fine-grained information from high-resolution
feature maps.

Cross-Domain DeformCAFA The bottleneck of CAFA is that it takes all the
pixels as possible spatial positions. Based on the attributes of 2D images, the
most relative information is mainly located at geometrically-nearby locations.
Therefore, it is unnecessary to consider all the positions but only several key-
point regions. Inspired by this, we introduce a novel Cross-Domain DeformCAFA
operation (see Figure 3), which greatly reduces the sampling candidates and
dynamically decides the key-point regions on the image plane for each voxel
query feature.

More formally, given the feature map F ∈ Rh×w×d extracted from the image
backbone (e.g., ResNet, CSPNet) and non-empty voxel features P ∈ RN×c,
we first compute the reference points Ri = (rxx, r

i
y) in the image plane from
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each voxel feature center Vi = (vix, v
i
y, v

i
z) with the camera projection matrix

Tcam−lidar,

Ri = RC · Tcam−lidar · Vi, (1)

where RC is the combination of the rectifying rotation matrix and calibration
matrix of the camera. After obtaining the reference point Ri, we adopt bilinear
interpolation to get the feature Fi in the image domain. The query feature Qi is
derived as the element-wise product of the image feature Fi and the correspond-
ing voxel feature Pj (to be discussed later). The final deformable cross-attention
feature aggregation is calculated by,

DeformCAFA(Qi, Ri,F) =

M∑
m=1

Wm

[
K∑

k=1

Amqk(Qi) ·W′
mF(Ri +∆Rmqk)

]
,

(2)

where Wm and W′
m are learnable weights, and Amqk is a MLP to generate

attention scores on the aggregated image features. Following the design of self-
attention mechanism, we adopt M attention split heads. Here, K is the number
of sampling positions (K2 � HW , e.g., K = 4). With the help of dynamically
generated sampling offset ∆mqk, DeformCAFA is able to conduct cross-domain
relational modeling much faster than vanilla operation. The complexity is re-
duced from O(NWH) to O(NK2), enabling us to perform multi-layer feature
aggregation, i.e., to fully utilize the hierarchical information provided by FPN
layers. Another advantage of DeformCAFA is that it explicitly maintains the
positional consistency with the camera projection matrix to obtain the reference
points. Hence, even without adopting the CFSI module proposed in AutoAlign,
our DeformCAFA can yield a semantically and positionally consistent alignment.

Fig. 3. Illustration of the Cross-Domain DeformCAFA module. It first combines
coordinate-corresponding voxel and image features to generate cross-domain tokens,
which are then used to guide the aggregated positions in 2D feature map through
learnable convolutional offset. The final fused feature is obtained by the cross-attention
fusion of aggregated image feature and original voxel feature.
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Cross-Domain Token Generation The sparse-style DeformCAFA greatly
improves the efficiency compared to vanilla non-local operation. However, when
directly applying voxel features as the token to generate attention weights and
deformable offsets, the detection performance is barely comparable to or even
worse than its bilinear-interpolation counterparts. After careful analysis, we find
a cross-domain knowledge translation issue in the token generation process. Dif-
ferent from the original deformable operation, which is usually performed under
the unimodal setting [3,43], cross-domain attention requires information from
both modalities. However, the voxel features that only consist of spatial rep-
resentations, can hardly perceive information in the image domain. Therefore,
allowing interaction between different modalities is of great importance.

Motivated by [14], we hypothesize that the representation of each object
can be explicitly disentangled into two components: the domain-specific and
the instance-specific information. The former refers to the data related to the
representation itself, including the built-in attributes of domain features, while
the latter represents the identity information about the object, regardless of
the domain it is encoded in. Concretely, given the corresponding paired image
feature Fi and voxel feature Pj , we have,

Fi = D2D
i ·M i

obj , Pj = D3D
j ·M j

obj , (3)

whereD2D
i andD3D

j are domain-related features in the image and point domains,

while M i
obj and M j

obj are the object-specific representations, respectively. Since

Fi and Pj are the geometrically-paired features, M i
obj and M j

obj can be close in

the instance-specific representation space (i.e., Mobj ≈M i
obj ≈M

j
obj). Based on

this, we can implicitly interact features of different domain knowledges with,

Token = f(Fi · Pj) = f(D2D
i ·D3D

j · (Mobj)
2), (4)

where f is one fully connected (FC) layer to aggregate cross-domain information
and improve the flexibility of token generation.

3.2 Depth-Aware GT-AUG

Data augmentation is a crucial part of achieving competitive results for most
deep learning models. However, in terms of multi-modal 3D object detection, it is
hard to keep synchronization between point clouds and images when combining
them together in data augmentation, mainly due to object occlusions or changes
in the viewpoints. To solve the problem, we design a simple yet effective cross-
modal data augmentation named Depth-Aware GT-AUG. Different from the
methods described in [31,39], our approach abandons the complex point cloud
filtering process or the requirement of delicate mask annotation in the image
domain. Instead, inspired by the MixUp proposed in [38], we incorporate the
depth information from 3D object annotations to mix up the image regions.

Specifically, given the virtual objects P to paste, we follow the same 3D
implementation in GT-AUG [33]. As for the image domain, we first sort them in
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Fig. 4. Visualization of the augmented images with the proposed Depth-Aware GT-
AUG. The samples are randomly selected from nuScenes dataset.

a far-to-near order. For each to-paste object, we crop the same region from the
original image and combine them with a mix-up ratio of α on the target image.
The detailed implementation is shown in Algorithm 1.

Algorithm 1: Depth-Aware GT-AUG

Input: Object Points Set P3D, Object Image Patches Set P2D, Object Depths Set
D, Points P, Image I.

1: ObjectInds ← AscendingSort(D);
2: for all i such that i ∈ ObjectInds do
3: // point augmentation
4: P← P + P3D

i ;
5: // image augmentation
6: Porigin = CROP (I,Coord(P2D

i ));
7: Pnew = αPorigin + (1− α)P2D

i ;
8: I← PASTE(I,Pnew)
9: end for
Output: P, I

Depth-Aware GT-AUG simply follows the augmentation strategy in the 3D
domain, but at the same time, keeps the synchronization in the image plane
through MixUp-based cut-and-paste. The key intuition is that the MixUp tech-
nique does not fully remove the corresponding information after pasting aug-
mented patches on top of the original 2D image. On the contrary, it decays the
compactness of such information with respect to the depth to guarantee the ex-
istence of the feature from the corresponding points. Concretely, if one object is
occluded by other instances n times, the transparency of this object region will
be decayed by a factor of (1− α)n according to its depth order.
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3.3 Image-Level Dropout Training Strategy

Actually, image is usually an optional input and may not be supported in all
3D detection systems. Therefore, a more realistic and applicable solution to
multi-modal detection should be in a dynamic fusion manner: when images are
unavailable, the model detects objects based on raw point clouds; when images
are available, the model conducts feature fusion and yields better prediction. To
achieve this goal, we propose an image-level dropout training strategy by ran-
domly dropping the aggregated image features at the image level and padding
them with zeros during training, as shown in Figure 5. Since the imagery in-
formation is intermittently missed, the model should gradually learn to utilize
2D features as one alternative input. Later, we will show that such a strategy
not only speeds up the training speed greatly (with fewer images to process per
batch) but also improves the final performance.

(a) Vanilla Image Fusion (b) Image-Level Dropout Fusion

Fig. 5. Visualization of our proposed image-level dropout training strategy compared
to the vanilla fusion method. We enable the model to acquire ad-hoc inference by ran-
domly blinding several cameras during training. The images in while-black (b) denote
the dropout RGB images where we pad them with zeros for fusion.

4 Experiments

4.1 Dataset and Experimental Setup

Dataset. The nuScenes dataset [2] is one of the most popular datasets for 3D
object detection, consisting of 700 scenes for training, 150 scenes for validation,
and 150 scenes for testing. For each scene, it includes 6 camera images to cover
the whole viewpoint. In terms of the overlapping regions between images, we
predefine the image fetching priority sequence to avoid the ambiguous problem.
Experimental Setup. We select Object DGCNN [32] and CenterPoint [36] as
3D base detectors for the nuScenes dataset. For the image branch, we adopt
a light-weight backbone CSPNet [30], the same one used in YOLOX-Tiny [9],
as the feature extractor, followed by PAFPN [18]. We also pretrain the image
branch with 2D detection supervision on nuImages by adding an extra head [9].
The voxel size is set to (0.1m, 0.1m, 0.1m) if not specified. To avoid the redundant
computational cost, we adopt dynamic voxelization [40] to reduce the number
of voxel features. As for the DeformCAFA module, the head number is set to 4
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and the deformable point is set to 8. All the feature pyramid layers share the
same weight for the feature aggregation operation. All runtimes are measure on a
NVIDIA V100 GPU. The whole framework is optimized with hybrid optimizers
in an end-to-end manner. The 3D branch is optimized with AdamW and the 2D
branch is optimized with SGD. We use MMDetection3D [7] as our codebase and
apply the default settings, if not specified.

4.2 Main Results

Results on 3D Object Detectors We first implement AutoAlignV2 on two
representative 3D detector baselines: CenterPoint (anchor/center-based) and
Object DGCNN (transformer-based) on nuScenes validation subset. The final
performance is reported in Table 1. Our AutoAlignV2 greatly boosts its vanilla
3D baselines by 3.7/4.5 on mAP and 2.4/2.4 on NDS score, respectively. This
validates the effectiveness and generalization of the proposed method under dif-
ferent 3D detection frameworks.

Table 1. Comparison of detection results based on Object DGCNN and CenterPoint
with and without AutoAlignV2 on nuScenes validation subset.

Method AutoAlignV2 mAP NDS

Object DGCNN[32] 60.73 67.14
Object DGCNN[32] X 64.42 69.52

CenterPoint [36] 62.56 68.84
CenterPoint [36] X 67.05 71.23

Comparison with State-of-the-Arts. In addition to offline results, we also
report the detection performance on nuScenes test leaderboard compared to
various detection approaches. The results are shown in Table 2. Our final model
is based on CenterPoint with a voxel size of (0.075m, 0.075m, 0.2m). It sur-
passes all the other counterparts including the recently developed MoCa [39]
and PointAugmenting [31] by roughly 2.0 mAP, achieving new state-of-the-arts
on this competitive benchmark. When observing the results in detail, we can find
that the construction vehicle, motorcycle, and bicycle are separately improved
by 13.1, 13.4, and 17.4 mAP. Such huge enhancements manifest the superiority
of our proposed AutoAlignV2 to deal with hard-to-detect examples.

4.3 Ablation Studies

In this section, we provide extensive ablations to gain a deeper understanding
of AutoAlignV2. For efficiency, 1/8 nuScenes training set is used.

Ablation Studies on AutoAlignV2. To understand how each component
in AutoAlignV2 facilitates the detection performance, we test each module in-
dependently on the baseline detector: CenterPoint and report its performance
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Table 2. Comparison with previous methods on nuScenes test leaderboard. “C.V.”
and “Ped.” are the abbreviations of construction vehicle and pedestrian, respectively.
NDS score, mAP, and APs of each category are reported. The single class AP not
reported in the paper is marked by “-”. The best results are highlighted in bold.

Method NDS mAP Car Truck Bus Trailer C.V. Ped. Motor Bicycle

3D-CVF [37] 49.8 42.2 79.7 37.9 55.0 36.3 - 71.3 37.2 -
PointPainting [29] 58.1 46.4 77.9 35.8 36.1 37.3 15.8 73.3 41.5 24.1

CVCNet [4] 66.6 58.2 82.6 49.5 59.4 51.1 16.2 83.0 61.8 38.8
AFDetV2 [42] 68.5 62.4 86.3 54.2 62.5 58.9 26.7 85.8 63.8 34.3

MVP [36] 70.5 66.4 86.8 58.5 67.4 57.3 26.1 89.1 70.0 49.3
MoCa [39] 70.9 66.6 86.7 58.6 67.2 60.3 32.6 87.1 67.8 52.0

AutoAlign [6] 70.9 65.8 85.9 55.3 67.7 55.6 29.6 86.4 71.5 51.5
PointAugmenting [31] 71.1 66.8 87.5 57.3 65.2 60.7 28.0 87.9 74.3 50.9

CenterPoint [36] 67.3 60.3 85.2 53.5 63.6 56.0 20.0 84.6 59.5 30.7
AutoAlignV2 (Ours) 72.4 68.4 87.0 59.0 69.3 59.3 33.1 87.6 72.9 52.1

in Table 3. The overall mAP score starts from 50.3. When we add the Cross-
Domain DeformCAFA module together with the image branch, the mAP score
is raised by 6.7%. Such a significant improvement validates the correctness of the
incorporation of image features and the effectiveness of the proposed deformable
feature alignment module. Then, we adopt the image-level dropout strategy to
improve the training speed. The performance does not drop and is even slightly
improved by another 0.1 mAP. When the depth-aware GT-AUG is added, the
accuracy is further promoted by 1.4 mAP. Although the improvement is not re-
markable, depth-aware GT-AUG greatly simplifies the synchronization process
in the joint image-point augmentation.

Table 3. Effect of each component in our AutoAlignV2. Results are reported on
nuScenes validation set with CenterPoint.

DeformCAFA Image-level Dropout Depth-aware GT-AUG mAP NDS

50.28 58.71
X 56.96 62.54
X X 57.03 62.52
X X X 58.45 63.16

Ablation Studies on Cross-Domain DeformCAFA

1) Comparison with other fusion mechanisms. In this experiment, we
keep all settings the same except for the cross-modal feature fusion method
for a fair comparison. We consider the following strategies used in Point-
Painting [27], MoCa [39], AutoAlign [6], and PointAugmenting [31], and
compare them with Cross-Domain DeformCAFA in Table 4. It can be found
that AutoAlignV2 outperforms all the other fusion mechanisms by a large
margin, verifying the effectiveness of our proposed approach. The enhance-
ment mainly stems from two aspects: (i) multi-level features are fully utilized
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Table 4. Comparison with different feature fusion strategies adopted in current multi-
modal detectors. Methods with * indicate our own implementation.

Fusion Strategy mAP NDS

Baseline w/o Img 50.28 58.71
PointPainting* [27] 55.45 61.44

MoCa [39] 55.91 61.54
AutoAlign [6] 56.69 61.93

PointAugmenting* [31] 56.75 62.11
Cross-Domain DeformCAFA 58.45 63.16

thanks to the optimization of computational complexity and (ii) superiority
of relational modeling on cross-domain features across different modalities.

2) Strategies on token generation. To validate the necessity of the cross-
domain token generation, we compare our method with various policies: gen-
erated from voxel features only, image features only, and their combinations
including concatenation, addition, and multiplication. As given in Table 5,
utilizing the voxel features as the query token cannot guarantee satisfying
results, since 3D features can hardly perceive information in the interaction
between cross-modal features. The result produced by the image features is
also limited, possibly due to the lack of information from 3D points. The
performance of simply concatenating or adding them together remains poor.
We infer the reason that though both features contain the same identity in-
formation, it is still hard for the model to figure them out when blending with
the domain-specific representation. Finally, we obtain the best performance
with the multiplication version, which proves the assumption in Section 3.1.

Table 5. Ablations on different strategies in query token generation for Cross-Domain
DeformCAFA module. “Operation” denotes the interact operation between the points
and image features to generate tokens.

Points Feature Images Feature Operation mAP NDS

X - 57.10 61.77
X - 57.77 62.08

X X Concat 58.01 62.32
X X Add 57.94 62.13
X X Multiply 58.45 63.16

Ablation Studies on Depth-Aware GT-AUG

1) Comparison with other cross-modal GT-AUG. We compare depth-
aware GT-AUG together with other cross-modal data augmentation ap-
proaches proposed in MoCa [39] and PointAugmenting [31]. As shown in
Table 6, the depth-aware GT-AUG slightly surpasses all the other strategies
even without point filtering or 2D occlusion checking, which greatly over-
comes the difficulty in cross-domain synchronization. Moreover, we can see
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from Figure 4 that the depth-aware GT-AUG is able to produce smoother
images for image fusion, which enhances the quality of 2D features during
the cross-modal fusion process.

Table 6. Comparison with various cross-modal GT-AUG strategies. “2D Occlusion
Check”: abandoning the instance paste if it has certain overlap with the original in-
stances in the images; “Points Filter”: filtering the points to guarantee that points of
one instance will not aggregate the image features from another occluded one.

Method 2D Occlusion Check Points Filter mAP NDS

w/o Aug 40.12 45.39
MoCa [39] X 53.08 56.54

PointAugmenting [31] X 53.16 56.91
Depth-Aware GT-AUG 53.48 57.16

2) GT-AUG Mix-up Ratio. In Figure 6, we investigate how the mix-up
ratio α in the depth-aware GT-AUG affects the model performance. It can
be seen that the detection result is not sensitive to the mix-up ratio ranging
from 0.5 to 0.8, where the NDS only fluctuates within 0.1%. However, the
score drops about 0.7 mAP with α = 1.0, where the depth-aware GT-AUG
degenerates to the original GT-AUG implementation in MoCa [39]. Since no
occlusion checking or point filtering is performed, points may be fused with
other imagery information, leading to the ambiguous learning issue.

Fig. 6. Ablation study on the mix-up ratio α introduced in depth-aware GT-AUG.

Ablation Studies on Image-level Dropout Strategy. Considering that
AutoAlignV2 can be dynamically trained with or without images, namely dy-
namic image fusion, we study such an attribute and how it contributes to the
final performance. Concretely, we vary the number of images for training in our
image-level dropout strategy and report the detection accuracy as well as the
training time in Table 7. From the table, we can find that reducing the number
of training images from 6 to 3 has little effect on the performance of the model
but greatly reduces the training time by 1.5×. However, if continuously reducing
this number to 1, the performance incurs an evident decline. We infer the reason
that single image training is not enough for fully cross-modal fusion learning.
Therefore, we adopt 3 images per scene in our experiments.
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Table 7. Ablation studies on the number of images for fusion during the training
process with our proposed image-level dropout strategy.

# Images Training Time mAP NDS

0 7.6h 50.28 58.71
1 8.5h 57.93 62.84
3 9.7h 58.45 63.16
6 14.1h 58.51 63.11

4.4 Dynamic Inference and Runtime

Autonomous driving is a direct application of multi-modal 3D object detection.
Therefore, the practicality and inclusiveness of the model are also vital. As men-
tioned in Section 3.1, AutoAlignV2 fits to different inference modes, no matter
the images are available or not. We carefully measure the inference performance
of AutoAlignV2 under different settings and report its runtime per frame in Ta-
ble 8. Compared with the LiDAR-only detector: CenterPoint, our AutoAlignV2
takes only 123 ms for the extra 2D image branch, thanks to its light-weight
backbone: CSPNet. We resize all the images to 640×1280 for efficient fusion. In
addition to fully surrounding images for cross-modal fusion, our method is also
qualified for the LiDAR-only scenarios without any extra computational cost
compared to vanilla CenterPoint, but still maintains the detection accuracy.

Table 8. Inference time of AutoAlignV2 on nuScenes dataset. “# Images” means the
number of images to load during inference.

Method # Images Inference Time mAP NDS

CenterPoint - 85ms 50.28 58.71
AutoAlignV2 6 208ms 58.45 63.16
AutoAlignV2 3 181ms 54.32 60.84
AutoAlignV2 0 87ms 50.29 58.67

5 Conclusion

In this paper, we develop a dynamic and fast multi-modal 3D object detec-
tion framework, AutoAlignV2. It greatly speeds up the fusion process by uti-
lizing multi-layer deformable cross-attention networks to extract and aggregate
features from different modalities. We also design the depth-aware GT-AUG
strategy to simplify the synchronization between 2D and 3D domains during the
multi-modal data augmentation process. Interestingly, our AutoAlignV2 is much
more flexible and can infer with and without images in an ad-hoc manner, which
is more suitable for the real-world systems. We hope AutoAlignV2 can serve as
a simple yet strong paradigm in multi-modal 3D object detection.
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