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A Implementation Details

In this section, we provide more implementation details of the proposed method
and experiments.

A.1 Traning Strategy

Following previous methods [10,11], we train all models with 24 epochs, a batch
size of 1 (containing 6 view images) per GPU, a learning rate of 2×10−4, learning
rate multiplier of the backbone is 0.1, and we decay the learning rate with a
cosine annealing [3]. We employ AdamW [4] with a weight decay of 1×10−2 to
optimize our models.

A.2 VPN and Lift-Splat

We use VPN [5] and Lift-Splat [6] as two baselines in this work. The backbone
and the task heads are the same as the BEVFomer for fair comparisons.
VPN.We employ the official codes1 in this work. Limited by the huge amount of
parameters of MLP, it is difficult for VPN to generate high-resolution BEV (e.g.,
200× 200). To compare with VPN, in this work, we transform the single-scale
view features into BEV with a low resolution of 50×50 via two view translation
layers.
Lift-Splat. We enhance the camera encoder of Lift-Splat2 with two additional
convolutional layers for a fair comparison with our BEVFormer under a compa-
rable parameter number. Other settings remain unchanged.

A.3 Spatial Cross-Attention

Global Attention. Besides deformable attention [11], our spatial cross-attention
can also be implemented by global attention (i.e., vanilla multi-head atten-
tion) [9]. The most straightforward way to employ global attention is making
each BEV query interact with all multi-camera features, and this conceptual im-
plementation does not require camera calibration. However, the computational
cost of this straightforward way is unaffordable. Therefore, we still utilize the

1 https://github.com/pbw-Berwin/View-Parsing-Network
2 https://github.com/nv-tlabs/lift-splat-shoot
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camera intrinsic and extrinsic to decide the hit views that one BEV query de-
serves to interact. This strategy makes that one BEV query usually interacts
with only one or two views rather than all views, making it possible to use
global attention in the spatial cross-attention. Notably, compared to other at-
tention mechanisms that rely on precise camera intrinsic and extrinsic, global
attention is more robust to camera calibration.

A.4 Task Heads

Detection Head. We predict 10 parameters for each 3D bounding box,
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Fig.A1: Detailed architecture of the
mask decoder for map segmenta-
tion in this work.

including the 3 parameters (l, w, h)
for the scale of each box, 3 parame-
ters (xo, yo, zo) for the center location,
2 parameters (cos(θ), sin(θ)) for ob-
ject’s yaw θ, 2 parameters (vx, vy) for
the velocity. Only L1 loss and L1 cost
are used during training phase. Fol-
lowing [10], we use 900 object queries
and keep 300 predicted boxes with
highest confidence scores during infer-
ence.

Sementation Head. As shown in
Fig. A1, for each class of the seman-
tic map, we follow the mask decoder
in [2] to use one learnable query to
represent this class, and generate the
final segmentation masks based on the
attention maps from the vanilla multi-
head attention.

B Experiments on Waymo Open Dataset

Waymo Open Dataset [8] is a large-scale autonomous driving dataset with
798 training sequences and 202 validation sequences. Note that the five images
at each frame provided by Waymo have only about 252° horizontal FOV, but
the provided annotated labels are 360° around the ego car. We remove these
bounding boxes that can not be visible on any images in training and validation
sets. Due to the Waymo Open Dataset being large-scale and high-rate [7], we
use a subset of the training split by sampling every 5th frame from the training
sequences and only detect the vehicle category. We use the thresholds of 0.5 and
0.7 for 3D IoU to compute the mAP on Waymo dataset. For experiments on
Waymo, we change a few settings. Due to the camera system of Waymo can not
capture the whole scene around the ego car [8], the default spatial shape of BEV
queries is 300×220, the perception ranges are [−35.0m, 75.0m] for the X-axis
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Table A1: 3D detection results on Waymo val set under Waymo eval-
uation metric and nuScenes evaluation metric. “L1” and “L2” refer
“LEVEL 1” and “LEVEL 2” difficulties of Waymo [8]. *: Only use the front
camera and only consider object labels in the front camera’s field of view (50.4°).
†: We compute the NDS score by setting ATE and AAE to be 1. “L” and “C”
indicate LiDAR and Camera, respectively.

Method Modality
Waymo Metrics Nuscenes Metrics

IoU=0.5 IoU=0.7
NDS†↑ AP↑ ATE↓ ASE↓ AOE↓

L1/APH L2/APH L1/APH L2/APH

PointPillars [1] L 0.866 0.801 0.638 0.557 0.685 0.838 0.143 0.132 0.070

DETR3D [10] C 0.220 0.216 0.055 0.051 0.394 0.388 0.741 0.156 0.108
BEVFormer C 0.280 0.241 0.061 0.052 0.426 0.440 0.679 0.157 0.101

CaDNN∗ [7] C 0.175 0.165 0.050 0.045 - - - - -
BEVFormer∗ C 0.308 0.277 0.077 0.069 - - - - -

and [−75.0m, 75.0m] for the Y -axis. The size of resolution s of each gird is 0.5m.
The ego car is at (70, 150) of the BEV.

We also conduct experiments on Waymo, as shown in Tab. A1. Following [7],
we evaluate the vehicle category with IoU criterias of 0.7 and 0.5. In addition, We
also adopt the nuScenes metrics to evaluate the results since the IoU-based met-
rics are too challenging for camera-based methods. Due to a few camera-based
works reported results on Waymo, we also use the official codes of DETR3D
to perform experiments on Waymo for comparison. We can observe that BEV-
Former outperforms DETR3D by Average Precision with Heading information
(APH) [8] of 6.0% and 2.5% on LEVEL 1 and LEVEL 2 difficulties with IoU
criteria of 0.5. On nuScenes metrics, BEVFormer outperforms DETR3D with a
margin of 3.2% NDS and 5.2% AP. We also conduct experiments on the front
camera to compare BEVFormer with CaDNN [7], a monocular 3D detection
method that reported their results on the Waymo dataset. BEVFormer out-
performs CaDNN with APH of 13.3% and 11.2% on LEVEL 1 and LEVEL 2
difficulties with IoU criteria of 0.5.

C Robustness on Camera Extrinsics

BEVFormer relies on camera intrinsics and extrinsics to obtain the reference
points on 2D views. During the deployment phase of autonomous driving sys-
tems, extrinsics may be biased due to various reasons such as calibration errors,
camera offsets, etc. As shown in Fig. A2, we show the results of models un-
der different camera extrinsics noise levels. Compared to BEVFormer-S (point),
BEVFormer-S utilizes the spatial cross-attention based on deformable atten-
tion [11] and samples features around the reference points rather than only
interacting with the reference points. With deformable attention, the robust-
ness of BEVFormer-S is stronger than BEVFormer-S (point). For example, with
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Fig.A2: NDS of methods on nuScenes val set subjected to different
levels of camera extrinsics noises. For i-th level noises, the rotation noises
are sampled from a normal distribution with mean equals 0 and variance equals i
(rotation noise are in degrees, and the noise of each axis is independent), and the
translation noises are sampled from a normal distribution with mean equals 0 and
variance equals 5i (translation noises are in centimeters, and the noise of each
direction is independent). “BEVFormer” is our default version. “BEVFormer
(noise)” is trained with noisy extrinsics (noise level=1). “BEVFormer-S” is our
static version of BEVFormer with the spatial cross-attention implemented by
deformable attention [11]. “BEVFormer-S (global)” is BEVFormer-S with the
spatial cross-attention implemented by global attention (i.e., vanilla multi-head
attention) [9]. “BEVFormer-S (point)” is BEVFormer-S with point spatial cross-
attention where we degrade the interaction targets of deformable attention from
the local region to the reference points only by removing the predicted offsets
and weights.

the noise level being 4, the NDS of BEVFormer-S drops 15.2% (calculated by
1 − 0.380

0.448 ), while the NDS of BEVFormer-S (point) drops 17.3%. Compared to
BEVFormer-S, BEVFormer only drops 14.3% NDS, which shows that temporal
information can also improve robustness on camera extrinsics. Following [6], we
show that when training BEVFormer with noisy extrinsics, BEVFormer (noise)
has stronger robustness (only drops 8.9% NDS). With the spatial cross-attention
based on global attention, BEVFormer (global) has a strong anti-interference
ability (4.0% NDS drop) even under level 4 of the camera extrinsics noise. The
reason is that we do not utilize camera extrinsics to select the RoIs for BEV
queries. Notably, under the harshest noises, we see that BEVFormer-S (global)
even outperforms BEVFormer-S (38.8% NDS vs. 38.0% NDS).
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D Ablation Studies

Effect of the frame number during training. Tab. A2 shows the effect of
the frame number during training. We see that the NDS on nuScenes val set
keeps rising with the growth of the frame number and begins to level off the
frame number ≥ 4. Therefore, we set the frame number during training to 4 by
default in experiments.
Effect of some designs. Tab. A3 shows the results of several ablation stud-
ies. Comparing #1 and #4, we see that aligning history BEV features with
ego-motion is important to represent the same geometry scene as current BEV
queries (51.0% NDS vs. 51.7% NDS). Comparing #2 and #4, randomly sam-
pling 4 frames from 5 frames is a effective data augment strategy to improve
performance (51.3% NDS vs. 51.7% NDS). Compared to only using the BEV
query to predict offsets and weights during the temporal self-attention module
(see #3), using both BEV queries and history BEV features (see #4) contain
more clues about the past BEV features and benefits location prediction (51.3%
NDS vs. 51.7% NDS).

Table A2: NDS of models on
nuScenes val set using different
frame numbers during training.
“#Frame” denotes the frame number
during training.

#Frame NDS↑ mAP↑ mAVE↓

1 0.448 0.375 0.802
2 0.490 0.388 0.467
3 0.510 0.410 0.423
4 0.517 0.416 0.394
5 0.517 0.412 0.387

Table A3: Ablation Experiments
on nuScenes val set. “A.” indi-
cates aligning history BEV features
with ego-motion. “R.” indicates ran-
domly sampling 4 frames from 5 con-
tinuous frames. “B.” indicates using
both BEV queries and history BEV
features to predict offsets and weights.

# A. R. B. NDS↑ mAP↑

1 ✗ ✓ ✓ 0.510 0.410
2 ✓ ✗ ✓ 0.513 0.410
3 ✓ ✓ ✗ 0.513 0.404

4 ✓ ✓ ✓ 0.517 0.416

E Visualization

As shown in Fig. A3, we compare BEVFormer with BEVFormer-S. With tempo-
ral information, BEVFormer successfully detected two buses occluded by boards.
We also show both object detection and map segmentation results in Fig. A4,
where we see that the detection results and segmentation results are highly con-
sistent. We provide more map segmentation results in Fig. A5.
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Fig.A3: Comparision of BEVFormer and BEVFormer-S on nuScenes
val set. We can observe that BEVFormer can detect highly occluded objects,
and these objects are missed in the prediction results of BEVFormer-S (in red
circle).
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Fig.A4:Visualization results of both object detection and map segmen-
tation tasks. We show vehicle, road, and lane segmentation in blue, orange,
and green, respectively.
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Fig.A5: Visualization results of the map segmentation task. We show
vehicle, road, ped crossing and lane segmentation in blue, orange, cyan, and
green, respectively.
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