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Abstract. Object pose estimation is a crucial task in computer vision
and augmented reality. One of its key challenges is the difficulty of an-
notation of real training data and the lack of textured CAD models.
Therefore, pipelines which do not require CAD models and which can
be trained with few labeled images are desirable. We propose a weakly-
supervised approach for object pose estimation from RGB-D data using
training sets composed of very few labeled images with pose annota-
tions along with weakly-labeled images with ground truth segmenta-
tion masks without pose labels. We achieve this by learning to annotate
weakly-labeled training data through shape alignment while simultane-
ously training a pose prediction network. Point cloud alignment is per-
formed using structure and rotation-invariant feature-based losses. We
further learn an implicit shape representation, which allows the method
to work without the known CAD model and also contributes to pose
alignment and pose refinement during training on weakly labeled images.
The experimental evaluation shows that our method achieves state-of-
the-art results on LineMOD, Occlusion-LineMOD and TLess despite be-
ing trained using relative poses and on only a fraction of labeled data
used by the other methods. We also achieve comparable results to state-
of-the-art RGB-D based pose estimation approaches even when further
reducing the amount of unlabeled training data. In addition, our method
works even if relative camera poses are given instead of object pose an-
notations which are typically easier to obtain.

Keywords: object pose estimation, shape alignment, weak supervision.

1 Introduction

6D object pose estimation is a crucial task in computer vision and robotics with
applications for robotic grasping [37], augmented reality [3], and autonomous
driving [23]. 6D pose estimation comprises estimating rotation and translation
of an object from the camera coordinate system to the object coordinate system.

With the rise of deep learning, we witnessed a rapid improvement of learning-
based pose estimation from RGB images [38,27,36,40,33,40,32,18,30] as well as
from RGBD data [5,9,34,8]. A common problem of deep learning-based meth-
ods is their dependence on access to a large number of images with ground
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truth labels. This is even more problematic for 6D pose estimation because pose
labels cannot be manually annotated and, thus, require sophisticated labeling
pipelines [17]. A possible solution would be to simulate synthetic scenes and train
networks on rendered images. This, however, requires the availability of textured
CAD models and significant time for simulation and rendering. As we can see
from the results of the BOP Challenge [13], methods trained on synthetic data
still lag behind their counterparts trained on real or mixed data. For RGBD-
based methods [9,34,8], training on real data is also prevalent due to difficulty
of realistic simulation of depth sensor noise [14]. To overcome these problems,
we propose a novel training pipeline that uses a combination of a very small
number of images with object pose or relative camera transformation labels and
weakly-labeled images with only 2D segmentation masks. Besides, our training
pipeline does not require access to CAD models.

Some approaches are proposed which do not require CAD model. For exam-
ple, RLLG [4] proposes a training pipeline without CAD model by using labeled
training RGB images to regress 2D-3D correspondences by implicitly recon-
structing the model using multiview supervision. Similarly, we establish 3D-3D
correspondences without CAD model by reconstructing the model implicitly by
establishing correspondences in local reference frame of one of the training sam-
ples. RLLG [4] requires labeled data for the entire training data even though
it doesn’t require CAD model. To overcome the need of real training data and
CAD model, Latent Fusion [26] proposes a generalized reconstruction pipeline
from few labeled views of the unseen object which is then used to estimate pose
for a given segmented image by iterative feature alignment. Even though it is
a generalized network, the performance of Latent Fusion is not comparable to
fully supervised approaches. Without requiring CAD model, our approach uses
a combination of very few labeled data and weakly-labeled data and achieves
accuracy on par with state-of-the-art supervised RGB-D approaches.

In this paper, we propose a novel deep learning architecture for pose estima-
tion and a novel weakly supervised training pipeline. Since we don’t use a CAD
model, we use the reference frame of one of the labeled training sample as the
canonical reference frame. During training, the network takes as input a point
cloud of the object and outputs both implicit shape representation of the object
and dense 3D-3D correspondences in the canonical reference frame defined by
one of the labeled samples. Note that, since the CAD models are not available,
the network is trained to learn the implicit shape representation of the object
which is used for shape alignment and pose refinement. Thus, during training,
the network learns to reconstruct the object. The predicted implicit shape is
converted to the triangular mesh for ICP [1] refinement. During inference, we
estimate pose using estimated 3D-3D correspondences and refine the pose using
the shape reconstructed during training. The proposed training pipeline consists
of three stages: 1) fully supervised training on fully labeled images; 2) fine-
tuning on weakly labeled images; 3) auto-labeling weakly labeled images and
then training on them in a fully supervised manner. The architecture and the
training pipeline were evaluated on LineMOD, LineMOD-Occlusion and TLess
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datasets and showed very competitive results despite having been trained using
a fraction of labeled training images compared to other approaches.

To this end, we contribute:
1. A novel RGB-D pose estimation architecture for 6D pose estimation from

point clouds and color image, which fuses features from color, depth and normals
and performs simultaneous object reconstruction and 6D pose estimation from
very few images with pose labels. Two key components can be distinguished: We
propose a feature decoder to improve pose estimation by associating pose invari-
ant features in the shape alignment pipeline, and a shape network to learn the
shape of the object which contributes to pose refinement and shape alignment.

2. A weakly supervised novel pose estimation pipeline that simultaneously
learns a pose estimation network and auto-label weakly-labeled data with seg-
mentation masks using labeled samples with relative pose labels leveraging shape
alignment and feature alignment losses without the need of CAD model. The
pipeline achieves accuracy on par with fully supervised RGB-D approaches.

3. Novel shape-based and feature-based rotation invariant losses, are pro-
posed which are suitable for weakly supervised training. The training setup
makes it suitable to handle symmetric objects as our approach is shape align-
ment based. Our approach works even if only the relative poses are available
instead of absolute pose for few samples.

2 Related Work

Advances in deep learning enabled a rapid development of pose estimation meth-
ods from monocular RGB images. One line of work presented in [21,38,5,36,18]
treat pose estimation as a regression problem by directly predicting rotation and
translation of the object. [40,32,27,20,22,30] treat it as a correspondence estima-
tion problem by regressing 2D-3D correspondences between image pixels and
the 3D model of the object. The 6D pose is then estimated using PnP [19] and
RANSAC. Alternatively, [33,28,16] estimate a predefined set of sparse keypoints
instead of dense correspondences, which has proven to be more robust to occlu-
sions. We have opted for a dense correspondence-based approach as dense 3D-3D
correspondences are required for shape alignment. Despite that, our approach is
robust to occlusions on par with keypoint based approaches.

Pose estimation from RGBD data, which was traditionally solved using ge-
ometric methods, such as Point Pair Features [6], has also attracted attention
from the deep learning community. Most of the methods, such as [10,34,32,8],
rely on a common idea of fusing the features estimated separately from RGB
using a CNN and from Depth using a variant of Pointnet [29]. Similarly to pose
estimation from RGB, some methods [10,32,8] are trained to predict 3D-3D cor-
respondences, while [34] directly outputs rotation and translation.

There have been several attempts to lessen the dependence of pose estimation
methods on hard-to-annotate pose labels. [35,39,31] propose to pre-train a model
on synthetic images with full annotations and then use the network to label real
images, which are then used for training. A CAD-free and 6D labels-free method
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that uses known bounding boxes, object size and multi-view constraints to train a
direct pose regression was proposed in[21]. [41] proposes an approach to estimate
domain invariant keypoints by training with labeled synthetic images and real
data without pose labels. We propose a weakly-supervised approach using few
labeled samples and weakly-labeled data to train a pose estimation pipeline and
to label weakly-labeled data without requiring CAD model.

3 Method

3.1 Architecture

The proposed network takes a segmented point cloud and a segmented RGB im-
age of the detected object and outputs 1) dense 3D-3D correspondences between
the point cloud and the object model; 2) decoded rotation-invariant features; 3)
implicit shape representation of the object. Figure 1 summarizes the architec-
ture. Two separate encoders are used to map the input point cloud and the
input image to their respective latent vector representations. Both vectors are
stacked to form the vector z, which is used by the decoders. Vector z along
with each 3D point in the point cloud are passed through two MLP decoders to
predict point-wise 3D correspondences and point-wise feature values. The pre-
dicted correspondences are passed through an MLP shape network to predict
their respective SDF values. The feature decoder and shape network are used
only during the training of the network. We describe different components of our
network in detail in the following section.

Encoders The encoder E consists of two main components. A PointNet based
encoder [24] is used to extract features from the point cloud, X ∈ RK×3. Each x
of the K points is concatenated with its corresponding normal, n, and color, c,
of the normal vector, N , and color vector, C, to use as input to point cloud en-
coder. The network extracts features from the input point cloud and its features,
normals, and color, and outputs an intermediate latent vector.

A ResNet CNN [7] encoder extracts features from an RGB image, I. The CNN
predicts another intermediate latent vector from a color image. The intermediate
latent vectors from Pointnet and CNN are concatenated to pass through a fully
connected layer to produce a global latent vector, z of length d.

The full encoder is mathematically defined as:

z = E(I,X,N,C) (1)

Correspondence Decoder Correspondence decoder is an MLP with 7 fully
connected layers which takes the global latent vector z and a 3D point x and
predicts its corresponding 3D point xC ∈ R3 in the canonical reference frame.
We denote the decoder with D which is mathematically defined as:

xC = D(z, x) (2)
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Fig. 1: Architecture: Our network takes in a segmented point cloud and seg-
mented color image to predict 3D correspondences which are used to estimate
6D pose. A feature decoder and shape network are employed only during train-
ing to improve shape alignment. The encoder combines latent vectors from the
point cloud encoder and image encoder to predict z. Each 3D point, x, in the
point cloud, X, is concatenated with z to predict point-wise correspondences,
xC and pose invariant point-wise features, xF using Correspondence decoder
(Decoder) and Feature decoder respectively. The predicted correspondences are
passed through the shape network to predict point-wise SDF value, s, which
is used to improve shape alignment. The shape network learns implicit shape
which is used to reconstruct shape used for pose refinement during training.

Feature Decoder The feature decoder, F , has the same architecture as the
correspondence decoder and has the same input. It takes a concatenated vector
of z and x to predict a per-point pose invariant feature, xF . The decoder serves
an auxiliary role and is used only during training. The motivation behind the
feature decoder is to incorporate pose-invariant features. This allows us to de-
fine loss functions even for unlabeled data. Since both decoders share the same
input, losses formulated on features impact the correspondence prediction. By
associating shape alignment with feature loss, we are able to avoid false matches
where the structure is similar but features are different. This is illustrated in
Figure 4. In addition to explicit loss terms on shape alignment related feature
losses, predicting pose invariant features for each point is an auxiliary task that
improves the encoder performance.

xF = F (z, x) (3)

Shape Decoder The shape decoder SN , similarly to DeepSDF [25], learns
implicit shape representation in the canonical object pose space. It consists of
an MLP with 7 fully connected layers which takes in a correspondence 3D point,
xC , to predict its signed distance function value, s. The purpose of the decoder
is twofold. First, it allows us to reconstruct the object during training and avoid
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using CAD models. Second, it allows for shape alignment during training.

s = SN(xC) (4)

3.2 Training Pipeline and Loss Functions

We aim to estimate the 6D pose of an object from an RGB-D image which
involves estimating 3D rotation and 3D translation. We train a network to es-
timate dense 3D-3D correspondences, which are then used to estimate the 6D
pose. To facilitate shape alignment and pose refinement, an implicit object shape
is predicted. The model is trained in a weakly-supervised manner on a mix of
weakly labeled data and a very small amount of fully labeled data. Fully-labeled
images are provided with ground truth poses and segmentation masks. Only ob-
ject masks are available for weakly-labeled images. We refer to the fully-labeled
samples as fewshot samples as we use very few of them in our pipeline.

We employ a three-stage pipeline to train the network. In Stage 1, all parts
of the network are trained in a fully supervised manner on the fewshot samples.
The shape encoder, trained separately from the rest of the network, implicitly
reconstructs the object shape. The pre-trained shape encoder is frozen after this
stage. In Stage 2, we train the network along with the feature decoder using
both fewshot data and weakly-labeled images using shape and feature deviation
losses. We also use the frozen shape network to facilitate shape alignment for
weakly-labeled samples. In Stage 3, we first estimate poses for weakly-labeled
data using the trained network from Stage 2. The estimated poses are refined
using ICP with the triangular mesh reconstructed from the shape network. The
network is then trained in a fully supervised manner using the refined poses.

We use the following terminology in the rest of the paper. The camera ref-
erence frame is the local reference frame in which each image is observed which
is specific to each image. The canonical reference frame is the reference frame
to which we find the pose for all the samples. The reference frame of the first
sample in the fewshot samples is treated as the canonical reference frame. We
use relative pose between frames to generate pose for fewshot samples to the
canonical reference frame which is the camera reference frame of the first sam-
ple. We estimate pose for all our samples treating the first sample in fewshot
samples as the canonical reference frame.

Stage 1 In this stage, we train the network with fewshot samples for which we
know the pose labels. It is depicted in Figure 2. We use correspondence regression
loss, LC , to penalize L2 distance between ground-truth correspondences, XG,
and predicted correspondences. The ground-truth correspondences are obtained
by transforming the input point cloud with ground truth rotation, RG, and
translation, TG, to the canonical reference frame. Using relative pose between
frames, we find the transformation to the first frame from every frame and use
it as a ground truth pose. We train the encoder-decoder network using loss
function, LC which is defined as follows:

XG = XRG + TG LC = ∥XC −XG∥2 (5)
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Fig. 2: Pipeline of Stage 1: Few shot samples comprises of RGB image, I, and
point cloud, X, and its corresponding normals, N , and color, C. We use ground
truth relative poses RG, TG to transform all the point clouds to the first image
reference frame to get an assembled point cloud A. We train implicit shape
network using A and loss, LS . We also train the encoder-decoder using ground
truth relative poses for fewshot samples using loss LC .

We employ SDF loss, LS , with the assembled point cloud, A and its nor-
mals, AN to train the shape network. The assembled point cloud is obtained by
combining the ground truth correspondences of the few shot point clouds. Since
the assembled point cloud is supposed to lie on the object’s surface, the SDF
value should be zero for these points. To generate more samples to train the
shape network and to learn shape better, we estimate point cloud normals and
translate assembled point cloud along their per-point normals, AN , by a scaling
factor, P . For these samples, the SDF value should be equal to the scaling factor,
P , and hence we formulate loss with the scaling factor as follows:

A′ = A+ PAN

S = SN(A′)

LS = ∥S − P∥1

Stage 2 In this stage, the network is trained on both weakly-labeled and fewshot
samples. It is depicted in Figure 3. We freeze the shape network because it has
already learned the signed distance function of the shape and is used to formulate
shape deviation loss for weakly-labeled data. We present the loss functions used
in this stage below.

We predict color as a feature using the feature decoder. We use color as
pose-invariant feature to improve pose alignment. We employ a feature loss, LF ,
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Fig. 3: Pipeline of Stage 2 : We train the encoder-decoder, feature decoder using a
frozen shape network and assembled point cloud. Chamfer loss, L′

C , photometric
loss, L′

F are formulated on correspondences, XC and predicted features XF .
Correspondences are also passed through the frozen shape network to predict
SDF, S′ to formulate SDF loss, L′

S .

between predicted feature, XF , and color of the input point cloud, C. This loss
is applied to all the samples.

LF = ∥XF − C∥2 (6)

We employ different loss functions for weakly-labeled samples as we do not
know the pose for these samples. We employ a rigidity preserving loss, L′

R,
between the input point cloud and predicted correspondences to predict the
correspondences with the same structure as the input point cloud. We formulate
a loss to preserve the inter-point euclidean distance between each pair of points
between input point cloud, X, and predicted correspondences, XC .

dij = ∥xi − xj∥2
dijC = ∥xi

C − xj
C∥2

L′
R =

∑
j

∑
i

∥dij − dijC∥2
(7)

We estimate rotation and translation between input point cloud, X, and
predicted correspondences, XC , using the differentiable Kabsch algorithm [15].
So, the loss formulated using the rotation and translation can be back propagated
through the network. We transform input normals, N , and point cloud, X, to
canonical reference frame using estimated rotation and translation as follows:

NT = NR XT = XR+ T (8)

We transform the input point cloud using R, T to constrain the shape align-
ment to rigid transform by parameterizing loss over R, T instead of predicted
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correspondences directly. If we formulate the chamfer shape loss with predicted
correspondences, the degenerate solution is that all predicted correspondences
can collapse to one point on the target shape. Although we have a structure
preserving loss, L′

R, transforming input point cloud and formulating loss on R
and T eliminates the sensitivity of network on weights assigned to structure
preserving and shape aligning losses. Since we employ structure preserving loss
even for noisy point clouds and parameterize shape based losses over rigid trans-
formation, the entire point cloud undergoes a rigid transformation avoiding the
need to include RANSAC for correspondence filtering.

To register weakly-labeled samples to the canonical reference frame, we em-
ploy chamfers distance, L′

C , to register the predicted correspondences with the
assembled point cloud. We employ chamfers distance between assembled point
cloud, A, its colors, AC , its normals, AN , and transformed input, XT , predicted
color, XF , transformed normals, NT .

Chamfer distance penalizes the structure deviation by penalizing the distance
between the closest points on a target and source shape. We further combine fea-
tures and correspondences by penalizing the feature deviation among the closest
points in addition to structure deviation. We use color and normal features along
with 3D points in chamfer distance to align the point clouds better. To propa-
gate loss to the encoder through the features based on chamfer distance, we need
to associate the feature loss to the pose. We achieve this by adding a feature
decoder, which uses the same input as the correspondence decoder. Since we
use same the latent space for both correspondence decoder and feature decoder,
the pose alignment is impacted by losses formulated on correspondences as well
as the features. Thus, we formulate feature loss on colors to propagate loss to
improve the encoder to predict better correspondences and align the shapes bet-
ter. The photometric consistency loss, L′

F , penalizes the color deviation between
closest points on the transformed input cloud and the assembled point cloud.

We estimate rotation between the input point cloud and correspondences to
rotate normals to the canonical reference frame. Losses formulated on rotated
normals, NT , propagates through rotation matrix to correspondences and to the
network. The normal consistency loss, L′

N , penalizes normal deviation between
closest points on the transformed input cloud and the assembled point cloud.

idx = argmin
x∈A

||x− xT ||2

L′
C = ||A[idx]− xT ||2

L′
F = ||AC [idx]− xF ||2

L′
N = ||AN [idx]− nT ||2

(9)

By adding features into the pipeline and formulating loss function combining
correspondences and features, the network automatically learns to predict the
pose better as it impacts both the feature and correspondence decoder.

We employ another shape penalizing loss formulated using the frozen shape
network. The predicted correspondences, XC , from the weakly-labeled data are
passed through the shape network to predict SDF values, S, for the correspon-
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dences. Since the correspondences are supposed to lie on the shape, the pre-
dicted SDF value should be 0 for the correspondences. Basically, the predicted
SDF value measures how far the predicted correspondence is from the object
surfaces. In the ideal case, when the correspondence is on the surface, SDF is 0.
We formulate shape deviation SDF loss, L′

S , as follows:

L′
S = ∥S∥1 (10)

The total loss, L2, to train the stage 2 with coefficients β1 and β2 is as follows:

L2 = β1(LC + LF ) + β2(L
′
R + L′

C + L′
F + L′

N + L′
S) (11)

Stage 3 We train the network using the above losses until convergence in Stage
2. We observe that the predictions still need refinement to align perfectly with the
shape. To further refine the pose predictions, we employ an ICP-based refinement
pipeline to achieve exact alignment. We reconstruct the surface mesh of the
object from the Shape network using the marching cubes algorithm. We project
the mesh using the estimated pose from the predicted correspondences and then
perform ICP with the input point cloud to find better alignment. After extracting
the refined pose for all the weakly labeled samples, we employ correspondence
loss, LC , with the estimated refined poses as ground truth poses for weakly-
labelled samples to improve the accuracy further. We train the third stage using
estimated refined pose, R′, T ′, for weakly-labelled data as follows:

X ′
G = XR′ + T ′ L3 = ∥XC −X ′

G∥2 (12)

4 Results

We evaluate our approach on LineMOD [11], LineMOD-Occlusion [2] and TLess
[12]. We employ ADD/ADD-S metric [11] for LineMOD, LineMOD-Occlusion
and ARmetric of BOP Challenge[13] for TLess. We demonstrate the effectiveness
of our approach by comparing results we attained using a fraction of total data
as labeled data in contrast to other approaches using full labeled data.

4.1 Training Data

We use ground truth masks to extract tight image patches containing the object
and point clouds corresponding to the foregrounds of the object. For LineMOD,
we sample 15% of data as training data similar to other approaches. Of the
sampled training data, we consider ground truth training samples(1%) from the
sampled data in a way that they cover the object from different viewpoints which
are far apart from each other so that they cover the object to the maximal extent.
This is essential for our approach as we need an approximate point cloud of the
object from the ground truth samples. The rest (14%) is treated as weakly-
labeled data with only segmentation masks. If the absolute pose is given for the
dataset, we use the first image in the fewshot samples as the canonical reference
frame and convert the absolute poses of other fewshot samples to relative poses.
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Table 1: Results on LineMOD dataset along with state of the art RGB and
RGBD approaches. * denotes discrete symmetric objects. GT data and Total
Data refer to the amount of ground truth data and total data used for training
respectively. ICP refers to results with ICP refinement using the reconstructed
model. CAD refers to training data synthetically generated using a CAD model.

Method/
Object

Dpod Dpodv2 PVN3D G2L-Net Ours

RGB ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Depth ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

GT Data - 15% - 15% 15% 5% 15% 1% 1% 1% 15% 15%

Total Data - 15% - 15% 15% 5% 15% 5% 15% 15% 15% 15%

ICP ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✓

CAD ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

Ape 37.2 53.2 62.14 80 97.3 96.8 94.2 97.2 98.2 99.1 99.3
Benchvice 66.7 95.3 88.39 99.7 99.7 9.1 94.9 97.9 99.9 99.5 99.5
Camera 24.2 90.3 92.51 99.2 99.6 98.2 94.1 97.9 99.3 98.8 98.8
Can 52.5 94.1 96.6 99.6 99.5 98 96.5 97.7 98.7 99.7 100
Cat 32.3 60.3 86.17 95.1 99.8 99.2 99.1 99.3 99.3 99.3 99.3
Driller 66.6 97.7 90.15 98.9 99.3 99.8 89.5 99.5 99.5 99.5 99.5
Duck 26.1 66 54.86 79.5 98.2 97.7 84.3 95.4 97.1 96.8 98.8
Egg box* 73.3 99.7 98.64 99.6 99.8 100 99.4 100 100 100 100
Glue* 74.9 93.8 95.4 99.8 100 100 99.9 99.8 99.8 99.9 99.9
Puncher 24.5 65.8 27 72.3 99.9 99 87.7 96.6 98.8 98.6 99
Iron 85 99.8 98.2 99.4 99.7 99.3 94.1 95.4 99.3 100 100
Lamp 57.2 88.1 91 96.3 99.8 99.5 90.2 99.1 99.1 99.1 99.1
Phone 29 74.2 74.3 96.8 99.5 98.9 98.5 99.9 99.9 99.9 99.9

Average 50 82.9 81.2 93.5 99.4 88.5 98.7 94.03 98.1 99.1 99.2 99.4

4.2 LineMOD Dataset

Most approaches use 15% of the total data as training data. Our training data
consists of 1% samples with ground truth poses and 14% samples without known
poses. We train DpodV2[32] segmentation network with 15% ground truth data
whereas the pose pipeline uses 1% ground truth data. During training, the pose
accuracy of labels generated for weakly-labeled training samples after stage 2
is 90.6% without ICP and 99.2% with ICP. The ICP accuracy indicates the
efficiency of our labeling pipeline and the gap in accuracy justifies the need for
refinement in stage 3. From table 1, we are able to achieve SOTA results using a
fraction of ground truth pose data. We observe an improvement of 1.0% with ICP
refinement (99.1%) using the generated mesh from shape network. We achieve
closer to benchmark accuracy when we use 15% ground truth data (99.2%).

4.3 LineMOD-Occlusion Dataset

On LineMOD-Occlusion, we achieve close to SOTA results even though we train
on data obtained from the LineMOD instead of LineMOD-Occlusion and with
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Table 2: Results on LineMOD-Occlusion dataset along with state of the art RGB
[38,40,33] and RGBD [9,8] approaches.

Method PoseCNN Dpod Hybrid Pose PVN3D FFB6D Ours

Average 24.9 47.3 47.5 63.2 66 63.2

only 1% labeled data. The results are presented in Table 2. Our method achieves
the same accuracy as PVN3D [10] which shows that our network is capable of
handling occluded objects on par with keypoint based approaches despite being
a dense correspondence based approach.

4.4 TLess Dataset

We conducted experiments on TLess [12] to show the robustness of our method to
occlusions and symmetries. We used 1.5% (20 samples) labeled training images to
train the network compared to 100% (≈ 1260) used by other approaches. During
training, the AR score of labels generated for weakly-labeled training samples is
0.85 indicating that we are able to label most of the training samples correctly.
The results on test set are presented in Table 3. We achieve a higher VSD score
that measures shape alignment. This indicates that our shape matching is on
par with other approaches despite using fewer labels. We observed a slightly low
recall on MSSD, MSPD since there are some objects with minimal geometric
differences leading to misalignments.

Table 3: Results on TLess along with supervised [27,32] approaches. GT data
refer to the amount of ground truth training data. ICP refers to results with
ICP refinement.

Method Pix2Pose DpodV2 Ours

ICP ✓ ✗ ✓ ✗ ✓

GT data 100% 100% 100% 1.5% 1.5%

VSD 0.43 0.53 0.41 0.34 0.46

MSSD 0.54 0.55 0.51 0.28 0.36

MSPD 0.54 0.58 0.53 0.29 0.37

AR 0.51 0.56 0.49 0.30 0.4

5 Ablation Studies

5.1 Amount Of Training Data

We achieve 94% accuracy with just 5% of training data with 1% labeled data
as shown in table 1. As expected, our accuracy increases with an increase in
GT training data which is evident from the increase in training data from 1% to
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15%. However, the increase in accuracy (1.1%) shows that our weakly-supervised
approach is estimating very good poses for unlabelled samples during training
even with very less labeled data. We observe that when we use only 5% of total
data as training data with 1% ground truth data, we get better accuracy (94%)
compared to G2L-Net with 5% ground truth training data(89%). To show that
our architecture and training pipeline is on par with benchmark approaches, we
evaluate our pipeline with full ground truth labels (15%) and observe that our
accuracy(99.2%) is very close to the benchmark accuracy(99.4%).

(a) (b) (c) (d) (e)

Fig. 4: Failure cases on Driller without Feature Decoder: a) Input Image, b)
Input Point cloud, c) 3D Object Model d) Bad Correspondences without feature
decoder , e) Correct Correspondences with feature decoder.

5.2 Feature Decoder

In the LineMOD dataset, objects like driller which has a texture that is not
constant, the performance increases by a significant margin when we use feature
decoder. We especially added this module to solve some issues we encountered
with the driller object. As shown in the Figure 4, the pose is predicted wrongly
in the fourth image. The failure cases happen when naive chamfer loss, L′

C ,
without feature decoder based losses (L′

F , LF ) are used. The failure cases occur
as the structure is very similar to the object in both the third and fourth images.
The distinguishing feature between correctly aligned fourth image and wrongly
aligned third is the color of the point cloud as the structure is very similar in
both the scenarios. If the failed sample is not present in the ground truth training
data during training, the pose is predicted wrongly when the feature decoder is
not present in the pipeline. The pose is predicted correctly in the presence of
the feature decoder even if the specific sample is not present in the training set.
We observe an increase in accuracy of weakly-labeled samples (8.9%) on driller
when feature decoder is added as shown in Table 4.

5.3 Shape Network

The SDF loss, L′
S , helps in aligning weakly-labeled samples to the shape. We

observe a drop in pose accuracy by 1.5% when we remove SDF loss. The drop
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Table 4: Ablation study on the contribution of different loss functions. We present
the pose labeling accuracy of weakly-labeled training data on driller object after
Stage 2 with combinations of chamfer loss, shape loss and feature decoder.

Losses L′
C L′

S L′
C + L′

S

Feature Decoder ✗ ✓ ✗ ✗ ✓

Average 89 96 87.5 90.5 99.4

in accuracy is not significant as the chamfer loss serves a similar purpose. How-
ever, the approach works even when the shape loss L′

S is used without chamfers
distance L′

C as shown in Table 4. Besides, the reconstructed shape used for pose
refinement of the weakly-labeled samples improves the unrefined accuracy of the
pipeline by a significant amount (6.6%) from stage 2 (91.5%) to stage 3 (98.1%).

5.4 Influence of each training stage on the final performance

To show the significance of each stage, we evaluate the pose accuracy after each
stage on the LineMOD dataset presented in Table 5. The accuracy (75.3%) is
quite low after Stage 1 since it is only trained with around 10 fewshot samples.
The accuracy after Stage 2 (91.5%) is higher since we incorporate different view-
points (∼ 160 samples) from weakly-labeled data, but it still needs improvement
to achieve exact alignment. After Stage 3 (98.1%), the network achieves bet-
ter accuracy as the estimated poses for weakly-labeled data are refined using
reconstructed shape and thus network learns to predict more accurately.

Table 5: Accuracy on LineMOD after each stage of training
Training Stage Stage 1 Stage 2 Stage 3

Average 75.3 91.5 98.1

6 Conclusion

We propose a novel weakly-supervised training pipeline for pose estimation, that
does not require CAD models and requires a very small number of labeled im-
ages. The core idea is to develop a pipeline leveraging few fully labeled images
to automatically label the rest of the images and then train on them. To achieve
this, we propose novel rotation-invariant feature and shape -based losses used for
weakly-supervised shape alignment. Absolute object poses can be replaced with
relative camera transformations which are easier to obtain in practice without
changes to the training pipeline. Experimental evaluation demonstrate the effec-
tiveness of our pipeline despite using only a fraction of labeled training images.
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12. Hodaň, T., Haluza, P., Obdržálek, Š., Matas, J., Lourakis, M., Zabulis, X.: T-LESS:
An RGB-D dataset for 6D pose estimation of texture-less objects. IEEE Winter
Conference on Applications of Computer Vision (WACV) (2017)

13. Hodan, T., Melenovsky, A.: Bop: Benchmark for 6d object pose estimation: https:
//bop.felk.cvut.cz/home/ (2019)

14. Jung, H., Brasch, N., Leonardis, A., Navab, N., Busam, B.: Wild tofu: Improving
range and quality of indirect time-of-flight depth with rgb fusion in challenging
environments. In: 2021 International Conference on 3D Vision (3DV). pp. 239–
248. IEEE (2021)

15. Kabsch, W.: A solution for the best rotation to relate two sets of vectors. Acta
Crystallographica Section A (1976)

16. Kaskman, R., Shugurov, I., Zakharov, S., Ilic, S.: 6 dof pose estimation of tex-
tureless objects from multiple rgb frames. In: European Conference on Computer
Vision. pp. 612–630. Springer (2020)

17. Kaskman, R., Zakharov, S., Shugurov, I., Ilic, S.: Homebreweddb: Rgb-d dataset
for 6d pose estimation of 3d objects. In: ICCV Workshops (2019)

18. Labbe, Y., Carpentier, J., Aubry, M., Sivic, J.: Cosypose: Consistent multi-view
multi-object 6d pose estimation. In: Proceedings of the European Conference on
Computer Vision (ECCV) (2020)

https://bop.felk.cvut.cz/home/
https://bop.felk.cvut.cz/home/


16 Shishir et al.

19. Lepetit, V., Moreno-Noguer, F., Fua, P.: Epnp: An accurate o(n) solution to the
pnp problem. International Journal of Computer Vision (2009)

20. Li, F., Shugurov, I., Busam, B., Li, M., Yang, S., Ilic, S.: Polarmesh: A star-
convex 3d shape approximation for object pose estimation. IEEE Robotics and
Automation Letters 7(2), 4416–4423 (2022)

21. Li, F., Shugurov, I., Busam, B., Yang, S., Ilic, S.: Ws-ope: Weakly supervised 6-d
object pose regression using relative multi-camera pose constraints. IEEE Robotics
and Automation Letters (2022)

22. Li, F., Yu, H., Shugurov, I., Busam, B., Yang, S., Ilic, S.: Nerf-pose: A first-
reconstruct-then-regress approach for weakly-supervised 6d object pose estimation.
arXiv preprint arXiv:2203.04802 (2022)

23. Manhardt, F., Kehl, W., Gaidon, A.: Roi-10d: Monocular lifting of 2d detection
to 6d pose and metric shape. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. pp. 2069–2078 (2019)

24. Mescheder, L., Oechsle, M., Niemeyer, M., Nowozin, S., Geiger, A.: Occupancy net-
works: Learning 3d reconstruction in function space. In: Proceedings IEEE Conf.
on Computer Vision and Pattern Recognition (CVPR) (2019)

25. Park, J.J., Florence, P., Straub, J., Newcombe, R., Lovegrove, S.: Deepsdf: Learn-
ing continuous signed distance functions for shape representation. In: The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

26. Park, K., Mousavian, A., Xiang, Y., Fox, D.: Latentfusion: End-to-end differen-
tiable reconstruction and rendering for unseen object pose estimation. In: Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(2020)

27. Park, K., Patten, T., Vincze, M.: Pix2pose: Pix2pose: Pixel-wise coordinate re-
gression of objects for 6d pose estimation. In: The IEEE International Conference
on Computer Vision (ICCV) (2019)

28. Peng, S., Liu, Y., Huang, Q., Zhou, X., Bao, H.: Pvnet: Pixel-wise voting network
for 6dof pose estimation. In: CVPR (2019)

29. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: Pointnet: Deep learning on point sets for
3d classification and segmentation. arXiv preprint arXiv:1612.00593 (2016)

30. Shugurov, I., Li, F., Busam, B., Ilic, S.: Osop: A multi-stage one shot object pose
estimation framework. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR). pp. 6835–6844 (June 2022)

31. Shugurov, I., Pavlov, I., Zakharov, S., Ilic, S.: Multi-view object pose refinement
with differentiable renderer. IEEE Robotics and Automation Letters (2021)

32. Shugurov, I., Zakharov, S., Ilic, S.: Dpodv2: Dense correspondence-based 6 dof
pose estimation. IEEE Transactions on Pattern Analysis and Machine Intelligence
(2021)

33. Song, C., Song, J., Huang, Q.: Hybridpose: 6d object pose estimation under hybrid
representations. In: Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition (2020)

34. Wang, C., Xu, D., Zhu, Y., Mart́ın-Mart́ın, R., Lu, C., Fei-Fei, L., Savarese, S.:
Densefusion: 6d object pose estimation by iterative dense fusion (2019)

35. Wang, G., Manhardt, F., Shao, J., Ji, X., Navab, N., Tombari, F.: Self6d: Self-
supervised monocular 6d object pose estimation. In: The European Conference on
Computer Vision (ECCV) (2020)

36. Wang, G., Manhardt, F., Tombari, F., Ji, X.: GDR-Net: Geometry-guided direct
regression network for monocular 6d object pose estimation. In: IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (CVPR) (2021)



6D Pose From Weakly Labeled Data Using Shape Alignment 17

37. Wang, P., Manhardt, F., Minciullo, L., Garattoni, L., Meier, S., Navab, N., Busam,
B.: Demograsp: Few-shot learning for robotic grasping with human demonstration.
In: 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). pp. 5733–5740. IEEE (2021)

38. Xiang, Y., Schmidt, T., Narayanan, V., Fox, D.: Posecnn: A convolutional neural
network for 6D object pose estimation in cluttered scenes. In: Robotics: Science
and Systems (RSS) (2018)

39. Zakharov, S., Kehl, W., Bhargava, A., Gaidon, A.: Autolabeling 3d objects with
differentiable rendering of sdf shape priors. In: IEEE Computer Vision and Pattern
Recognition (CVPR) (June 2020)

40. Zakharov, S., Shugurov, I., Ilic, S.: Dpod: 6d pose object detector and refiner. In:
International Conference on Computer Vision (ICCV) (2019)

41. Zhang, S., Zhao, W., Guan, Z., Peng, X., Peng, J.: Keypoint-graph-driven learning
framework for object pose estimation. In: 2021 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR) (2021)


	 WeLSA: Learning To Predict 6D Pose From Weakly Labeled Data Using Shape Alignment

