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Abstract. Object detection using single point supervision has received
increasing attention over the years. However, the performance gap be-
tween point supervised object detection (PSOD) and bounding box su-
pervised detection remains large. In this paper, we attribute such a large
performance gap to the failure of generating high-quality proposal bags
which are crucial for multiple instance learning (MIL). To address this
problem, we introduce a lightweight alternative to the off-the-shelf pro-
posal (OTSP) method and thereby create the Point-to-Box Network
(P2BNet), which can construct an inter-objects balanced proposal bag by
generating proposals in an anchor-like way. By fully investigating the ac-
curate position information, P2BNet further constructs an instance-level
bag, avoiding the mixture of multiple objects. Finally, a coarse-to-fine
policy in a cascade fashion is utilized to improve the IoU between pro-
posals and ground-truth (GT). Benefiting from these strategies, P2BNet
is able to produce high-quality instance-level bags for object detection.
P2BNet improves the mean average precision (AP) by more than 50%
relative to the previous best PSOD method on the MS COCO dataset.
It also demonstrates the great potential to bridge the performance gap
between point supervised and bounding-box supervised detectors. The
code will be released at github.com/ucas-vg/P2BNet.

Keywords: Object Detection, Single Point Annotation, Point Super-
vised Object Detection.

1 Introduction

Object detectors [13,30,29,25,23,4,38,46] trained with accurate bounding box
annotations have been well received in academia and industry. However, collect-
ing quality bounding box annotations requires extensive human efforts. To solve
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Fig. 1. Based on OTSP methods, the image-level bag in WSOD shows many prob-
lems: Too much background, mixture of different objects, unbalanced and low-quality
proposals. With point annotation, the previous work UFO2 filters most background in
first stage and splits bags for different objects in refinement. Our P2BNet produces
balanced instance-level bags in coarse stage and improves bag quality improves by
adaptively sampling proposal boxes around the estimated box of the former stage for
better optimization. The performance is the performance in COCO-14. The 27.6 AP50

is conducted on UFO2 with ResNet-50 and our point annotation for a fair comparison.

this problem, weakly supervised object detection [2,39,40,6,41,51,8,49] (WSOD)
replace bounding box annotations using low-cost image-level annotations. How-
ever, lacking crucial location information and experiencing the difficulty of dis-
tinguishing dense objects, WSOD methods perform poorly in complex scenarios.
Point supervised object detection (PSOD), on the other hand, can provide dis-
tinctive location information about the object and is much cheaper compared
with that via bounding box supervision.

Recently, point-based annotations are widely used in many tasks including
object detection [28,32] and localization [45,33,37], instance segmentation [7],
and action localization [21]. However, the performance gap between point su-
pervised detection methods [28,32] and bounding box supervised detectors re-
main large. Although it is understandable that location information provided
by bounding boxes is richer than the points, we argue that this is not the only
reason. We believe most PSOD methods do not utilize the full potential of point-
based annotations. Previous works use off-the-shelf proposal (OTSP) methods
(e.g., Selective Search [34], MCG [1], and EdgeBox [53]) to obtain proposals for
constructing bags. Despite the wide adaptation of these OTSP-based methods in
weakly supervised detectors, they suffer from the following problems in Fig. 1: 1)
There are too many background proposals in the bags. OTSP methods generate
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Fig. 2. (a) The number of assigned proposal boxes per object produced by MCG
(OTSP -based) is unbalanced, which is unfair for training. (b) Histogram of mIoUprop

for different proposal generation methods. mIoUprop denotes the mean IoU between
proposal boxes and ground-truth for an object. Small mIoUprop in MCG brings seman-
tic confusion. Whereas for our P2BNet with refinement, large mIoUprop is beneficial for
optimization. Statistics are on COCO-17 training set, and both figures have 50 bins.

too many proposal boxes that do not have any intersection with any of the fore-
ground objects; 2) Positive proposals per object are unbalanced. The positive
proposals per object produced by MCG on the COCO-17 training set are shown
in Fig. 2(a), which is clearly off-balance; 3) Majority of the proposals in bags
have very low IoU indicating low-quality proposals (Fig. 2(b)). Also, as the pre-
vious PSOD methods only construct image-level bags, they can not utilize the
point annotations during MIL training leading to a mixture of different objects
in the same bag. All these problems limit the overall quality of the constructed
bags, which contributes to the poor performance of the model.

In this paper, we propose P2BNet as an alternative to the OTSP methods
for generating high-quality object proposals. The number of proposals generated
by P2BNet is balanced for each object, and they cover varied scales and aspect
ratios. Additionally, the proposal bags are instance-level instead of image-level.
This preserves the exclusivity of objects for a given proposal bag which is very
helpful during MIL training. To further improve the quality of the bag, a coarse-
to-fine procedure is designed in a cascade fashion in P2BNet. The refinement
stage consists of two parts, the coarse pseudo-box prediction (CBP) and the
precise pseudo-box refinement (PBR). The CBP stage predicts the coarse scale
(width and height) of objects, whereas the PBR stage iteratively finetunes the
scale and position. Our P2BNet generates high-quality, balanced proposal bags
and ensures the contribution of point annotations in all stages (before, during,
and after MIL training). The detailed experiments on COCO suggest the effec-
tiveness and robustness of our model outperforming the previous point-based
detectors by a large margin. Our main contributions are as follows:

— P2BNet, a generative and OTSP-free network, is designed for predicting
pseudo boxes. It generates inter-objects balanced instance-level bags and is
beneficial for better optimization of MIL training. In addition, P2BNet is
much more time-efficient than the OTSP-base methods.
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— A coarse-to-fine fashion in P2BNet with CBP and PBR stage is proposed
for higher-quality proposal bags and better prediction.

— The detection performance of our proposed P2BNet-FR framework with
P2BNet under single quasi-center point supervision improves the mean av-
erage precision (AP) of the previous best PSOD method by more than 50%
(relative) on COCO and bridges the gap between bounding box supervised
detectors achieving comparable performance on AP50.

2 Related Work

In this section, we briefly discuss the research status of box-supervised, image-
level and point-level supervised object detection.

2.1 Box-Supervised Object Detection

Box-supervised object detection [13,30,29,25,23,4,38,46] is a traditional object
detection paradigm that gives the network a specific category and box informa-
tion. One-stage detectors based on sliding-window, like YOLO [29], SSD [25], and
RetinaNet [23], predict classification and bounding-box regression through set-
ting anchors. Two-stage detectors predict proposal boxes through OTSP meth-
ods (like selective search [34] in Fast R-CNN [13]) or deep networks (like RPN
in Faster R-CNN [30]) and conduct classification and bounding-box regression
with filtered proposal boxes sparsely. Transformer-based detectors (DETR [4],
Deformable-DETR [52], and Swin-Transformer [26]) come, utilizing global infor-
mation for better representation. Sparse R-CNN [38] combines the advantages
of transformer and CNN to a sparse detector. [43,9,14] study on oriented object
detection in aerial scenario. However, box-level annotation requires high costs.

2.2 Image-Supervised Object Detection

Image-supervised object detection [2,39,40,6,41,51,8,49,48,27,35] is the tradi-
tional field in WSOD. The traditional image-supervised WSOD methods can
be divided into two styles: MIL-based [2,39,40,6,41], and CAM-based [51,8,49].

In MIL-based methods, a bag is positively labelled if it contains at least
one positive instance; otherwise, it is negative. The objective of MIL is to se-
lect positive instances from a positive bag. WSDDN [2] introduced MIL into
WSOD with a representative two-stream weakly supervised deep detection net-
work that can classify positive proposals. OICR [39] introduces iterative fashion
into WSOD and attempts to find the whole part instead of a discriminative part.
PCL [40] develops the proposal cluster learning and uses the proposal clusters
as supervision to indicate the rough locations where objects most likely appear.
Subsequently, SLV [6] brings in spatial likelihood voting to replace the max score
proposal, further looking for the whole context of objects. Our paper produces
the anchor-like [35,30] proposals around the point annotation as a bag and uses
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instance-level MIL to train the classifier. It moves the fixed pre-generated pro-
posals (e.g.OICR, PCL and UWSOD [35]) to achieve the coarse to fine purpose.

In CAM-based methods, the main idea is to produce the class activation maps
(CAM) [51], use threshold to choose a high score region, and find the smallest
circumscribed rectangle of the largest general domain. WCCN [8] uses a three-
stage cascade structure. The first stage produces the class activation maps and
obtains the initial proposals, the second stage is a segmentation network for
refining object localization, and the last stage is a MIL stage outputting the
results. Acol [49] introduces two parallel-classifiers for object localization using
adversarial complementary learning to alleviate the discriminative region.

2.3 Point-Supervised Object Detection

Point-level annotation is a fairly recent innovation. The average time for anno-
tating a single point is about 1.87s per image, close to image-level annotation (1.5
s/image) and much lower than that for bounding box(34.5 s/image). The statis-
tics [11,28] are performed on VOC [10], which can be analogized to COCO [24].

[28] introduces center-click annotation to replace box supervision and es-
timates scale with the error between two times of center-click. [32] designs a
network compatible with various supervision forms like tags, points, scribbles,
and boxes annotation. However, these frameworks are based on OTSP methods
and are not specially designed for point annotation. Therefore, the performance
is limited and performs poorly in complex scenarios like the COCO [24] dataset.
We introduce a new framework with P2BNet which is free of OTSP methods.

3 Point-to-Box Network

The P2BNet-FR framework consists of Point-to-Box Network (P2BNet) and
Faster R-CNN (FR). P2BNet predicts pseudo boxes with point annotations to
train the detector. We use standard settings for Faster R-CNN without any bells
and whistles. Hence, we go over the proposed P2BNet in detail in this section.

The architecture of P2BNet is shown in Fig. 3, which includes the coarse
pseudo box prediction (CBP) stage and the pseudo box refinement (PBR) stage.
The CBP stage predicts the coarse scale (width and height) of objects, whereas
the PBR stage iteratively finetunes the scale and position. The overall loss func-
tion of P2BNet is the summation of the losses of these two stages, i.e.,

Lp2b = Lcbp +

T∑
t=1

L(t)
pbr, (1)

where PBR includes T iterations, and L(t)
pbr is the loss of t-th iteration.

3.1 Coarse Pseudo Box Prediction

In the CBP stage, firstly, proposal boxes of different widths and heights are
generated in an anchor-style for each object, taking the annotated point as the
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Fig. 3. The architecture of P2BNet. Firstly, to predict coarse pseudo boxes in CBP
stage, proposal bags are fixedly sampled around point annotations for classifier training.
Then, to predict refined pseudo boxes in PBR stage, high-quality proposal bags and
negative proposals are sampled with coarse pseudo boxes for training. Finally, the
pseudo boxes generated by the trained P2BNet serve as supervision for the training
the classic detector. (Best viewed in color.)

box center. Secondly, features of the sampled proposals are extracted to train a
MIL classifier for selecting the best fitted proposal of objects. Finally, the top-k
merging policy are utilized to estimate coarse pseudo boxes.

CBP Sampling: fixed sampling around the annotated point. With the point
annotation p = (px, py) as the center, s as the size, and v to adjust the aspect
ratio, the proposal box b = (bx, by, bw, bh) is generated, i.e. b = (px, py, v ·s, 1

v ·s).
The schematic diagram of proposal box sampling is shown in Fig. 4 (Left). By
adjusting s and v, each point annotation pj generates a bag of proposal boxes
with different scales and aspect ratios, denoted by Bj (j ∈ {1, 2, . . . ,M}, where
M is the amount of objects). The details of the settings of s and v are given
in supplemental. All proposal bags are utilized for training the MIL classifier in
the CBP module with the category labels of points as supervision.

There is a minor issue that oversized s may lead most of b outside the image
and introduce too many meaningless padding values. In this case, we clip b to
guarantee that it is inside the image (see Fig. 4 (Left)), i.e.,

b =

(
px, py,min(v ·s, 2(px−0), 2(W−px)),min(

1

v
·s, 2(py−0), 2(H−py))

)
, (2)

where W and H denote the image size. (px − 0) and (W − px) are the distances
from the center to the left and right edges of the image, respectively.

CBP Module. For a proposal bag Bj , features Fj ∈ RU×D are extracted
through 7× 7 RoIAlign [15] and two fully connected (fc) layers, where U is the
number of proposals in Bj , and D is the feature dimension. We refer to WS-
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Fig. 4. Details of sampling strategies in the CBP stage and the PBR stage. The arrows
in PBR sampling mean the offset of center jitter. Samples are obtained through center
jitter following scale and aspect ratio jatter in PBR sampling.

DDN [2] and design a two-stream structure as a MIL classifier to find the best
bounding box region to represent the object. Specifically, applying the classifi-
cation branch fcls to Fj yields Ocls

j ∈ RU×K , which is then passed through the

activation function to obtain the classification score Scls
j ∈ RU×K , where K rep-

resents the number of instance categories. Likewise, instance score Sins
j ∈ RU×K

is obtained through instance selection branch fins and activation function, i.e.,

Ocls
j = fcls(Fj), [Scls

j ]uk = e[O
cls
j ]uk

/ K∑
i=1

e[O
cls
j ]ui ; (3)

Oins
j = fins(Fj), [Sins

j ]uk = e[O
ins
j ]uk

/ U∑
i=1

e[O
ins
j ]ik , (4)

where [·]uk denotes the value at row u and column k in the matrix. The proposal
score Sj is obtained by computing the Hadamard product of the classification

score and the instance score, and the bag score Ŝj is obtained by the summation
of the proposal scores of U proposal boxes, i.e.,

Sj = Scls
j ⊙ Sins

j ∈ RU×K , Ŝj =

U∑
u=1

[Sj ]u ∈ RK . (5)

Ŝj can be seen as the weighted summation of the classification score [Scls
j ]u by

the corresponding selection score [Sins
j ]u.

CBP Loss. The MIL loss in the CBP module (termed Lmil1 to distinguish
it from the MIL loss in PBR) uses the form of cross-entropy loss, defined as:

Lcbp = αmil1Lmil1 = −αmil1

M

M∑
j=1

K∑
k=1

[cj ]k log([Ŝj ]k) + (1− [cj ]k) log(1− [Ŝj ]k),

(6)
where cj ∈ {0, 1}K is the one-hot category label, αmil1 is 0.25. The CBP loss is
to make each proposal correctly predict the category and instance it belongs to.

Finally, the top-k boxes with the highest proposal scores Sj of each object
are weighted to obtain coarse pseudo boxes for the following PBR sampling.
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3.2 Pseudo Box Refinement

The PBR stage aims to finetune the position, width and height of pseudo boxes,
and it can be performed iteratively in a cascaded fashion for better performance.
By adjusting the height and width of the pseudo box obtained in the previous
stage (or iteration) in a small span while jittering its center position, finer pro-
posal boxes are generated as positive examples for module training. Further,
because the positive proposal bags are generated in the local region, negative
samples can be sampled far from the proposal bags to suppress the background.
The PBR module also weights the top-k proposals with the highest predicted
scores to obtain the refined pseudo boxes, which are the final output of P2BNet.

PBR Sampling. adaptive sampling around estimated boxes. As shown in
Fig. 4 (Right), for each coarse pseudo box b∗ = (b∗x, b

∗
y, b

∗
w, b

∗
h) obtained in the

previous stage (or iteration), we adjust its scale and aspect ratio with s and v,
and jitter its postion with ox, oy to obtain the finer proposal b = (bx, by, bw, bh):

bw = v · s · b∗w, bh =
1

v
· s · b∗h, (7)

bx = b∗x + bw · ox, by = b∗y + bh · oy. (8)

These finer proposals are used as positive proposal bag Bj to train PBR module.
Furthermore, to better suppress the background, negative samples are intro-

duced in the PBR sampling. We randomly sample many proposal boxes, which
have small IoU (by default set as smaller than 0.3) with all positive proposals in
all bags, to compose the negative sample set N for the PBR module. Through
sampling proposal boxes by pseudo box distribution, high-quality proposal boxes
are obtained for better optimization (shown in Fig. 5).

PBR Module. The PBR module has a similar structure to the CBP mod-
ule. It shares the backbone network and two fully connected layers with CBP,
and also has a classification branch fcls and an instance selection branch fins.
Note that fcls and fins do not share parameters between different stages and
iterations. For instance selection branch, we adopt the same structure as the
CBP module, and utilize Eq. 4 to predict the instance score Sins

j for the pro-
posal bag Bj . Differently, the classification branch uses the sigmoid activation
function σ(x) to predict the classification score Scls

j , i.e.,

σ(x) = 1/(1 + e−x), Scls
j = σ(fcls(Fj)) ∈ RU×K . (9)

This form makes it possible to perform multi-label classification, which can dis-
tinguish overlapping proposal boxes from different objects. According to the
form of Eq. 5, bag score Ŝ∗

j is calculated using Scls
j and Sins

j of the current stage.
For the negative sample set N , we calculate its classification score as:

Scls
neg = σ(fcls(Fneg)) ∈ R|N |×K . (10)

PBR Loss. The PBR loss consists of MIL loss Lmil2 for positive bags and
negative loss Lneg for negative samples, i.e.,

Lpbr = αmil2Lmil2 + αnegLneg, (11)
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Fig. 5. The progression of the mIoUprop during refinement. By statistics, the mIoUpred

is gradually increasing in the PBR stage, indicating that the quality of the proposal
bag improves in iterative refinement.

where αmil2 = 0.25 and αneg = 0.75 are the settings in this paper.
1) MIL Loss. The MIL loss Lmil2 in the PBR stage is defined as:

FL(ζ, τ) =−
K∑

k=1

[τ ]k(1− [ζ]k)
γ log([ζ]k) + (1− [τ ]k)([ζ]k)

γ log(1− [ζ]k),

(12)

Lmil2 =
1

M

M∑
j=1

〈
cTj , Ŝ

∗
j

〉
· FL(Ŝj , cj), (13)

where FL(ζ, τ) is the focal loss [23], and γ is set as 2 following [23]. Ŝ∗
j represents

the bag score of the last PBR iteration (for the first iteration of PBR, using the

bag score in CBP).
〈
cTj , Ŝ

∗
j

〉
represents the inner product of the two vectors,

which means the predicted bag score of the previous stage or iteration on ground-
truth category. Score is used to weight the FL of each object for stable training.

2) Negative Loss. Conventional MIL treats proposal boxes belonging to
other categories as negative samples. In order to further suppress the back-
grounds, we sample more negative samples in the PBR stage and introduce the
negative loss (γ is also set to 2 following FL), i.e.,

β =
1

M

M∑
j=1

〈
cTj , Ŝ

∗
j

〉
, Lneg = − 1

|N |
∑
N

K∑
k=1

β · ([Scls
neg]k)

γ log(1− [Scls
neg]k).

(14)

4 Experiments

4.1 Experiment Settings

Datasets and Evaluate Metrics. For experiments, we use the public available
MS COCO [24] dataset. COCO has 80 different categories and two versions.
COCO-14 has 80K training and 40K validation images whereas COCO-17 has
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118K training and 5K validation images. Since the ground truth on the test set
is not released, we train our model on the training set and evaluate it on the
validation set reporting AP50 and AP (averaged over IoU thresholds in [0.5 :
0.05 : 0.95]) on COCO. The mIoUpred is calculated by the mean IoU between
predicted pseudo boxes and their corresponding ground-truth bounding-boxes
of all objects in the training set. It can directly evaluate the ability of P2BNet
to transform annotated points into accurate pseudo boxes.

Implementation Details. Our codes of P2BNet-FR are based on MMDe-
tection [5]. The stochastic gradient descent (SGD [3]) algorithm is used to opti-
mize in 1× training schedule. The learning rate is set to 0.02 and decays by 0.1
at the 8-th and 11-th epochs, respectively. In P2BNet, we use multi-scale (480,
576, 688, 864, 1000, 1200) as the short side to resize the image during training
and single-scale (1200) during inference. We choose the classic Faster R-CNN
FPN [30,22] (backbone is ResNet-50 [16]) as the detector with the default set-
ting, and single-scale (800) images are used during training and inference. More
details are included in the supplementary section.

Quasi-Center Point Annotation. We propose a quasi-center (QC) point
annotation that is friendly for object detection tasks with a low cost. In prac-
tical scenarios, we ask annotators to annotate the object in the non-high limit
center region with a loose rule. Since datasets in the experiment are already
annotated with bounding boxes or masks, it is reasonable that the manually
annotated points follow Gaussian distribution in the central region. We utilize
Rectified Gaussian Distribution (RG) defined in [45] with central ellipse con-
straints. For a bounding box of b = (bx, by, bw, bh), its central ellipse can be
defined as Ellipse(κ), using (bx, by) as the ellipse center and (κ · bw, κ · bh) as
the two axes of the ellipse. In addition, in view of the fact that the absolute
position offset for a large object is too large under the above rule, we limit the
two axes to no longer than 96 pixels. If the object’s mask Mask overlaps with
the central ellipse Ellipse(κ), V is used to denote the intersection. If there is no
intersecting area, V represents the entire Mask. When generated from bounding
box annotations, the boxes are treated as masks. Then RG is defined as,

RG(p;µ, σ, κ) =

{
Gauss(p;µ,σ)∫

V
Gauss(p;µ,σ)dp

, p ∈ V

0, p /∈ V
(15)

where µ and σ are mean and standard deviation of RG. κ decides the Ellipse(κ).
In this paper, RG(p; 0, 1

4 ,
1
4 ) is chosen to generate the QC point annotations.

4.2 Performance Comparisons

Unless otherwise specified, the default components of our P2BNet-FR framework
are P2BNet and Faster R-CNN. We compare the P2BNet-FR with the existing
PSOD methods while choosing the state-of-the-art UFO2 [32] framework as the
baseline for comprehensive comparisons. In addition, to demonstrate the perfor-
mance advantages of the PSOD methods, we compare them with the state-of-
the-art WSOD methods. At the same time, we compare the performance of the
box-supervised object detectors to reflect their performance upper bound.
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Method Backbone Proposal COCO-14 COCO-17
AP AP50 AP AP50

Box-supervised detectors
Fast R-CNN [13] VGG-16 SS 18.9 38.6 19.3 39.3
Faster R-CNN [30] VGG-16 RPN 21.2 41.5 21.5 42.1
FPN [5] R-50 RPN 35.5 56.7 37.4 58.1
RetinaNet [23,5] R-50 - 34.3 53.3 36.5 55.4
Reppoint [44,5] R-50 - - - 37.0 56.7
Sparse R-CNN [38,5] R-50 PP - - 37.9 56.0
Image-supervised detectors
OICR+Fast [39,13] VGG-16 SS 7.7 17.4 - -
PCL [40] VGG-16 SS 8.5 19.4 - -
PCL+Fast [40,13] VGG-16 SS 9.2 19.6 - -
MEFF+Fast [12,13] VGG-16 SS 8.9 19.3 - -
C-MIDN [42] VGG-16 SS 9.6 21.4 - -
WSOD2 [47] VGG-16 SS 10.8 22.7 - -
UFO2∗ [32] VGG-16 MCG 10.8 23.1 - -
GradingNet-C-MIL [18] VGG-16 SS 11.6 25.0 - -
ICMWSD [31] VGG-16 MCG 11.4 24.3 - -
ICMWSD [31] R-50 MCG 12.6 26.1 - -
ICMWSD [31] R-101 MCG 13.0 26.3 - -
CASD [17] VGG-16 SS 12.8 26.4 - -
CASD [17] R-50 SS 13.9 27.8 - -
Point-supervised detectors
Click [28] AlexNet SS - 18.4 - -
UFO2 [32] VGG-16 MCG 12.4 27.0 - -
UFO2† [32] VGG-16 MCG 12.8 26.6 13.2 27.2
UFO2‡ [32] VGG-16 MCG 12.7 26.5 13.5 27.9
UFO2‡ [32] R-50 MCG 12.6 27.6 13.2 28.9
P2BNet-FR (Ours) R-50 Free 19.4 43.5 22.1 47.3

Table 1. The performance comparison of box-supervised, image-supervised, and point-
supervised detectors on COCO dataset. ∗ means UFO2 with image-level annotation. †

means the performance we reproduce with the original setting. ‡ means we re-implement
UFO2 with our QC point annotation. The performance of P2BNet-FR, UFO2, and the
box-supervised detector is tested on a single scale dataset. Our P2BNet-FR is based on
P2BNet with top-4 merging and one PBR stage. SS is selective search [34], PP means
proposal box defined in [38], and Free represents OTSP-free based method.

Comparison with PSOD Methods. We compare the existing PSOD
methods Click [28] and UFO2 [32] on COCO, as shown in Tab. 1. Both Click
and UFO2 utilize OTSP-based methods (SS [34] or MCG [1]) to generate pro-
posal boxes. Since the point annotation used by UFO2 is different from the QC
point proposed in this paper, for a fair comparison, we re-train UFO2 on the
public code with our QC point annotation. In addition, the previous methods
are mainly based on VGG-16 [36] or AlexNet [20]. For consistency, we extend the
UFO2 to the ResNet-50 FPN backbone and compare it with our framework. In
comparison with Click and UFO2, our P2BNet-FR framework outperforms them
by a large margin. On COCO-14, P2BNet-FR improves AP and AP50 by 6.8 and
15.9, respectively. Also, our framework significantly outperforms state-of-the-art
performance by 8.9 AP and 18.4 AP50 on COCO-17. In Fig. 6, the visualization
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CBP stage PBR stage Performance
Lpos Lmil1 Lmil2 Lneg Lpesudo mIoUpred AP AP50

✓ 25.0 2.9 10.3
✓ 50.2 13.7 37.8
✓ ✓ 52.0 12.7 35.4
✓ ✓ ✓ 57.4 21.7 46.1
✓ ✓ ✓ ✓ 56.7 18.5 44.1

(a) The effectiveness of training loss in P2BNet: Lmil1 in CBP stage,
Lmil2 and Lneg in PBR stage. Lpos and Lpesudo is for comparison.

top-k mIoUpred AP AP50

1 49.2 12.2 35.9
3 54.7 21.3 46.6
4 57.5 22.1 47.3
7 57.4 21.7 46.1
10 57.1 21.5 46.0

(b) The top-k policy for box merging.
k is set the same for all stages.

T mIoUpred AP AP50

0 50.2 13.7 37.8
1 57.4 21.7 46.1
2 57.0 21.9 46.1
3 56.2 21.3 45.6

(c) The number of iterations T in
the PBR stage. T = 0 means only
the CBP stage is conducted.

Table 2. Ablation study (Part I).

shows our P2BNet-FR makes full use of the precise location information of point
annotation and can distinguish dense objects in complex scenes.

Comparison with WSOD Methods. We compare the proposed frame-
work to the state-of-the-art WSOD methods on the COCO-14 in Tab. 1. The
performance of P2BNet-FR proves that compared with WSOD, PSOD signifi-
cantly improves the detection performance with little increase in the annotation
cost, showing that the PSOD task has great prospects for development.

Comparison with Box-Supervised Methods. In order to verify the fea-
sibility of P2BNet-FR in practical applications and show the upper bound under
this supervised manner, we compare the box-supervised detector [30] in Tab. 1.
Under AP50, P2BNet-FR-R50 (47.3 AP50) is much closer to box-supervised de-
tector FPN-R50 (58.1 AP50) than previous WSOD and PSOD method. It shows
that PSOD can be applied in industries that are less demanding on box quality
and more inclined to find objects [19,50], with greatly reduced annotation cost.

4.3 Ablation Study

In this section, all the ablation studies are conducted on the COCO-17 dataset.
The top-k setting is k = 7 except for the box merging policy part in Tab. 2(b)
and different detectors part (k = 4) in Tab. 3(d).
Training Loss in P2BNet. The ablation study of the training loss in P2BNet
is shown in Tab. 2(a). 1) CBP loss. Only with Lmil1 in the CBP stage, we can
obtain 13.7 AP and 37.8 AP50. For comparison, we conduct Lpos, which views all
the proposal boxes in the bag as positive samples. We find it hard to optimize,
and the performance is bad, demonstrating the effectiveness of our proposed
Lmil1 for pseudo box prediction. Coarse proposal bags can cover most objects
in high IoU, resulting in a low missing rate. However, the performance still has
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Methods AR1 AR10 AR100

UFO2 14.7 22.6 23.3
P2BNet-FR 21.3 32.8 34.2

(a) Comparisons of average recall for
UFO2 and P2BNet-FR.
Balance AP AP50

✓ 21.7 46.1
- 12.9 36.0

(b) Unbalance issue.

Jitter AP AP50

✓ 21.7 46.1
- 14.2 38.2

(c) Jitter strategy.

Detectors
GT box Pseudo box
AP AP50 AP AP50

RetinaNet [23] 36.5 55.4 21.0 44.9
Reppoint [44] 37.0 56.7 20.8 45.1

Sparse R-CNN [38] 37.9 56.0 21.1 43.3
FR-FPN [30,22] 37.4 58.1 22.1 47.3

(d) Performance of different detectors on
ground-truth box annotations and pseudo
boxes generated by P2BNet. We use the
top-4 for box merging.

Table 3. Ablation study (Part II).

the potential to be refined because the scale and aspect ratio are coarse, and
the center position needs adjustment. 2) PBR loss. With a refined sampling
of proposal bag (shown in Fig. 5), corresponding PBR loss is introduced. Only
with Lmil2, the performance is just 12.7 AP. The main reasons of performance
degradation are error accumulation in a cascade fashion and lacking negative
samples for focal loss. There are no explicit negative samples to suppress back-
ground for Sigmoid activation function, negative sampling and negative loss
Lneg is introduced. Performance increases by 9.0 AP and 10.7 AP50, indicating
that it is essential and effectively improves the optimization. We also evaluate
the mIoUpred to discuss the predicted pseudo box’s quality. In the PBR stage
with Lmil2 and Lneg, the mIoU increases from 50.2 to 57.4, suggesting better
quality of the pseudo box. Motivated by [45], we conduct Lpesudo, viewing pseudo
boxes from the CBP stage as positive samples. However, the Lpesudo limits the
refinement and the performance decreases. In Tab. 3(c), if we remove the jitter
strategy of proposal boxes in PBR stage, the performance drops to 14.2 AP.

Number of Refinements in PBR. Refining pseudo boxes is a vital part of
P2BNet, and the cascade structure is used for iterative refinement to improve
performance. Tab. 2(c) shows the effect of the refining number in the PBR stage.
One refinement brings a performance gain of 8.0 AP, up to a competitive 21.7
AP. The highest 21.9 AP is obtained with two refinements, and the performance
is saturated. We choose one refinement as the default configuration.

Box Merging Policy. We use the top-k score average weight as our merging
policy. We find that the hyper-parameter k is slightly sensitive and can be easily
generalized to other datasets, as presented in Tab. 2(b), and only the top-1 or
top-few proposal box plays a leading role in box merging. The best performance
is 22.1 AP and 47.3 AP50 when k = 4. The mIoUpred between the pseudo box and
ground-truth box is 57.5. In inference, if bag score S is replaced by classification
score Scls for merging, the performance drops to 17.4 AP (vs 21.7 AP).

Average Recall. In Tab. 3(a), the AR in UFO2 is 23.3, indicating a higher
missing rate. Whereas the P2BNet-FR obtains 34.2 AR, far beyond that of the
UFO2. It shows our OTSP-free method is better at finding objects.
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Fig. 6. Visualization of detection results of P2BNet-FR and UFO2. Our P2BNet-FR
can distinguish dense objects and perform well in complex scene. (Best viewed in color.)

Unbalance Sampling Analysis. To demonstrate the effect of unbalance sam-
pling, we sample different numbers of proposal boxes for each object and keep
them constant in every epoch during the training period. The performance drops
in Tab. 3(b) suggests the negative impact of unbalanced sampling.

Different Detectors. We train different detectors [30,22,23,44,38] for the in-
tegrity experiments, all of which are conducted on R-50, as shown in Tab. 3(d).
Our framework exhibits competitive performance on other detectors. Box super-
vised performances are listed to demonstrate the upper bound of our framework.

5 Conclusion

In this paper, we give an in-depth analysis of shortcomings in OTSP-based PSOD
frameworks, and further propose a novel OTSP-free network termed P2BNet to
obtain inter-objects balanced and high-quality proposal bags. The coarse-to-fine
strategy divides the prediction of pseudo boxes into CBP and PBR stages. In the
CBP stage, fixed sampling is performed around the annotated points, and coarse
pseudo boxes are predicted through instance-level MIL. The PBR stage performs
adaptive sampling around the estimated boxes to finetune the predicted boxes in
a cascaded fashion. As mentioned above, P2BNet takes full advantage of point
information to generate high-quality proposal bags, which is more conducive to
optimizing the detector (FR). Remarkably, the conceptually simple P2BNet-FR
framework yields state-of-the-art performance with single point annotation.
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