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Abstract. We aim to improve the performance of regressing hand key-
points and segmenting pixel-level hand masks under new imaging con-
ditions (e.g ., outdoors) when we only have labeled images taken under
very different conditions (e.g ., indoors). In the real world, it is important
that the model trained for both tasks works under various imaging condi-
tions. However, their variation covered by existing labeled hand datasets
is limited. Thus, it is necessary to adapt the model trained on the labeled
images (source) to unlabeled images (target) with unseen imaging con-
ditions. While self-training domain adaptation methods (i.e., learning
from the unlabeled target images in a self-supervised manner) have been
developed for both tasks, their training may degrade performance when
the predictions on the target images are noisy. To avoid this, it is crucial
to assign a low importance (confidence) weight to the noisy predictions
during self-training. In this paper, we propose to utilize the divergence of
two predictions to estimate the confidence of the target image for both
tasks. These predictions are given from two separate networks, and their
divergence helps identify the noisy predictions. To integrate our proposed
confidence estimation into self-training, we propose a teacher-student
framework where the two networks (teachers) provide supervision to a
network (student) for self-training, and the teachers are learned from the
student by knowledge distillation. Our experiments show its superiority
over state-of-the-art methods in adaptation settings with different light-
ing, grasping objects, backgrounds, and camera viewpoints. Our method
improves by 4% the multi-task score on HO3D compared to the latest
adversarial adaptation method. We also validate our method on Ego4D,
egocentric videos with rapid changes in imaging conditions outdoors.

1 Introduction

In the real world, hand keypoint regression and hand segmentation are consid-
ered important to work under broad imaging conditions for various computer
vision applications, such as egocentric video understanding [28,17], hand-object
interaction analysis [12,21], AR/VR [39,70], and assistive technology [40,37]. For
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Fig. 1: We aim to adapt the model of localizing hand keypoints and pixel-level
hand masks to new imaging conditions without annotation.

building models for both tasks, several labeled hand datasets have been proposed
in laboratory settings, such as multi-camera studios [34,46,13,80] and attaching
sensors to hands [24,75,26]. However, their imaging conditions do not adequately
cover real-world imaging conditions [51], consisting of various lighting, hand-held
objects, backgrounds, and camera viewpoints. In addition, the annotation of key-
points and pixel-level masks are not always available in real-world environments
because they are labor-intensive to acquire. As shown in Fig. 1, when localizing
hand keypoints and pixels in real-world egocentric videos [28] (e.g ., outdoors),
we may only have access to a hand dataset [13] taken under completely different
imaging conditions (e.g ., indoors). Given these limitations, we need methods that
can robustly adapt the models trained on the available labeled images (source)
to unlabeled images (target) with new imaging conditions.

To enable such adaptation, the approach of self-training domain adaptation
has been developed for both tasks. This approach aims to learn unlabeled tar-
get images by optimizing a self-supervised task, which exhibits effectiveness in
various domain adaptation tasks [15,18,67,77,7]. For keypoint estimation, consis-
tency training, a method that regularizes keypoint predictions to be consistent
under geometric transformations, has been proposed [73,66,77]. As for hand seg-
mentation, prior studies use pseudo-labeling [53,7], which produces hard labels
by thresholding a predicted class probability for updating a network. However,
these self-training methods for both tasks perform well only when the predic-
tions are reasonably correct. When the predictions become noisy due to the gap
in imaging conditions, the trained network will cause over-fitting to the noisy
predictions, resulting in poor performance in the target domain.

To avoid this, it is crucial to assign a low importance (confidence) weight
to the loss of self-training with noisy predictions. This confidence weighting can
mitigate the distractions from the noisy predictions. To this end, we propose
self-training domain adaptation with confidence estimation for hand keypoint
regression and hand segmentation. Our proposed method consists of (i) confi-
dence estimation based on the divergence of two networks’ predictions and (ii)
an update rule that integrates a training network for self-training and the two
networks for confidence estimation.
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To (i) estimate confidence, we utilize the predictions of two different networks.
While class probability can be used as the confidence in classification tasks, it
is not trivial to obtain such a measure in keypoint regression. Thus, we newly
focus on the divergence of the two networks’ predictions for each target image.
We design their networks to have an identical architecture but have different
learning parameters. We observe that when the divergence measure is high, the
predictions of both networks are noisy and should be avoided in self-training.

To (ii) integrate the estimated confidence into self-training, inspired by the
single-teacher-single-student update [64,54], we develop mutual training with
self-training based on consistency training for a training network (student) and
distillation-based update for the two networks (teachers). For training the stu-
dent network, we build a unified self-training framework that can work favorably
for the two tasks. Motivated by supervised or weakly-supervised learning for
jointly estimating both tasks [68,76,27,49,16], we expect that jointly adapting
both tasks will allow one task to provide useful cues to the other task even in the
unlabeled target domain. Specifically, we enforce the student network to generate
consistent predictions for both tasks under geometric augmentation. We weight
the loss of the consistency training using the confidence estimated from the di-
vergence of the teachers’ predictions. This can reduce the weight of the noisy
predictions during the consistency training. To learn the two teacher networks
differently, we train the teachers independently from different mini-batches by
knowledge distillation, which matches the teacher-student predictions in the out-
put level. This framework enables the teachers to update more carefully than the
student and prevent over-fitting to the noisy predictions. Such stable teachers
provide reliable confidence estimation for the student’s training.

In our experiments, we validate our proposed method in adaptation settings
where lighting, grasping objects, backgrounds, camera viewpoints, etc., vary be-
tween labeled source images and unlabeled target images. We use a large-scale
hand dataset captured in a multi-camera system [13] as the source dataset (see
Fig. 1). For the target dataset, we use HO3D [29] with different environments,
HanCo [78] with multiple viewpoints and diverse backgrounds, and FPHA [24]
with a novel first-person camera viewpoint. We also apply our method to in-
the-wild egocentric video Ego4D [28] (see Fig. 1), including diverse indoor and
outdoor activities worldwide. Our method improves the average score of the
two tasks by 14.4%, 14.9%, and 18.0% on HO3D, HanCo, and FPHA, respec-
tively, compared to a unadapted baseline. Our method further exhibits distinct
improvements compared to the latest adversarial adaption method [33] and con-
sistency training baselines with uncertainty estimation [7], confident instance
selection [53], and the teacher-student scheme [64]. We finally confirm that our
method also performs qualitatively well on the Ego4D videos.

Our contributions are summarized as follows:

– We propose a novel confidence estimation method based on the divergence
of the predictions from two teacher networks for self-training domain adap-
tation of hand keypoint regression and hand segmentation.
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– To integrate our proposed confidence estimation into self-training, we pro-
pose mutual training using knowledge distillation with a student network for
self-training and two teacher networks for confidence estimation.

– Our proposed framework outperforms state-of-the-art methods under three
adaptation settings across different imaging conditions. It also shows im-
proved qualitative performance on in-the-wild egocentric videos.

2 Related Work

Hand keypoint regression is the task of regressing the positions of hand
joint keypoints from a cropped hand image. 2D hand keypoint regression
is trained by optimizing keypoint heatmaps [69,50,79] or directly predicting
keypoint coordinates [60]. The 2D keypoints are informative for estimating
3D hand poses [61,74,47,5]. To build an accurate keypoint regressor, collect-
ing massive hand keypoint annotations is required but laborious. While early
works annotate the keypoints manually from a single view [56,62,48], recent
studies have collected the annotation more densely and efficiently using syn-
thetic hand models [30,47,79,48], hand sensors [24,75,63,26], or multi-camera
setups [34,46,13,6,80,29,43]. However, these methods suffer the gap in imaging
conditions with real-world images in deployment [51]. For instance, the syn-
thetic hand models and hand sensors induce different lighting conditions from
actual human hands. The multi-camera setup lacks a variety of lighting, grasp-
ing objects, and backgrounds. To tackle these problems, domain adaptation is
a promising solution that can transfer the knowledge of the network trained
on source data to unlabeled target data. Jiang et al . proposed an adversarial
domain adaptation for human and hand keypoint regression, optimizing the dis-
crepancy between regressors [33]. Additionally, self-training adaptation methods
have been studied in the keypoint regression of animals [11], humans [66], and
objects [77]. Unlike these prior works, we incorporate confidence estimation into
a self-training method based on consistency training for keypoint regression.

Hand segmentation is the task of segmenting pixel-level hand masks in
a given image. CNN-based segmentation networks [65,3,35] are popularly used.
The task can be jointly trained with hand keypoint regression because detect-
ing hand regions guides to improve keypoint localization [68,76,27,49,16]. Since
hand mask annotation is laborious as hand keypoint regression, a few domain
adaptation methods with pseudo-labeling have been explored [7,53]. To reduce
the effect of highly noisy pseudo-labels in the target domain, Cai et al . incorpo-
rate the uncertainty of pseudo-labels in model adaptation [7], and Ohkawa et al .
select confident pseudo-labels by the overlap of two predicted hand masks [53].
Unlike [7], we estimate the target confidence using two networks. Instead of us-
ing the estimated confidence for instance selection [53], we assign the confidence
to weight the loss of consistency training.

Domain adaptation via self-training aims to learn unlabeled target data
in a self-supervised learning manner. This approach can be divided into three
categories. (i) Pseudo-labeling [15,59,81,53,7] learns unlabeled data with hard
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labels assigned by confidence thresholding from the output of a network. (ii) En-
tropy minimization [42,67,55] regularizes the conditional entropy of unlabeled
data and increases the confidence of class probability. (iii) Consistency regu-
larization [71,14,20] enforces regularization so that the prediction on unlabeled
data is invariant under data perturbation. We choose to leverage this consistency-
based method for our task because it works for various tasks [45,41,52] and the
first two approaches cannot be directly applied. Similar to our work, Yang et
al . [73] enforce the consistency for two different views and modalities in hand
keypoint regression. Mean teacher [64] provides teacher-student training with
consistency regularization, which regularizes a teacher network by a student’s
weights and avoids over-fitting to incorrect predictions. Unlike [73], we propose
to integrate confidence estimation into the consistency training and adopt the
teacher-student scheme with two networks. To encourage the two networks to
have different representations, we propose a distillation-based update rule in-
stead of updating the teacher with the exponential moving average [64].

3 Proposed Method

In this section, we present our proposed self-training domain adaptation with
confidence estimation for adapting hand keypoint regression and hand segmen-
tation. We first present our problem formulation and network initialization with
supervised learning from source data. We then introduce our proposed modules:
(1) geometric augmentation consistency, (2) confidence weighting by using two
networks, and (3) teacher-student update via knowledge distillation. As shown
in Fig. 2, our adaptation is done with two different networks (teachers) for con-
fidence estimation and another network (student) for self-training of both tasks.

Problem formulation. Given labeled images from one source domain and
unlabeled images from another target domain, we aim to jointly estimate hand
keypoint coordinates and pixel-level hand masks on the target domain. We have
a source image xs drawn from a set Xs ⊂ RH×W×3, its corresponding labels
(yp

s ,y
m
s ), and a target image xt drawn from a set Xt ⊂ RH×W×3. The pose

label yp
s consists of the 2D keypoint coordinates of 21 hand joints obtained from

a set Y p
s ⊂ R21×2, while the mask label ym

s denotes a binary mask obtained

from Y m
s ⊂ (0, 1)

H×W
. A network parameterized by θ learns the mappings

fk(x;θ) : X → Y k where k ∈ {p,m} represents the indicator for both tasks.
Initialization with supervised learning. To initialize networks used in

our adaptation, we train the network f on the labeled source data following
multi-task learning. Given the labeled dataset (Xs, Ys) and the network θ, a
supervised loss function is defined as

Ltask (θ, Xs, Ys) =
∑
k

λkE(xs,yk
s )∼(Xs,Y k

s )

[
Lk(pk

s ,y
k
s )
]
, (1)

where Ys = {Y p
s , Y m

s } and pk
s = fk(xs;θ). Lk(·, ·) : Y k × Y k → R+ is a loss

function in each task and λk is a hyperparameter to balance the two tasks. We
use a smooth L1 loss [32,58] as Lp and a binary cross-entropy loss as Lm.
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3.1 Geometric Augmentation Consistency

Inspired by semi-supervised learning using hand keypoint consistency [73], we
advance a unified training with consistency for both hand keypoint regression
and hand segmentation. We expect that joint adaption of both tasks will al-
low one task to provide useful cues to the other task in consistency training,
as studied in supervised or weakly-supervised learning setups [68,76,27,49,16].
We design consistency training by predicting the location of hand keypoints
and hand pixels in a given geometrically transformed image, including rotation
and transition. This consistency under geometric augmentation encourages the
network to learn against positional bias in the target domain, which helps cap-
ture the hand structure related to poses and regions. Specifically, given a paired
augmentation function (Tx, T

k
y ) ∼ T for an image and an label, we generate the

prediction on the target images pk
t = fk (xt;θ) and the augmented target images

pk
t,aug = fk (Tx(xt);θ). We define the loss function of geometric augmentation

consistency (GAC) Lgac between pk
t,aug and T k

y (pt) as

Lgac (θ, Xt, T ) = Ext,(Tx,T
p
y ,Tm

y )

 ∑
k∈{p,m}

λ̃kL̃k
(
pk
t,aug, T

k
y (p

k
t )
) . (2)

To correct the augmented prediction pk
t,aug by T k

y (pt), we stop the gradient up-

date for pk
t , which can be viewed as the supervision to pk

t,aug. We use the smooth

L1 loss (see Equation 1) as L̃p and a mean squared error as L̃m. We introduce λ̃k

as a hyperparameter to control the balance of the two tasks. The augmentation
set T contains the geometric augmentation and photometric augmentation, such
as color jitter and blurring. We set Ty(·) to align geometric information to the
augmented input Tx(xt). For example, we apply rotation Ty(·) to the outputs
pk
t with the same degree of rotation Tx(·) to the input xt.

3.2 Confidence Estimation by Two Separate Networks

Since the target predictions are not always reliable, we aim to incorporate the
estimated confidence weight for each target instance into the consistency train-
ing. In Equation 2, the generated outputs pk

t that is the supervision to pk
t,aug

may be unstable and noisy due to the domain gap between source and target
domains. Due to that, the network trained with the consistency readily overfits
to the incorrect supervision pk

t , which is known as confirmation bias [2,64]. To
reduce the bias, it is crucial to assign a low importance (confidence) weight to the
consistency training with the incorrect supervision. This enables the network to
learn primarily from reliable supervision while avoiding being biased to such er-
roneous predictions. In classification tasks, predicted class probability can serve
as the confidence, while these measures are not trivially defined and available
in regression tasks. To estimate the confidence of keypoint predictions, Yang et
al . [73] measure the confidence of 3D hand keypoints by the distance to the
fitted 3D hand template, but the hand template fitting is an ill-posed problem
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<latexit sha1_base64="STh/iKHVpO0L70n+/uN+hQdjULM=">AAAB+3icbVDLSsNAFL2pr1pfsS7dDBbBhZREirosuNFdBfuANoTJdNoOnUnCzEQsIb/ixoUibv0Rd/6NkzYLbT0wcDjnXu6ZE8ScKe0431ZpbX1jc6u8XdnZ3ds/sA+rHRUlktA2iXgkewFWlLOQtjXTnPZiSbEIOO0G05vc7z5SqVgUPuhZTD2BxyEbMYK1kXy7GvvpQGA9kSJV5zgZZ5lv15y6MwdaJW5BalCg5dtfg2FEEkFDTThWqu86sfZSLDUjnGaVQaJojMkUj2nf0BALqrx0nj1Dp0YZolEkzQs1mqu/N1IslJqJwEzmMdWyl4v/ef1Ej669lIVxomlIFodGCUc6QnkRaMgkJZrPDMFEMpMVkQmWmGhTV8WU4C5/eZV0LuruZb1x36g174o6ynAMJ3AGLlxBE26hBW0g8ATP8ApvVma9WO/Wx2K0ZBU7R/AH1ucPv7uU7w==</latexit>ps,aug

Fig. 2: Method overview. Left: Student training with confidence-aware geo-
metric augmentation consistency. The student learns from the consistency be-
tween its prediction and the two teachers’ predictions. The training is weighted
by the target confidence computed by the divergence of both teachers. Right:
Teacher training with knowledge distillation. Each teacher independently learns
to match the student’s predictions. The task index k is omitted for simplicity.

for 2D hands and is not applicable to hand segmentation. Dropout [22,7,8] is a
generic way of estimating uncertainty (confidence), calculated by the variance of
multiple stochastic forwards. However, the estimated confidence is biased to the
current state of the training network because the training and confidence esti-
mation are done by a single network. When the training network works poorly,
the confidence estimation becomes readily unreliable.

To perform reliable confidence estimation for both tasks, we propose a confi-
dence measure by computing the divergence of two predictions. Specifically, we
introduce two networks (a.k.a., teachers) for the confidence estimation and the
estimated confidence is used to train another network (a.k.a., student) for the
consistency training. The architecture of the teachers is identical, yet they have
different learning parameters. We observe that when the divergence of the two
predictions from the teachers for a target instance is high, the predictions of both
networks become unstable. In contrast, a lower divergence indicates that the two
teacher networks predict stably and agree on their predictions. Thus, we use the
divergence for representing the target confidence. Given the teachers θtch1,θtch2,
we define a disagreement measure ℓdisagree to compute the divergence as

ℓdisagree
(
θtch1,θtch2,xt

)
=

∑
k∈{p,m}

λ̃kL̃k(pk
t1,p

k
t2), (3)

where pk
t1 = fk(xt;θ

tch1) and pk
t2 = fk(xt;θ

tch2).
As a proof of concept, we visualize the correlation between the disagreement

measure and a validation score averaged over evaluation metrics of the two tasks
(PCK and IoU) in Fig. 3. We compute the score between the ensemble of the
teachers’ predictions pk

ens =
(
pk
t1 + pk

t2

)
/2 and its ground truth in the validation

set on HO3D [29]. The instances with a small disagreement measure tend to
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Small disagreement measure:

Large disagreement measure:

PCK (val): 72.9% IoU (val): 61.9%

Teacher1 Teacher2
Ensemble of Teachers

IoU (val): 37.7%PCK (val): 28.0%

Teacher1 Teacher2
Ensemble of Teachers

Fig. 3: The correlation between a disagreement measure and task
scores. Target instances with smaller disagreement values between the two
teacher networks tend to have higher task scores.

have high validation scores. In contrast, the instances with a high disagreement
measure entail false predictions, e.g ., detecting the hand-held object as a hand
joint and hand class. When the disagreement measure was high at the bottom
of Fig. 3, we found that both predictions were particularly unstable on the
keypoints of the ring finger (yellow). This study shows that the disagreement
measure can represent the correctness of the target predictions.

With the disagreement measure ℓdisagree, we define a confidence weight
wt ∈ [0, 1] for assigning importance to the consistency training. We compute
the weight wt as wt = 2

(
1− sigm

(
λdℓdisagree

(
θtch1,θtch2,xt

)))
where wt is a

normalized disagreement measure with sign inversion, sigm(·) denotes a sigmoid
function, and λd controls the scale of the measure. With the confidence weight wt,
we enforce the consistency training between the student’s prediction on the aug-
mented target images pk

s,aug and the ensemble of the two teachers’ predictions

pk
ens. Our proposed loss function of confidence-aware geometric augmentation

consistency (C-GAC) Lcgac for the student θstu is formulated as

Lcgac

(
θstu,θtch1,θtch2, Xt, T

)
= Ext,(Tx,T

p
y ,Tm

y )

wt

∑
k∈{p,m}

λ̃kL̃k
(
pk
s,aug, T

k
y (p

k
ens)

) ,

(4)

where pk
s,aug = fk (Tx(xt);θ

stu). Following [64,54], we design the student predic-

tion pk
s,aug to be supervised by the teachers. We generate the teachers’ prediction

by doing ensemble pk
ens, which is better than the prediction of either teacher.

3.3 Teacher-Student Update by Knowledge Distillation

In addition to the student’s training, we formulate an update rule for the two
teacher networks by using knowledge distillation. Since ℓdisagree would not work
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if the two teachers had the same output values, we aim to learn two teachers
that have different representations yet keep high task performance as co-training
works [4,57,15,59]. In a prior teacher-student update, Tarvainen et al . [64] found
that the teacher’s update by an exponential moving average (EMA), which aver-
ages the student’s weights iteratively, makes the teacher’s learning more slowly
and mitigates the confirmation bias as discussed in Section 3.2. While this EMA-
based teacher-student framework is widely used in various domain adaptation
tasks [19,9,38,72,25], naively applying the EMA rule to the two teachers would
produce exactly the same weights for both networks.

To prevent this, we propose independent knowledge distillation for building
two different teachers. The distillation matches the teacher-student predictions
in the output level. To let both networks have different parameters, we train the
teachers from different mini-batches and using stochastic augmentation as

Ldistill

(
θ,θstu, Xt, T

)
= Ext,Tx

 ∑
k∈{p,m}

λ̃kL̃k(pk
t,aug,p

k
s,aug)

 , (5)

where θ ∈ {θtch1,θtch2}, pk
t,aug = fk (Tx(xt);θ), and pk

s,aug = fk(Tx (xt) ;θ
stu).

The distillation loss Ldistill is used for updating the teacher networks only. This
helps the teachers to adapt to the target domain more carefully than the student
and avoid falling into exactly the same predictions on a target instance.

3.4 Overall Objectives

Overall, the objective of the student’s training consists of the supervised loss
(Equation 1) from the source domain and the self-training with confidence-aware
geometric augmentation consistency (Equation 4) in the target domain as

min
θstu

Ltask

(
θstu, Xs, Ys

)
+ Lcgac

(
θstu,θtch1,θtch2, Xt, T

)
. (6)

The two teachers are asynchronously trained with the distillation loss (Equa-
tion 5) in the target domain, which is formulated as

min
θ

Ldistill

(
θ,θstu, Xt, T

)
, (7)

where θ ∈ {θtch1,θtch2}. Since the teachers are updated carefully and can per-
form better than the student, we use the ensemble of the two teachers’ predictions
for a final output in inference.

4 Experiments

In this section, we first present our experimental datasets and implementation
details and then provide quantitative and qualitative results along with the ab-
lation studies. We analyze our proposed method by comparing it with several
existing methods in three different domain adaptation settings. We also show
qualitative results by applying our method to in-the-wild egocentric videos.
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4.1 Experiment Setup

Datasets. We experimented with several hand datasets including a variety of
hand-object interactions, the annotation of 2D hand keypoints, and hand masks
as follows. We adopted DexYCB [13] dataset as our source dataset since it con-
tains a large amount of training images, their corresponding labels, and natural
hand-object interactions. We chose to use the following datasets as our target
datasets: HO3D [29] captured in different environments with the same YCB
objects [10] as the source dataset, HanCo [78] captured in a multi-camera stu-
dio and generated with synthesized backgrounds, and FPHA [24] captured by
a first-person view. We also used Ego4D [28] to verify the effectiveness of our
method in real-world scenarios. During training, we used cropped images of the
hand regions from the original images as input.

Implementation details. Our teacher-student networks share an identi-
cal network architecture, which consists of a unified feature extractor and task-
specific branches for hand keypoint regression and hand segmentation. For train-
ing our student network, we used the Adam optimizer [36] with a learning rate of
10−5, while the learning rate of the teacher networks was set to 5×10−6. We set
the hyperparameters (λp(= λ̃p), λm, λ̃m, λd) to (10

7, 102, 5, 0.5). Since both task-
specific branches have different training speeds, we began our adaptation with
the backbone and keypoint regression branch. We then trained all sub-networks,
including the hand segmentation branch. We report the percentage of correct
keypoints (PCK) and the mean joint position error (MPE) for hand keypoint
regression, and the intersection over union (IoU) for hand segmentation.

Baseline methods.We compared quantitative performance with the follow-
ing methods. Source only denotes the network trained on the source dataset
without any adaptation. To compare with another adaptation approach with
adversarial training, we trained DANN [23] that aligns marginal feature distri-
butions between domains, and RegDA [33] with an adversarial regressor that
optimizes domain disparity. In addition, we implemented several self-training
adaptation methods by replacing pseudo-labeling with the consistency train-
ing. GAC is a simple baseline with the consistency training updated by Equa-
tion 2. GAC + UMA [7] is a GAC method with confidence estimation by
Dropout [22]. GAC + CPL [53] is a GAC method with confident instance
selection using the agreement with another network. GAC + MT [64] is a
GAC method with the single-teacher-single-student architecture using EMA for
the teacher update. Target only indicates the network trained on the target
dataset with labels, which shows an empirical performance upper bound.

Our method. We denote our full method as C-GAC introduced in Sec-
tion 3.4. As an ablation study, we present a variant of the proposed method as
GAC-Distill with a teacher-student pair, which is updated by the consistency
training (Equation 2) and the distillation loss (Equation 5). GAC-Distill is
different from GAC + MT only in the way of the teacher update.
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Table 1: DexYCB [13] → HO3D [29]. We report PCK (%) and MPE (px)
for hand keypoint regression and IoU (%) for hand segmentation. Each score
format of val / test indicates the validation and test scores. Red and blue letters
indicate the best and second best values.

Method
2D Pose Seg 2D Pose + Seg

PCK ↑ (%) MPE ↓ (px) IoU ↑ (%) Avg. ↑ (%)

Source only 42.8/33.5 15.39/19.32 57.9/49.1 50.3/41.3

DANN [23] 49.0/46.8 12.39/13.39 52.8/54.7 50.9/50.8
RegDA [33] 48.8/48.2 12.50/12.64 55.7/55.3 52.2/51.7
GAC 47.6/47.4 12.47/12.54 58.0/56.9 52.8/52.2
GAC + UMA [7] 47.1/45.3 12.97/13.51 58.0/55.0 52.5/50.2
GAC + CPL [53] 48.1/48.1 12.74/12.61 57.2/55.6 52.7/51.8
GAC + MT [64] 45.5/44.4 13.65/14.05 54.8/52.3 50.2/48.3

GAC-Distill (Ours) 49.9/50.4 11.98/11.51 60.7/60.6 55.3/55.5
C-GAC (Ours-Full) 50.3/51.1 11.89/11.22 60.9/60.3 55.6/55.7

Target only 55.1/58.6 11.00/9.29 68.2/66.1 61.7/62.4

4.2 Quantitative Results

We show the results of three adaptation settings: DexYCB → {HO3D, HanCo,
FPHA} in Tables 1 and 2. We then provide detailed comparisons of our method.

DexYCB → HO3D. Table 1 shows the results of the adaptation from
DexYCB to HO3D where the grasping objects are overlapped. The baseline of
the consistency training (GAC) was effective in learning target images in both
tasks. Our proposed method (C-GAC) improved by 5.3/14.4 in the average
task score from the source-only performance. The method also outperformed all
comparison methods and achieved close performance to the upper bound.

DexYCB → HanCo. Table 2 shows the results of the adaptation from
DexYCB to HanCo across laboratory setups. The source-only network less gen-
eralized to the target domain because the HanCo has diverse backgrounds, while
GAC succeeded in adapting up to 47.4/47.9 in the average score. Our method
C-GAC showed further improved results in hand keypoint regression.

DexYCB → FPHA. Table 2 also shows the results of the adaptation
from DexYCB to FPHA, which captures egocentric users’ activities. Since hand
markers and in-the-wild target environments cause large appearance gaps, the
source-only performance performed the most poorly among the three adaption
settings. In this challenging setting,RegDA andGAC + UMA performed well
for hand segmentation, while their performance on hand keypoint regression was
inferior to the GAC baseline. Our method C-GAC further improved than the
GAC method in the MPE and IoU metrics and exhibited stability in adaptation
training among the comparison methods.

Comparison to different confidence estimation methods. We com-
pare the results with existing confidence estimation methods. GAC + UMA
and GAC + CPL estimate the confidence of target predictions by computing
the variance of multiple stochastic forwards and the task scores between a train-
ing network and an auxiliary network, respectively. GAC + UMA performed
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Table 2: DexYCB [13] → {HanCo [78], FPHA [24]}. We report PCK (%)
and MPE (px) for hand keypoint regression and IoU (%) for hand segmentation.
We show the validation and test results on HanCo and the validation results on
FPHA. Red and blue letters indicate the best and second best values.

Method
DexYCB → HanCo

2D Pose Seg
PCK ↑ (%) MPE ↓ (px) IoU ↑ (%) Avg. ↑ (%)

Source only 26.0/27.3 21.82/21.48 41.8/41.4 33.9/34.3

DANN [23] 32.3/33.0 19.99/19.82 56.3/56.9 44.3/45.0
RegDA [33] 33.0/33.6 19.51/19.44 57.8/58.4 45.4/46.0
GAC 36.6/37.1 16.63/16.59 58.1/58.8 47.4/47.9
GAC + UMA [7] 35.1/35.6 17.51/17.48 57.1/57.7 46.1/46.6
GAC + CPL [53] 32.7/33.5 19.85/19.62 55.8/56.4 44.2/45.0
GAC + MT [64] 33.2/33.8 18.93/18.83 54.3/55.1 43.8/44.4

GAC-Distill (Ours) 38.8/39.5 16.06/15.97 57.5/57.7 48.1/48.6
C-GAC (Ours-Full) 39.2/39.9 15.83/15.74 58.2/58.6 48.7/49.2

Target only 76.8/77.3 4.91/4.80 75.9/76.1 76.3/76.7

DexYCB → FPHA
2D Pose Seg

PCK MPE IoU Avg.

14.0 31.32 24.8 19.4

24.4 25.79 28.4 26.4
23.7 24.27 41.7 32.7
37.2 17.02 33.3 35.3
36.8 17.29 39.2 38.0
25.7 24.99 32.7 29.2
31.3 20.81 38.4 34.9

36.8 15.99 35.5 36.1
37.2 15.36 37.7 37.4

63.3 8.11 - -

effectively on DexYCB → FPHA, whereas the performance gain was thin in
the other settings compared to GAC. GAC + CPL worked well for keypoint
regression on DexYCB → HO3D, but it cannot address the other settings with
a large domain gap well since the prediction of the auxiliary network became
unstable. Although these prior methods had different disadvantages depending
on the settings, our method C-GAC using the divergence of the two teachers
for confidence estimation performed stably in the three settings.

Comparison to standard teacher-student update. We compare our
teacher update with the update with an exponential moving average (EMA) [64].
The EMA-based update (GAC-MT) degraded the performance from the source
only in hand segmentation in Table 1. This suggests that the EMA update can
be sensitive to the task. In contrast, our method GAC-Distill matching the
teacher-student predictions in the output level did not produce such performance
degeneration and worked more stably.

Comparison to adversarial adaptation methods. We compared our
method with another major adaptation approach with adversarial training. In
Tables 1 and 2, the performance of DANN and RegDA was mostly worse
than the consistency-based baseline GAC. We found that instead of matching
features between both domains [23,33], directly learning target images by the
consistency training was critical in the adaptation of our tasks.

Comparison to an off-the-shelf hand pose estimator. We tested the
generalization ability of an open-source library for pose estimation: Open-
Pose [31]. It resulted in 15.75/12.72, 18.31/18.42, and 29.02 in the MPE on
HO3D, HanCo, and FPHA, respectively. Since it is built on multiple source
datasets [34,1,44], the baseline showed higher generalization than the source-
only network. However, the performance did not exceed our proposed method
in the MPE. This shows that generalizing hand keypoint regression to other



Domain Adaptive Hand Keypoint and Pixel Localization in the Wild 13

HO3D HanCo FPHA Ego4D

Source only  
Ours-Full 
Ground truth 

Fig. 4: Qualitative results. We show qualitative examples of the source-only
network (top), the Ours-Full method (middle), and ground truth (bottom) on
HO3D [29], HanCo [78], FPHA [24], and Ego4D [28] without ground truth.

datasets is still challenging, and our adaptation framework supports improving
target performance.

4.3 Qualitative Results

We show the qualitative results of hand keypoint regression and hand segmenta-
tion in Fig. 4. When hands are occluded in HO3D and FPHA or the backgrounds
are diverse in HanCo, the keypoint prediction of the source only (top) represented
infeasible hand poses and hand segmentation was too noisy or missing. However,
our method C-GAC (middle) corrected the hand keypoint errors and improved
to localize hand regions. Hand segmentation in FPHA was still noisy because
visible white markers obstructed hand appearance. We can also see distinct im-
provements in the Ego4D dataset. We provide additional qualitative analysis
in adaptation to the Ego4D beyond countries, cultures, ages, indoors/outdoors,
and performing tasks with hands in our supplementary material.

4.4 Ablation Studies

Effect of confidence estimation. To confirm the effect of our proposed con-
fidence estimation, we compare our full method C-GAC and our ablation
model GAC-Distill without the confidence weighting. In Tables 1 and 2, while
GAC-Distill mostly surpassed the comparison methods in most cases, C-GAC
showed further performance gain in all three adaptation settings.

Multi-task vs. single-task adaptation.We studied the effect of our multi-
task adaptation compared with single-task adaptation on DexYCB → HO3D.
The single-task adaptation results are 50.1/51.0 in the PCK and 58.2/57.7 in
the IoU. Compared to Table 1, our method in the multi-task setting improved
by 2.7/2.6 over the single-task adaption in hand segmentation while it provided
marginal gain in hand keypoint regression. This shows that the adaptation of
hand keypoint regression helps to localize hand regions in the target domain.
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Fig. 5: Visualization of bone length distributions. We show the distribu-
tions of the bone length between hand joints, namely, Wrist, metacarpopha-
langeal (MCP), proximal interphalangeal (PIP), distal interphalangeal (DIP),
and fingertip (TIP). Using kernel density estimation, we plotted the density of
the bone length for the predictions of the source only, the Ours-Full method,
and ground truth on test data of HO3D [29].

Bone length distributions. To study our adaptation results in each hand
joint, we show the distributions of bone length between hand joints in Fig. 5. In
Wrist-MCP, PIP-DIP, and DIP-TIP, the distribution of the source-only predic-
tion on target images (blue) was far from that of the target ground truth (green),
whereas our method (orange) improved to approximate the target distribution
(green). In MCP-PIP, we could not observe such clear differences because the
source-only model already represented the target distribution well. This indicates
that our method improved to learn hand structure near the palm and fingertips.

5 Conclusion

In this work, we tackled the problem of joint domain adaptation of hand key-
point regression and hand segmentation. Our proposed method consists of the
self-training with geometric augmentation consistency, confidence weighting by
the two teacher networks, and the teacher-student update by knowledge distilla-
tion. The consistency training under geometric augmentation served to learn the
unlabeled target images for both tasks. The divergence of the predictions from
two teacher networks could represent the confidence of each target instance,
which enables the student network to learn from reliable target predictions.
The distillation-based teacher-student update guided the teachers to learn from
the student carefully and mitigated over-fitting to the noisy predictions. Our
method delivered state-of-the-art performance on the three adaptation setups.
It also showed improved qualitative results in the real-world egocentric videos.
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