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Abstract. The success of monocular 3D object detection highly relies
on considerable labeled data, which is costly to obtain. To alleviate the
annotation effort, we propose MVC-MonoDet, the first semi-supervised
training framework that improves Momnocular 3D object detection by
enforcing multi-view consistency. In particular, a box-level regulariza-
tion and an object-level regularization are designed to enforce the con-
sistency of 3D bounding box predictions of the detection model across
unlabeled multi-view data (stereo or video). The box-level regularizer re-
quires the model to consistently estimate 3D boxes in different views so
that the model can learn cross-view invariant features for 3D detection.
The object-level regularizer employs an object-wise photometric consis-
tency loss that mitigates 3D box estimation error through structure-
from-motion (SFM). A key innovation in our approach to effectively uti-
lize these consistency losses from multi-view data is a novel relative depth
module that replaces the standard depth module in vanilla SEFM. This
technique allows the depth estimation to be coupled with the estimated
3D bounding boxes, so that the derivative of consistency regularization
can be used to directly optimize the estimated 3D bounding boxes us-
ing unlabeled data. We show that the proposed semi-supervised learning
techniques effectively improve the performance of 3D detection on the
KITTI and nuScenes datasets. We also demonstrate that the framework
is flexible and can be adapted to both stereo and video data.

Keywords: Monocular 3D Object Detection, Semi-supervised Training,
Structure From Motion

1 Introduction

Localizing objects in 3D space is an essential task in autonomous driving, which
enables systems to perceive and understand surrounding environments. Moti-
vated by the cheap and easy-to-deploy properties, academia and industry have
been made a great effort to tackle monocular-based 3D object detection. Re-
cently, deep learning based approaches [6, 54, 2,20, 50, 29, 5] have achieved great
success, leading to sophisticated deep neural networks as the main solution. The
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Fig. 1. Visualization of 3 frameworks in utilizing multi-view data to improve monoc-
ular 3D detection. (a) The pseudo-lidar based framework [44,27] can use multi-view
images to improve depth estimation model, leading to better image to lidar data con-
version. (b) The multi-task framework (e.g., DD3D [30]) builds a shared backbone for
3D detection and depth estimation. The multi-view data can be leveraged to train a
stronger backbone by depth estimation. (¢) Our MVC-MonoDet provides direct su-
pervision signals for the detection model and no latent depth estimation module is
required.

training of such neural networks often requires a large amount of high-quality
labeled data. However, labeling 3D annotation is very tedious and expensive, as
even humans can not directly annotate the ground-truth from a single image
perfectly [13,4].

Typically, semi-supervised learning is a promising direction to relieve the an-
notation burden. Existing approaches [49,23, 39,51, 41] have primarily focused
on 2D tasks. However, recent work [29] identifies that the 3D detection perfor-
mance is dominated by accurately regressing the 3D attributes (3D location,
dimension and orientation). To improve the performance of the 3D attributes
regression, we consider utilizing unlabeled multi-view data (stereo or video) to
provide external 3D supervision. Meanwhile, the unlabeled multi-view data in
autonomous driving scenarios is abundant and cheap to collect.

Existing monocular 3D detectors can utilize the multi-view data from two
perspectives: data conversion in pseudo-lidar [44, 48] and shared representation
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in multi-task [30] frameworks. As visualized in Fig 1, these two frameworks re-
quire intermediate pixel-level depth representation to bridge the 3d detection
with multi-view data. However, the objectives of these two tasks are different,
where depth estimation focuses on background and object surface, but 3D detec-
tion only considers the object center. This difference may cause the supervision
bias to the background regions and ignore the object-level 3D attributes. Fur-
thermore, it is also demonstrated [11,22] that neural networks learn different
visual cues for these two tasks.

To better utilize the multi-view data, we design two kinds of multi-view con-
sistency regularization that provide direct supervision signals on the foreground
objects. (1) From the box space, we enforce the model to estimate consistent 3D
bounding boxes in different views. This regularizes the model to learn robust
features for different view angles and positions, leading to better generalization
on the unlabeled and unseen data.

(2) From the object space, we design an object-wise photometric consistency
module that utilizes structure-from-motion (SFM) to directly optimize 3D box.
The vanilla SFM learner [52,14] is tailored for depth estimation that leverages
the photometric error between the source and projected views to represent and
mitigate depth error. However, the standard depth estimation module in vanilla
SFM is not coupled with 3D bounding boxes, and the corresponding SFM module
can not be directly used to optimize 3D box positions. Inspired by Stereo R-
CNN [19], we design a relative depth module that couples pixel-level depth with
3D boxes, so that the cross-view photometric consistency can be used to directly
optimize the detection error. Based on this technique, we can directly mitigate
the bounding boxes error by regularizing the cross-view photometric consistency.

We validate the effectiveness of our MVC-MonoDet on two standard 3D
detection benchmarks: KITTI [13] and nuScenes [4] datasets. On the KITTI
dataset, we show that the proposed approach can leverage stereo or video data
to improve the state-of-the-art fully-supervised approaches with 22% and 11%.
On the nuScenes dataset, we witness a relative 18% and 5% improvement with
10% and 100% of labeled data.

Our main contributions are as follows:

— We provide the first multi-view semi-supervised training framework for monoc-
ular 3D object detection. The framework leverages abundant and cheap un-
labeled multi-view data to alleviate 3D annotation burden.

— Based on the multi-view framework, a box-level and an object-level consis-
tency regularization are proposed to improve the 3D detector, and a relative
depth module is proposed to allow effective coupling of 3D box error with
the consistency losses.

— Experimental results on the KITTI and nuScenes datasets demonstrate the
effectiveness of our semi-supervised learning framework with different types
of multi-view data.
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2 Related work

We briefly review the recent work on monocular 3D object detection, semi-
supervised object detection and self-supervised learning with multi-view data.

2.1 Monocular 3D object detection

Traditional monocular 3D object detection methods [7,54,6,2,35,38] recover
the 3D bounding boxes by using the shape priors, semantic information, ground
plane assumption, ete. To alleviate the challenging depth recovery, later work [38,
25,8] pays more attention to the design of training pipelines [29,25] and loss
function [38]. Except for directly adopting neural networks to estimate depth,
several studies [20, 21, 24, 5] propose to reason depth by solving the geometric
constraints between 2D and 3D coordinates.

In addition, some approaches adopt pixel-level depth estimation models to
assist the 3D detection. Pseudo-lidar based approaches [44, 28, 27] project the im-
age and depth data into pseudo point cloud and adopt point cloud detectors [17,
34, 33] to localize objects. Except for projecting the input modality, DALCN and
it’s follow-up [12, 42] leverage depth map to build dynamic convolution or graph
propagation modules for better extracting 3D features in 2D space. DD3D [30]
proposes a multi-task framework that leverages depth estimation to pre-train a
strong feature representation for 3D object detection. By connecting depth es-
timation with 3D object detection, the large-scale unlabeled multi-view images
can be utilized to improve the performance of 3D detection.

2.2 Semi-supervised object detection

Due to the heavy annotation burden in object detection, great efforts have been
made to leverage unlabeled or weakly annotated data to improve performance.
Inspired by the success of confidence regularization in semi-supervised classifi-
cation, one line of approaches [15,40,31] focus on designing consistency regu-
larization methods with different kinds of image perturbation. Another line of
approaches [49,23,39,51,41] leverage neural networks to annotate pseudo la-
bels for self-training. Despite the fast development in semi-supervised object
detection, there is only one semi-supervised approach [21] for monocular 3D ob-
ject detection. Li et al. [21] propose a consistency regularization method on a
keypoint-constraint based approach [20], where the consistency regularization
is employed on the intermediate keypoint detection task. However, due to the
intermediate regularization, KM3D [21] only can be adopted to the keypoint-
based approaches, while they are less effective compared to other end-to-end
detectors [25, 50, 32]. By contrast, our work provides supervision signals on the
final output, which is flexible and can be applied to arbitrary monocular 3D
object detectors.
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Fig. 2. Visualization of our multi-view semi-supervised training pipeline for monocular
3D object detection.

2.3 Self-supervised learning with multi-view data

It is a popular topic that trains a model to recover 3D information (e.g., depth,
ego-motion, flow, etc.) by unlabeled multi-view data. One group of methods
take the multi-view consistency by structure from motion (SFM) to train neural
networks for 3D reconstruction. Specifically, the supervision signal is obtained
by pursuing photometric consistency between the origin frame and the recon-
structed nearby frame, where the reconstructed nearby frame is warped by using
the estimated depth and camera intrinsic [47,52, 14, 1]. Traditional work [47] first
takes the calibrated stereo camera to achieve the unsupervised depth training.
Except for stereo data, video data is another cheap and easy-to-collect alternative
for providing multi-view observations. However, the video data is unstructured,
requiring further to estimate the ego and object poses. Zhou et al. [52] first design
a unified framework that jointly trains a depth estimation and a camera motion
model by minimizing the photometric error between the source and projected
target frames. To address the scale inconsistent problem, Bian et al. [1] propose
a geometric consistency loss to regularize the inconsistency prediction between
adjacent views. Later studies further estimate object masks [14] or predict the
object motion [18] to handle the occluded regions or dynamic objects.

However, little attention was paid to leveraging the multi-view information
for monocular 3D object detection. One potential reason is that the cross-view
warping in SFM requires the depth for each pixel surface, however, 3D detection
only estimates the depth of object center. To mitigate this mismatch, we propose
a relative depth module that recovers the per-pixel depth by object shape and
estimated bounding boxes.

3 Background

Given an input image, the objectives of monocular 3D object detection are to
recognize the interested objects and localize the corresponding 3D boxes. In
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our semi-supervised learning setting, we have a labeled split {17, I7, T?_,,, y'} V',
with N; labeled samples and unlabeled split {I?, I}, T?_,,} N with N, unlabeled
samples, where I, and I; denote the multi-view image, and Ty_,; € R*** denotes
the ego-pose matrix for cross-view projection. In this paper, we use v € R*? and
p € R'¥3 to denote a point in 2D and 3D coordinates, respectively. K € R3*3
denotes the camera intrinsic, and I(p, K) represents the corresponding pixel
indexed by point p. The label y comprises a set of 3D bounding boxes, which
are represented by the eight corner points in the box: b € R®*3. In autonomous
driving, the 3D bounding box can be further decomposed to object 3D location,
dimension, and yaw angle.

The multi-view images can come from a stereo camera or a monocular camera
with different time stamps (video). Our baseline model is the modified version
of the one-stage detector CenterNet [54, 53] and adds several parallel heads for
estimating the 3D attributes.

4 Approach

With unlabeled multi-view data, traditional approaches [52, 14] leverage multi-
view consistency to train a per-pixel depth estimation network. However, as
aforementioned, the supervision through the intermediate depth representation
is not specialized for 3D detection, which may lead to sub-optimal utilization.
Our framework provides two direct consistency regularization terms tailored for
monocular 3D object detection. Figure 2 describes the overview of our multi-view
semi-supervised training framework. Specifically, we introduce a box-level and
an object-level consistency regularization techniques to a monocular 3D object
detection model. From the box-level one, we regularize the model to estimate
consistent 3D box attributes for the images taken from different views. This
regularizes the model to be robust to variant view angles and positions. From
the object-level one, we design an object-level photometric consistency loss to
identify and mitigate bounding boxes error. It is worthy to note that during
inference, only a single image is required to predict 3D bounding boxes.

4.1 Box-level Consistency

Given input images from different views, Box-Level Counsistency (BLC) regular-
ization enforces the estimated 3D boxes to be consistent in a rectified coordinate.
This means that after converting the estimated 3D box to the target image, its
attributes should match with the box estimated in the target image. Given the
cross-view ego pose Ts_;, the consistency loss is represented as:

Ny
1 2 25
COutPUt = Fb Z H[bw 1]T5T—>t - bt”’ (1)
i=1

where b, and b; denote the boxes estimated in the source and target images,
and NV, denotes the number of selected candidate boxes. In the video data, we
further model the object motion [9] in the source to target conversion process.
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Fig. 3. (a). Visualization of the pipeline in computing the object-level photometric
loss. The ego pose comes from pre-calibration (stereo) or the external hardware device
and calibration algorithm (video). (b). A ray emitted from the camera origin to the
pixel P in the image. It intersects with bounding box planes at points A and B. Point
B is occluded by A (c). Points A and C lie on the bounding box planes and object
surface, respectively.

In practice, one image may contain multiple objects. Therefore, matching the
3D boxes across images is necessary. In this paper, we propose a simple yet effec-
tive solution to achieve this. Popular 3D detection methods like MonoDLE [29]
and CenterNet [54] produce 2D boxes in parallel with a 3D ones. The estimated
2D boxes are more accurate than the 3D boxes even with limited training data
(See Appendix for illustration). Hence, we utilize the pixels in the region spanned
by the 2D boxes to match 3D boxes. For each source box bi, we calculate the
SSIM [45] similarity scores with all the boxes in the target image and select the
box that achieves the minimum SSIM scores as the paired target box bi. To filter
the background region, we filter out the bounding boxes that the estimated class
confidence is smaller than 0.5.

4.2 Object-level Consistency

Note the box-level consistency regularization does not directly mitigate the pre-
diction error but improves the performance through enhancing the model ro-
bustness. Furthermore, it can only provide sparse supervision. In this section,
we propose an Object-Level Consistency (OLC) regularization to further lever-
age multi-view information for dense supervision.

The proposed OLC regularizes the photometric consistency between two
views within bounding boxes. Specifically, OLC first utilizes SFM to reconstruct
the source view of the objects by projecting the target views. Then we utilize the
per-pixel photometric consistency to identify the bounding box prediction error.
Note that the estimated bounding boxes are coupled with the depth used in
the cross-view projection so that the consistency loss can reflect the localization
error. Through enhancing the per-pixel photometric consistency, OLC provides
much denser supervision than BL.C regularization. The training procedure of one
iteration is summarized as follows.

Step 1. We generate the source view by 3D boxes. On the labeled image,
we directly take the ground truth. On the unlabeled images, we leverage the
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detector to predict the 3D boxes. We refer the source image area spanned by
the 3D box as the source view. See the image patch of the source view as an
example in Figure 3.

Step 2. We project the source view to the target view by the 3D boxes.
Specifically, for each point in the source view, we calculate its projected location
in the target view. The target image area spanned by the set of projected points
is referred as the target view. Note that a source-to-target projection can not
be done without knowing each pixel’s depth in the source view. To this end, we
design a relative depth with a surface-to-cube offset head to infer each pixel’s
depth through the 3D box. See details in Section 4.2.1.

Step 3. An object-level photometric loss is computed to measure the mis-
alignment between the source and target views. To filter the noise in the view
projection process, we also model the shape uncertainty to get an accurate pho-
tometric loss. See details in Section 4.2.2.

4.2.1 Target view projection by relative depth

This section presents the relative depth module used in Step 2, which infers
each pixel’s depth of the object’s surface through a 3D box. To achieve this,
we first start from a cube-shaped assumption that models all the objects as
cube-shaped [19], and progressively learn the shape during training.

With a cube-shaped assumption, we can infer the depth of each pixel by a ray
forwarding process [19] in a pinhole camera. Specifically, we first emit a ray from
the camera origin o to the pixel in the source view p with vector dp (see the solid
red line in Figure 3.b for an example). Under the cube-shaped assumption, the
pixel would be the perspective projection of a certain 3D point on the 3D box
plane. In other words, the 3D point is the intersection between the ray and the
3D box planes. The intersections can be represented with {dp x bbii }?:1,
bii denotes the jth direction vector of the bounding box i. Invalid intersections
can be filtered out by checking if they are inside the 3D box. Finally, only the
closest intersection j* to the camera is selected when occlusion occurs:

where

5 = argmin{op x bbi7[.}0_;, (2)
J

where |, denotes the depth in of the intersection. Figure 3.b provides an example
for the occlusion. Since the direction vector is based on the estimated 3D box,
the gradient from the photometric loss can be directly back-propagated to the
estimated 3D boxes. We present the details of generating the direction vector in
the Appendix.

Surface-to-plane offset. As visualized in Figure 3.c, most of the pixels satisfy
the cube-shaped assumption, especially for the side and bottom parts of the car.
However, we found that this assumption does not always hold for variant regions
(e.g., car’s corners, windshield, etc.). This observation motivates us to design a
regression head to model the object shape. Specifically, the regression head leans
an offset AZ that fills the gap between the depth computed from the cube-shaped
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assumption with the actual depth. See an offset example in Figure 3.c. Through
modeling this offset, the projection process is robust to variant shapes, leading
to accurate supervision signals for object localization. Finally, given a point u
in the 2D coordinate of the source image, its corresponding 3D point can be
acquired by ps = 7(b,u, K, AZ), where b, u, K, AZ represent the 3D box, 2D
point, camera intrinsic, and the estimated offset, respectively. Note that the box
b can be selected from the ground truth and the estimated bounding boxes.
In the labeled data, we adopt the ground truth boxes to let the network learn
the offset. In the unlabeled data, we adopt the estimated 3D boxes and jointly
optimize the box and offset.

4.2.2 Object-level Photometric Loss

After the view projection, we can acquire the pixels in the source view with
Is(ps, K) and I;(Ts—ps, K), and compute their photometric consistency loss.

It should be noted that in practice, some pixels in the objects are less infor-
mative, and matching them makes learning unstable. We propose an uncertainty-
aware model to deal with this problem. Specifically, we model the uncertainty of
the surface-to-plane offset and treat it as a re-weighting factor when computing
the object-level photometric loss. In particular, we model the distribution of the
offset as a Laplacian distribution based on ¢ error [16,29]. And the loss for one
object is represented as follows:

N.
. 1L~ vV2, . ;
‘CPhOtO(pS»ps%t) = ﬁ Z 7||IS(pva)7It(Lpsa 1]Tsj;t7K)|‘ +log o, (3)
P=1 "¢

where IV, is the number of points and o; is the standard deviation of the offset.
Intuitively, this uncertainty reweighting is similar to the curriculum learning in
pseudo labeling for object classification: iteratively enlarges the training set from
easy to complex data.

4.3 Overall Loss

The overall loss function in our semi-supervised training framework is repre-
sented as follows:

['sup = Edet + )\1 ' Eoutput + /\2 ' Ephotoa (4)

where L4e; is from the detection loss with ground truth bounding boxes, A\; and
Ao are the manually tuned hyper-parameters.

5 Experiments

To validate the effectiveness of our semi-supervised framework, we conduct ex-
periments on the KITTT [13] and nuScenes [4] datasets.
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Table 1. Experimental results of 3D detection accuracy (Car) with different numbers
of labeled data on the KITTI validation set. The metrics of AP|r4o with IoU thresh-
old=0.7 on three difficulties (easy, moderate and hard) are reported. We randomly
sample 10%, 50%, and 100% data from the KITTI training set as the labeled split and
select all the data in “Eigen Clean” as the unlabeled split. The models are trained with

different types of multi-view data and evaluated with a single image.

10% 50% 100%
Multi-view| Method Easy Mod Hard| Easy Mod Hard | Easy Mod Hard
- Baseline 10.13 7.25 6.24|18.52 14.56 12.53[21.99 16.32 14.48
Lidar  |Multi-task 13.89 8.86 7.53/20.91 15.70 13.58|23.98 18.01 15.33
Stereo Multi-task 12.56 8.93 5.45|20.12 15.14 12.48|23.21 17.21 15.03
MVC-MonoDet| 13.34 9.14 7.75|21.52 16.40 14.83|26.85 18.63 15.37
Video Multi-task 10.49 6.87 5.15(19.14 14.67 12.56 |22.36 16.71 14.56
MVC-MonoDet| 12.13 7.96 7.02|21.15 16.01 13.37|24.45 17.34 15.15

5.1 Datasets

In this section, we first introduce the datasets we used and then descirbe the
related evaluation metrics for 3D object detection.

KITTTI is a popular dataset to benchmark multiple autonomous driving tasks.
The 3D detection split consists of 14,999 annotated key frames with 7,481 for
training and 7,518 for testing. Each key frame contains calibrated images from
the left and right cameras with annotated 3D bounding boxes. Each labeled key
frame is also accompanied with three adjacent unlabeled frames for providing
temporal information. For a fair comparison, we follow recent work [7,6] and
split the training set into training and validation subsets with 3,712 and 3,769
frames, respectively. For the unlabeled split, we follow the recent pseudo lidar
based approach [37] and adopt the ”Eigen clean” subset that does not have
overlap with the detection validation set. The “Eigen clean” subset selects 14,490
unlabeled video frames from 45,200 frames in the “Eigen” set.

nuScenes is a large scale autonomous driving dataset, which contains 1,000
video sequences. The official protocol splits the video sequences into 700 for
the training subset, 150 for the validation subset, and 150 for the test subset.
nuScenes annotated the 3D bounding box on each key frames with up to anno-
tated 40k images from 6 cameras. We utilize the annotated key frames as the
labeled split for supervised training and the other frames as the unlabeled split
for semi-supervised training.

Evaluation metrics For the KITTT dataset, we adopt the official AP|r4o met-
ric that averages the precision number over 40 recall points. The IoU threshold
is set as 0.7 for “Car” and 0.5 for both “Pedestrian” and “Cyclist”, respectively.
Following the benchmark [13], we classify the instances into three kinds of dif-
ficulty (easy, moderate, and hard) based on their 2D bounding box height, the
occlusion and truncation levels. For the nuScenes dataset, we adopt the official
AP (average precision with threshold of 0.5m, 1.0m, 2m, and 4m) and ATE
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Table 2. Experimental results of Pedestrian and Cyclist on the KITTI validation set.
(100% of labeled data is used.) The metrics of AP|g4o with IoU threshold=0.7 on three
difficulties (easy, moderate and hard) are reported.

Pedestrian Cyclist
Method Easy Moderate Hard|Easy Moderate Hard
Baseline 7.02 5.53 5.86(5.37 2.95 2.87

Multi-task 8.44 6.89 583(6.13 4.10 3.96
MVC-MonoDet|8.04 626 6.94|6.94 4.04 3.94

(average translation error) to evaluate the localization accuracy of the trained
detectors.

5.2 Experimental setup

For a fair comparison, we initialize the network backbone (a modified version of
DLA-34) with ImageNet [10] pre-trained weights and optimize the network by
AdamW optimizer. The learning rate is set as 3e-4 and le-4 on the KITTI and
nuScenes datasets, respectively. To select the foreground pixels for computing
the photometric loss, we adopt a pre-trained segmentation model [46] to filter out
the background pixel. In the semi-supervised training stage, we first pre-train the
detector on the labeled subset with 70 epochs and 10 epochs for the KITTI and
nuScenes dataset, respectively. Then we fine-tune the detector with the proposed
semi-supervised framework on both the labeled and unlabeled subsets with extra
70 epochs for the KITTI dataset and 10 epochs for the nuScenes dataset. We
set the training batch size as 8 and train the model on one NVIDIA 2080Ti
GPU. Regarding the input data, we pad the images to the size of 1280%x384 on
the KITTT dataset and downsample the images to half of the resolution (800 x
450) on the nuScenes dataset. During inference, only a single image is fed to the
detector and the image resolution is kept as in training.

For the ego pose, we directly adopt the calibrated ego pose provided in the
dataset for training. In the video framework, we utilize the calibrated ego pose
provided in the dataset for training. If the ego motion is unavailable, one also can
adopt a motion network to estimate the object motion. To tackle dynamic objects
in the video data, we follow [9, 18] previous work that models the corresponding
object motion across frames. We repeat the experiments with three different
random seeds and record their average value on the validation set.

5.3 Experimental results on the KITTI validation set

In Table 1, we represent the experimental results of our framework and the
other competitors on the KITTI validation set. We conduct experiments with
different numbers of labeled data, including 10%, 50%, and 100% of data sam-
pled from the training subset. To the best of our knowledge, there is no other
semi-supervised monocular 3D object detection approach sharing the same set-
ting with us. Hence, except for fully supervised training and our approach, we
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Table 3. Experimental results of 3D detection accuracy (AP|r4o with IoU threshold
=0.7) on the KITTI test benchmark. The best and second best results are marked
with bold and blue color, respectively. “-” denotes that the method does not report
the related statistics. EC denotes the clean subset of Eigen split. DDAD denotes the
15M private driving dataset in [30].

Setting Extra Method Easy Moderate Hard |[FPS
MonoFlex [50] None 19.94 13.89 12.07| 30
Mono R-CNN [36] None 18.36  12.65 10.03| 70
AutoShape [24]  None 2247 14.17 11.36| 50
MonoRun [5] None 19.65 12.30 10.58]| 70
Vanilla M3DSSD [26] None 1751 11.46 898 | -
Kinemantic [3] None 19.07  12.72 917 | -
MonoDLE [29] None 17.23 1226  10.29]| 40
GUP-Net [25] None 20.11  14.20 11.77] 30
MonoEF [55] Eigen 21.29 13.87 11.71]| 30
PatchNet [27] Eigen 15.68 11.12  10.17|488
Pseudo-lidar PCT [43] Eigen 21.00 13.37 11.31|487
Demystifying [37] EC 22.40 12.53 10.64 | 488
Multi-task  DD3D [30] EC+DDAD|23.22 13.64 14.20|148
Direct-based Baseline None 20.63 13.21 11.05| 30
MVC-MonoDet  EC 25.05 16.89 14.83| 30

further provide a ”multi-task” framework [30] for comparison. The multi-task
framework adds a parallel head on the modified CenterNet for depth estimation.
In the multi-task framework, the supervision signal of depth estimation from ei-
ther lidar, stereo or video can be used to update the joint feature representation.
When using the stereo unlabeled data, our method outperforms the baseline ap-
proach with different numbers of labeled data, with ratios of 31.63%, 16.20%,
and 22.10% on the easy split for three kinds of settings, respectively. The im-
provements validate the effectiveness of our approach in leveraging unlabeled
data to improve the performance of the baseline. Given 50% labeled data, our
approach even achieves comparable results with the baseline module that uses
100% labeled data.

When the number of labeled data is scarce, our approach still can improve
the baseline module and the multi-task method. We also observe that the im-
provement is limited in the scarce data, and the potential reason is that the
consistency modules need few labeled data to control the training. Furthermore,
the large margin improvement on the 50% and 100% of labeled data also demon-
strates the effectiveness of our approach providing direct supervision signals on
the estimated bounding boxes. Compared between different modalities, the video
version is not as effective as the stereo version, but still yields consistent improve-
ments over the baseline approach. The performance gap between the stereo and
video versions may come from the noise of ego and object motions in the video
data.
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To evaluate the effectiveness of our proposed approach in the non-rigid class,
we also display the results of the pedestrian and cyclist classes in Table 2. Al-
though the improvement is less ineffective than the car class, our approach yields
consistent improvements over the baseline and multi-task framework, illustrating
the flexibility of our framework in handling different kinds of objects. Note that
the number of annotated instances in the pedestrian and cyclist is small (Pedes-
trian: 4,487, Cyclist: 1,627, and Car: 28,742). This may introduce performance
fluctuations.

Table 4. Experimental results of different numbers of training data on the nuScenes
validation set.

Setting 10% 100%
mAPT ATE]|/mAPT ATE|
Baseline 159 0.87 | 33.2 0.68
Multi-task 17.2 0.86 | 33.6 0.67
MVC-MonoDet| 18.8 0.82 | 34.9 0.64

5.4 Comparison with state-of-the-art detectors on the KITTTI test
set

Table 3 displays the comparison between our approach with state-of-the-art
monocular detection methods on the KITTTI test set. As illustrated, our frame-
work outperforms the fully supervised detectors by a large margin and against
the second-best approach with 14.02%, 14.29%, and 20.22% on the “Easy”,
“Moderate” and “Hard” settings.

Compared to the pseudo-lidar based approaches, our method uses cheaper
and less training data, in which pseudo-lidar based approaches utilize the full
Eigen set (23,488) with lidar sensor while we use the Eigen clean subset (14,490).
Alhtough using less training data, our approach still achieves much better perfor-
mance. Compared with the multi-task framework, our framework does not utilize
the extra private pre-trained dataset but still achieves better performance. This
also demonstrates the effectiveness of the designed direct-based module for im-
proving detection. Regarding the runtime efficiency, we follow previous work [50,
55] and evaluate the frame per second (FPS) on the RTX-2080Ti. Benefits from
the semi-supervised training framework, the detector is improved and keeps high
efficiency.

5.5 Experimental results on the nuScenes dataset

Except for the KITTI dataset, we also provide the experimental results of MVC-
MonoDet on the nuScenes dataset. Since the nuScenes dataset only uses the
monocular camera to collect image data, we provide the experimental results
with our video framework. Table 4 displays the results of detectors trained with
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10% and 100% of labeled data in the training subset. Similar to the observation
on the KITTI dataset, our approach consistently improves the fully-supervised
baseline and multi-task semi-supervised framework in both the mAP and ATE
metrics.

5.6 Ablation study

In Table 5, we present the ablation study for different consistency regularization
modules in our semi-supervised training framework. The ablation study is con-
ducted on the KITTI dataset and 100% of labeled data is used in semi-supervised
training. As shown in Table 5, both the box-level and object-level can effectively
improve the baseline method. Meanwhile, these two kinds of regularization im-
prove the detector from a different perspective, box-level is through enhancing
model robustness and object-level is by latent appearance-based localization su-
pervision. As a result, their combination can better improve the baseline method
in different multi-view data.

Table 5. Ablation study of different components in our MVC-MonoDet framework.
The mAP of Car category on the KITTI validation set is reported.

Multi-view|Box-level Object-level| Easy Moderate Hard
- 21.99 16.32 14.48

v 24.93 17.56 14.71
Stereo v 24.16 17.85 14.92
v v 26.85 18.63 15.37
v 23.14 17.01 15.02
Video v 23.21 16.75 14.71
v v 24.45 17.34 15.15

6 Conclusion

In this paper, we proposed a semi-supervised monocular 3D object detection
framework that leverages the unlabeled multi-view data (stereo or video) to im-
prove performance. In the framework, we provide a box-level and an object-level
consistency regularization to improve the performance of 3D detection. The box-
level regularization provides sparse supervision to enhance the model’s cross-view
generalization on the unlabeled and unseen data. The object-level regularization
utilizes dense supervision to explicitly identify and mitigate the bounding box
prediction error. We showed that the designed regularization modules are effec-
tive in different types of multi-view data, leading to superior improvement over
state-of-the-art results on the KITTI and nuScenes datasets.
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