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1 Architecture Details of MPPNet

In this section, we show more details about our MPPNet.
3D Proposal-Trajectory Feature Generation with Proxy Points.We uti-
lize the proposed proxy points as the medium to generate 3D trajectory features
of objects. With the help of inherently aligned proxy points, we can decouple
the object feature of each proposal in a 3D trajectory into geometry feature and
motion feature, which reduces the difficulty of modeling points with significantly
different spatial distributions among multi-frames. Specifically, as shown in the
green block of Fig. 1, we employ the Set Abstraction operation to aggregate
LiDAR geometry feature to proxy points and use the relative locations of proxy
point, projected by MLP, as motion feature. The summation of geometry feature
and motion feature serves as the object’s feature. Next, the proposed grouping
strategy temporally divide the long proposal trajectory into a small number of
non-overlapping groups for the following multi-frame feature interaction.
Multi-Frame Feature Interaction. As the red block shown in Fig. 1, we
illustrate more details of the temporal feature fusion among different frames
within a group. To reduce the computational and memory cost of intra-group
fusion, we first fuse the multi-frame features within each group by summariz-
ing the temporally compressed multi-frame features as residuals to the feature
of each group’s first frame, using a weight-sharing MLP. With this per-frame
fused feature of each group, the following intra-group feature mixing and inter-
group feature attention can further propagate and summarize information in an
iterative manner. Consequently, a transformer-based prediction head, where a
learnable feature embedding is employed as the query and the fused group fea-
ture Ĝi are utilized as key and value, can summarize each group’s output feature
to a global vector embedding with shape of 1 × 256, serving as the output of
multi-frame feature interaction block.
Prediction Head. We jointly utilize each group’s summarized vector embed-
ding and embedding extracted from 3D trajectory parameters (7-dim geometry
and 1-dim time encoding) to obtain the combined feature vector (see blue block
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Fig. 1. The architecture details of MPPNet with 16-frame input sequence, where Gi

indicates the initial feature of each group, Ĝi means the fused group-wise feature and
Ĥ denotes the global summarized feature for the inter-group feature attention.

in Fig. 1) for getting more accurate 3D detection results. Specifically, for trajec-
tory feature learning, as shown in the gray block of Fig. 1, we adopt a simple
PointNet-based architecture [1], where a MLP is adopted to project the param-
eters to high-dimension feature space and then the max pooling followed with
a MLP is utilized to reduce the temporal and channel information. We finally
obtain the embedding of a trajectory with shape of 1 × 256 for the confidence
prediction and box regression.

2 More Training Loss Details

As mentioned in Sec. 3.3 of the original paper, MPPNet is trained with a com-
bination loss of confidence loss Lconf , regression loss Lreg, denoted as L =
Lconf + 2Lreg. For Lconf , we set the training targets as the 3D IoU between the
3D proposals and their corresponding ground-truth boxes. Then, we follow [2]
to assign the confidence prediction target:

ct = min

(
1,max

(
0,

IoU−αB

αF − αB

))
, (1)
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where αF = 0.75 and αB = 0.25 are the foreground and background thresholds
of IoU, respectively. Then the binary cross entropy loss [2] is adopted for the
predicted confidence ct and ground-truth confidence c to compute the IoU-guided
confidence loss:

Lconf = −ct log(c)−
(
1− ct

)
log(1− c). (2)

Note that only the first group feature Ĝ1 (including current frame) is supervised
by Lconf because the confidence targets are defined by current frame’s prediction
boxes and ground-truth boxes.

For regression loss Lreg, a hybrid of shape regression (Lshape) and corner
regression (Lcorner) formulations is adopted to make the estimation more robust.
For Lshape, the targets are encoded by proposals and their corresponding ground-
truth boxes, given by:

x = xg−xc

d , y = yg−yc

d , z = zg−zc

hc ,

l = log
(
lg

lc

)
, w = log

(
wg

wc

)
, h = log

(
hg

hc

)
, θt = θg − θc,

(3)

where superscript c and g indicate the parameters of proposals and ground-truth

bounding boxes and d =

√(
lc

2

)2
+
(
wc

2

)2
. Following [2], the Lshape is formulated

as following:

Lshape = I (IoU ≥ αR)
∑

µ∈x,y,z,l,w,h,θ

Lsmooth−L1

(
µ, µt

)
, (4)

where I (IoU ≥ αR) means that only proposals with IoU ≥ αR contribute to the
regression loss (αR = 0.55). All of the feature embedding of each group, the
trajectory embedding as well as the final combined embedding are supervised
by the regression loss.

On the other hand, the corner regression loss Lcorner is formulated as follows:

Lcorner =
1

8
min

(
8∑

i=1

|Ci − C∗
i |

)
, (5)

where Ci and C∗
i are predicted corners and the ground truth corners. The corner

loss is only added on the final combined embedding. The Lreg is presented as:

Lreg = Lshape + Lcorner. (6)

3 More Ablation Studies

In this section, we provide more ablation experiments for reference. Specifically,
the experiments are conducted on Waymo datasets by optimizing on the train-
ing set and evaluating on the validation set. We train MPPNet on the vehicle
category for 3 epochs by taking four-frame point cloud as input, with the same
settings of our original paper. The CenterPoint [3] is adopted as the 1-stage net-
work and we take the mAPH (LEVEL 2) as the default metric for comparison.
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Table 1. Effects of iteration number of
intra-group and inter-group feature inter-
action block.

Iteration of intra-inter block mAPH@L2

1 72.78
2 73.08
3 73.02

Table 2. Effects of adopting features
(BEV) of 1-stage network.

Feature Source mAPH@L2

Point feat.+ BEV feat. 72.99
Point feat. 73.08

Effects of Iteration Number of Multi-frame Feature Interaction. We
investigate the impact of different iteration numbers of the multi-frame feature
interaction block, consisting of the proposed intra-group feature mixing and
inter-group feature attention. As shown in Table 1, 2-iteration improves the per-
formance of the 1-iteration by 0.3%, but with more iterations, i.e., 3-iteration,
the performance is similar to that of the 3-iteration while increasing the amount
of computations. Therefore, we empirically chose 3-iteration as the default set-
ting of MPPNet.
Effects of Incorporating Features from the First Stage RPN. MPPNet
only uses the proxy point features aggregated from the raw LiDAR points by
default, and here we also investigate the impact of additional 1-stage network
features, such as bird-eye view (BEV) features. As shown in the table 2, the
additional BEV features from CenterPoint achieve similar performance with our
default setting, proving that the high-level features from RPN can not further
benefit the performance of our multi-frame feature encoding and interaction
head. This further verifies our argument that the multi-frame raw points of
each proposal box already provide enough and accurate information for the box
refinement in the second stage.
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