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A Data Efficiency

Although there is no strict definition of data efficiency, it has been studied under
various contexts [16,10,15,6]. As described in Section 1 of our main text, the
requirement of more training data brings two issues: (a) more human labors are
needed to collect and label enough training data; (b) more computational costs
are required to train the model. In this paper, we aim to alleviate both these
two issues of existing detection transformers. Thus, most of our experiments are
performed on small-size datasets and implemented with a short training schedule
of 50 epochs.

Table S1. Performance comparison of CondDETR variants trained with a long training
schedule, experimented on down-sampled COCO 2017 dataset. “Rate” indicates the
sample rate. The number of training epochs is increased to ensure the computational
cost is the same as that of full COCO 2017 training.

Rate Method Epochs AP AP50 AP75 APS APM APL Params FLOPs FPS

0.01
CondDETR [11] 5000 10.0 21.1 8.3 2.6 10.7 15.7 43M 90G 39
DE-CondDETR 5000 13.2 23.5 12.8 5.4 14.2 17.3 44M 107G 28

DELA-CondDETR 5000 13.4 24.1 13.0 5.6 14.4 17.7 44M 107G 28

0.02
CondDETR [11] 2500 14.7 28.6 13.3 4.3 14.8 23.7 43M 90G 39
DE-CondDETR 2500 17.5 30.7 17.4 7.3 18.9 24.7 44M 107G 28

DELA-CondDETR 2500 18.4 32.0 18.6 8.0 18.8 25.9 44M 107G 28

0.05
CondDETR [11] 1000 20.1 36.8 19.4 6.5 21.0 30.9 43M 90G 39
DE-CondDETR 1000 23.3 39.3 23.7 10.5 24.9 32.4 44M 107G 28

DELA-CondDETR 1000 23.8 40.0 24.4 10.7 25.4 33.2 44M 107G 28

0.1
CondDETR [11] 500 24.9 43.6 24.4 8.9 26.6 37.7 43M 90G 39
DE-CondDETR 500 27.5 45.0 28.2 13.6 29.1 37.0 44M 107G 28

DELA-CondDETR 500 28.3 46.1 29.4 14.4 30.0 38.5 44M 107G 28

In this section, we ablate the effectiveness of our method on alleviating hu-
man labor, by training on small-size datasets but with a much longer training
schedule. Specifically, we use the same sub-sampled COCO 2017 dataset in Sec-
tion 5 of our main text. But we increase the number of training epochs to match
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the computational cost of full COCO 2017 dataset training. The experiments are
based on CondDETR [11] variants. All models are trained with a batch size of
32 and the learning rate is decayed after training for 0.8 times the total training
epochs.

As can be seen from Table S1, with a much longer training schedule and
more training costs, the performance of the CondDETR baseline is improved
compared with the results under a short training schedule in Fig. 4 (b) of
our manuscript, especially when the number of training images is small. How-
ever, our DE-CondDETR and DE-CondDETR still consistently outperform the
CondDETR baseline by a large margin, which manifests the effectiveness of our
method in alleviating human labor for data collection.

B Fine-tuning from COCO pre-trained model weights

Table S2. Training on Cityscapes with COCO pre-trained weights.

Pre-training on COCO Fine-tuning on Cityscapes
Method

Epochs AP Epochs AP AP50 AP75

DETR 500 42.0
50 25.7 47.6 24.3
300 29.4 51.5 27.7

DELA-DETR
N/A (Scratch) 50 24.5 46.2 22.5

50 41.9 50 33.4 54.9 33.4

CondDETR 50 40.2 50 29.8 55.1 27.5

DELA-CondDETR
N/A (Scratch) 50 29.5 52.8 27.6

50 43.0 50 35.1 58.6 35.2

We conduct experiments to train detection transformers from COCO pre-
trained weights. As shown in Table S2, the performance of DETR and Cond-
DETR are significantly improved, and slightly outperform our DELA models
trained from scratch. However, even better results can be achieved when our
DELA models are trained from their corresponding COCO pre-trained weights.

What’s more interesting is that our DELA models can also benefit from
COCO pre-trained DETR or CondDETR weights, thanks to our minimum modi-
fications to the model structures. For example, DELA-CondDETR achieves 32.4
AP when fine-tuned from COCO pre-trained CondDETR, and DELA-DETR
achieve 28.6 AP when fine-tuned from COCO pre-trained DETR.

C More Implementation Details

More details for experiments in Fig. 1. Experiment results on both the
sample-rich COCO 2017 dataset and the small-size Cityscapes dataset are sum-
marized in Fig. 1 of our manuscript. The results on COCO 2017 are collected
from the corresponding original papers, while the results on Cityscapes are based
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on our re-implementations. Specifically, we follow the default training setting of
corresponding methods [13,14,21,2,11,17,5]. The only difference is that we use
a small batch size of 8 to guarantee enough training iterations on the small-
size dataset. For SMCA [5], since only the single-scale version is made publicly
available, we adopt its single-scale variant, denoted as SMCA-SS. All Cityscapes
experiments are repeated for 5 runs with different random seeds and the averaged
results are reported.
More details for the model transformation. Similar to other experiments
on small-size datasets, we use a small batch size of 8 to guarantee enough training
iterations on Cityscapes. Sparse RCNN is trained with focal loss [8] and 300
queries, under the same data augmentation pipeline as DETR.
More details for the experiments in Section 5. (a) For the ablation study
on the number of multi-scale features, the 64× down-sampled feature is obtained
by applying a 3×3 convolution layer with a stride of 2 on the 32× down-sampled
feature, following DeformDETR [21]. (b) For the evaluation of generalization
to the sample-rich dataset, we re-implement DETR and CondDETR on COCO
2017 dataset for a fair comparison with our method.

D Pseudo-code for the implementation of DE-DETRs

def forward(image feats, query feats, bbox):
# image feats: (B, D, H, W), where B is the batch size
# query feats: (B, N, D), where N is the number of queries
# bbox: (B, N, 4), bounding box prediction made by previous decoder layer

# Self−attention
query feats = self attn(query feats) # (B, N, D)

# Local Feature Sampling
sparse feats = RoIAlign(image feats, bbox) # (B, N, D, K, K)

# For cross−attention, the batch size is treated as B∗N for parallel decoding
sparse feats = sparse feats.view(B∗N, D, K∗K).permute(0, 2, 1) # (B∗N, K∗K, D)
query feats = query feats.view(B∗N, 1, D)
query feats = cross attn(query feats, sparse feats).view(B, N, D)

# Predictions in the current decoder layer
class probs = classifier(query feats)
bbox = regressor(query feats) # for feature sampling in the next decoder layer

return query feats, class probs, bbox

Fig. S1. Pseudo-code for the forward function of a single decoder layer with local
feature sampling. We use a single-scale image feature for illustration.

With the proposed local feature sampling in the decoder layer, each ob-
ject query attend to different set of keys. To facilitate parallel decoding in the
cross-attention layer, we treat different queries as individual samples in a batch.



4 W. Wang et al.

Specifically, suppose a batch of input queries to the decoder has a shape of
(B,N,D), where B is the batch size. In cross-attention, the queries are viewed
as (B ×N, 1, D) for parallel decoding. The pseudo-code in Fig. S1 illustrate the
forward function of a single decoder layer with local feature sampling.

E Discussions on Local Feature Sampling

Our model transformation shows that sparse feature sampling from local areas is
critical to data efficiency. Though PnP-DETR [17] also attempts to sample sparse
features, the features are sampled from the entire image, instead of a local area
in the image. As a result, the sampled features may contain multiple instances
and the model still has to learn to focus on specific objects from more training
data. By contrast, Sparse RCNN, DeformDETR, and our method sample sparse
features from local object regions, thus alleviating the data-hungry issue.

F DeformDETR with Label Augmentation

Since DeformDETR already performs sample feature sampling from local areas
and multi-scale feature fusion with the advanced Deformable Attention [21], we
do not modify its model structure. Instead, we simply combine our label aug-
mentation method with DeformDETR, which is denoted as LA-DeformDETR.

Table S3. DeformDETR trained with the proposed label augmentation (LA) on
Cityscapes. “SF”, “MS”, and “LA” represent sparse feature sampling, multi-scale fea-
ture fusion, and label augmentation, respectively.

Method SF MS LR AP AP50 AP75 APS APM APL Params FLOPs FPS

DeformDETR [21] ✓ ✓ 27.3 49.2 26.3 8.7 28.2 45.7 40M 174G 28

LA-DeformDETR ✓ ✓ ✓ 28.6 52.2 27.4 8.9 28.9 47.9 40M 174G 28

Experiments on Cityscapes. As can be seen from Table S3, the DeformDETR
is a data-efficient model that achieves an even better performance than Sparse
RCNN on Cityscapes. However, our label augmentation can further improve its
data efficiency and achieve a 1.3 AP gain to the strong baseline.
Experiments on the sub-sampled COCO 2017. We also evaluate the per-
formance of our LA-DeformDETR on the sub-sampled COCO 2017 dataset.
As shown in Fig. S2, our method consistently outperforms the DeformDETR
baseline under varying sampling rates.

G Ablations based on DELA-DETR

To gain a more comprehensive understanding of each component in our method,
we also conduct ablation studies based on DELA-DETR, following the ablation
studies in Section 5.2 of our main text.
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Fig. S2. Performance comparison of DeformDETR variants on sub-sampled COCO
2017 dataset. Note the sample ratio is shown on a logarithmic scale. As can be seen,
the proposed label augmentation consistently improves the model performance under
varying data sampling ratios.

Table S4. Ablations on each component in DELA-DETR. “SF”, “MS”, and “LA”
represent sparse feature sampling, multi-scale feature fusion, and label augmentation,
respectively. † indicates the query number is increased from 100 to 300.

Method Epochs SF MS LA AP AP50 AP75 APS APM APL Params FLOPs FPS

DETR [2] 300 11.5 26.7 8.6 2.5 9.5 25.1 41M 86G 44

LA-DETR 300 ✓ 16.8 36.9 13.3 3.0 13.4 35.5 41M 86G 44
50 ✓ 16.3 34.9 12.9 2.3 12.0 35.9 42M 85G 36

DE-DETR 50 ✓ ✓ 21.7 41.7 19.2 4.9 20.0 39.9 42M 88G 34
DELA-DETR 50 ✓ ✓ ✓ 20.6 40.1 18.4 4.6 18.9 37.5 42M 91G 29

DE-DETR† 50 ✓ ✓ 22.4 41.3 20.9 6.0 21.3 39.7 42M 91G 29

DELA-DETR† 50 ✓ ✓ ✓ 24.5 46.2 22.5 6.1 23.3 43.9 42M 91G 29

Effectiveness of each module. As shown in Table S4, both sparse feature
sampling from local areas and multi-scale feature significantly improve the data
efficiency of DETR, bringing a 4.8 and 5.4 gain on AP even under a much shorter
training schedule. Besides, we also apply label augmentation to DE-DETTR.
However, directly applying label augmentation makes the performance worse.
We conjecture that with only 100 queries, the positive sample ratio becomes too
high for training, particularly for the Cityscapes dataset, where many images
contain dense object scenes. To solve this problem, we improve the number of
queries from 100 to 300, as did in CondDETR and DeformDETR. As can be
seen, DELA-DETR† outperforms DE-DETR by 2.8 AP. Moreover, from the
comparison between DE-DETR† and DELA-DETR†, it can be seen that the
performance gain mainly comes from our label augmentation, instead of more
queries.
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Table S5. Ablations on multi-scale feature levels and feature resolutions for RoIAlign,
experimented based on DE-DETR. Note label augmentation is not utilized for clarity.

MS Lvls RoI Res. AP AP50 AP75 APS APM APL Params FLOPs FPS

1 1 12.5 30.8 8.1 1.8 8.9 26.9 42M 85G 36
1 4 16.3 34.9 12.9 2.3 12.0 35.9 42M 85G 36
1 7 16.5 35.6 13.0 2.3 12.5 36.5 42M 86G 36

3 4 21.7 41.7 19.2 4.9 20.0 39.9 42M 88G 34
4 4 21.1 40.8 18.9 4.3 18.6 39.5 47M 89G 33

Resolution for RoIAlign and number of multi-scale features. As can be
seen from Table S5, RoIAlign with a feature resolution of 4 is both efficient and
effective. And the three feature levels for multi-scale fusion achieve the optimal
performance. Thus, the hyper-parameter settings of DE-DETR are exacted the
same as that of DE-CondDETR.

Table S6. Ablation on the proposed label augmentation, experimented based on DE-
DETR. Params, FLOPs, and FPS are omitted since they are consistent for all label
augmentation settings.

Fix Time Fix Ratio AP AP50 AP75 APS APM APL

– – 21.7 41.7 19.2 4.9 20.0 39.9

2 – 24.5 46.2 22.5 6.1 23.3 43.9
3 – 23.7 43.8 21.8 5.7 21.7 43.5
4 – 22.8 42.7 21.1 5.7 21.3 41.5
5 – 22.6 43.1 20.1 5.5 20.7 40.9

– 0.1 23.8 44.8 21.1 5.6 22.4 42.0
– 0.2 23.4 43.7 21.2 6.0 21.7 41.8
– 0.25 23.1 43.4 21.0 5.4 22.1 41.1
– 0.3 23.1 43.3 21.1 5.7 21.8 41.0
– 0.4 21.9 40.4 20.5 5.1 21.0 39.8

Ablations on label augmentation. We also ablate the proposed label aug-
mentation method with the fixed repeat time strategy and the fixed positive
sample ratio strategy. As can be seen from Table S6, a fixed repeat time of 2
consistently achieve the best performance.

H Ablations on NMS

Since the proposed label augmentation performs one-to-many matching between
ground truths and predictions, a duplicate remove process is required. Although
more advanced duplicate removal methods, like Soft-NMS [1], can be used, we
simply adopt the vanilla NMS.
NMS with different IoU thresholds. We first ablate NMS with different IoU
thresholds. As can be seen from Table S7, DELA-CondDETR with different IoU



Towards Data-Efficient Detection Transformers 7

Table S7. Ablations on NMS, experiments based on DELA-CondDETR. Nt indicates
the IoU threshold for NMS.

Method Nt AP AP50 AP75 APS APM APL

DE-CondDETR
– 26.8 47.8 25.4 6.8 25.6 46.6
0.7 27.1 49.2 25.3 6.8 25.9 47.5

DELA-CondDETR

0.3 28.6 51.9 26.6 7.1 27.3 49.3
0.4 29.0 52.7 26.9 7.2 27.6 49.7
0.5 29.3 53.2 27.1 7.3 28.0 50.0
0.6 29.5 53.2 27.4 7.5 28.2 50.1
0.7 29.5 52.8 27.6 7.5 28.2 50.1
0.8 29.3 51.8 27.8 7.4 28.0 49.8
0.9 28.5 49.6 27.5 7.1 26.9 48.7

thresholds for NMS consistently outperforms the DE-CondDETR. Moreover,
NMS with a wide range of IoU thresholds from 0.4 to 0.8 can achieve good
performance. We conjecture that it is easier to remove the duplicates when each
positive sample is repeated only two times.
DE-CondDETR with NMS. As can be seen from Table S7, applying NMS on
DE-CondDETR does not make much difference on model performance, since it
follows a one-to-one matching scheme during training. This validates the perfor-
mance gain of DELA-CondDETR comes from a richer supervision signal, instead
of the duplicate removal process.

I Ablations on the Box Refinement

Table S8.Ablations on the single-scale sparse feature sampling, experimented based on
CondDETR. RoI and Refine indicate RoIALign and cascaded bounding box refinement,
respectively. All models are trained for 50 epochs.

Method Refine RoI AP AP50 AP75 APS APM APL Params FLOPs FPS

CondDETR [11] 12.1 28.0 9.1 2.2 9.8 27.0 43M 90G 39

✓ 12.1 30.2 7.8 2.1 10.4 25.7 44M 90G 39
✓ 16.3 32.5 14.3 3.3 15.0 33.6 43M 95G 32

✓ ✓ 20.4 40.7 17.7 2.9 16.9 42.0 44M 95G 32

For sparse feature sampling from local areas, both RoIAlign and cascaded
bounding box refinement are included. In this section, we ablate the effectiveness
of these two components. As shown in Table S8, RoIAlign alone can bring a 4.2
gain on AP. By contrast, applying the bound box refinement alone does not
improve the model performance. However, when combined with RoIAlign, the
bound box refinement can improve the model performance by 4.1 AP. Since the
regression targets for each decoder layer are determined by the bounding box
predictions made by the previous layer, we conjecture that it is important that
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the current decoder layer is aware of the updated reference boxes, in order to
make the box refinement effective. With RoIAlign, the current decoder layer
can infer the updated reference boxes from the sampled features, which have
been added with the sine positional embedding. By contrast, when applying the
bounding boxes refinement alone, the updated reference boxes can hardly be
inferred from the global feature map of the entire image.

J Experiments on Pascal VOC

Table S9. Performance of our data-efficient detection transformers on Pascal VOC.
All models are trained on trainval07+12 for 50 epochs, and evaluated on test2007.

Method Epochs AP AP50 AP75 APS APM APL Params FLOPs FPS

DETR [2] 50 38.3 62.1 40.3 2.1 12.9 48.3 41M 86G 43
DE-DETR 50 54.8 78.7 60.7 20.2 39.2 61.6 43M 88G 33

DELA-DETR† 50 57.0 82.0 63.0 24.5 42.1 63.8 43M 91G 29

CondDETR [11] 50 55.6 82.0 60.9 15.1 34.7 63.9 43M 90G 39
DE-CondDETR 50 56.4 80.2 63.2 22.2 40.7 62.8 44M 107G 28
DELA-CondDETR 50 59.5 84.4 66.3 29.7 43.6 65.6 44M 107G 28

In this section, we also conducted experiments on based on the Pascal VOC
dataset [4]. Follow the common practice, we train models on the trainval07+12
split with contains about 16.5k images and evaluated them on the test2007 split.
All models are trained with a batch size of 32. The results are shown in Table S9,
as can be seen, both our DE- and DELA- model variants consistently outperform
the corresponding baselines.

K Visualizations

Visualization of training curves. The comparison of DETR variants is shown
in Fig. S3. As can be seen, both DE-DETR and DELA-DETR† can achieve
better performance and faster convergence compared with the DETR baseline.
Similarly, the comparison of ConDETR variants in Fig. S4 also validates the
effectiveness of our method.
Visualization demo results. We also provide demo detection results of differ-
ent methods on the Cityscapes dataset, as shown in Fig. S5 and Fig. S6. It can be
seen that our method can detect the distant instances overlooked by the baseline
methods. Moreover, they often avoid the false positive prediction made by the
baseline methods, as shown in the second rows in both Fig. S5 and Fig. S6.

L Discussions on limitations

Though effective, our method may have certain potential disadvantages: (1) A
small and fixed resolution for feature sampling may be detrimental to the detec-
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Fig. S3. Convergence curves of DETR variants on Cityscapes.

Fig. S4. Convergence curves of CondDETR variants on Cityscapes.

DETR DE-DETR DELA-DETR

Fig. S5. Demo detection results of DETR variants on Cityscapes.
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CondDETR DE-CondDETR DELA-CondDETR

Fig. S6. Demo detection results of CondDETR variants on Cityscapes.

tion of large objects, as can be seen from the comparison between CondDETR
and DELA-CondDETR in Table 7. This can be alleviated by more effective
techniques that adaptively sample more feature points for large objects. (2) The
sampling process may slow down the inference speed, which can be alleviated by
a joint CUDA implementation of both the feature sampling and the following
cross-attention processes.

M Future Work

Data efficiency of transformers on different vision tasks. With limited
inductive bias, the vision transformers are often data-hungry [3]. Although the
data-hungry issue of vision transformer for image classification has been stud-
ied [16], it has not been explored for other vision tasks. In this paper, we take
the first step to delve into the data-hungry issue of detection transformers. As
transformers become increasingly popular for vision tasks, like semantic segmen-
tation [20,19], 3D object detection [12], and video instance segmentation [18],
we hope our work will inspire the community to explore the data efficiency of
transformers for different tasks.
Removing NMS. The one-to-many matching between ground-truths and pre-
dictions in our label augmentation can provide richer training supervision to
alleviate the data-hungry issue. However, it also brings the need for the dupli-
cate removal process. Though the NMS has been proved effective, we hope to
remove this post-processing step to maintain the end-to-end property of detec-
tion transformers. To achieve this, we provide three possible solutions as follows.
Firstly, a lightweight duplicate removal network can be trained along with the
model, as did in Relation Network [7]. Secondly, an additional rank loss [9] can be
applied to regularize the score of the predictions, so that the predictions matched
to the original ground-truths can rank higher. In this way, the duplicate removal
process is no longer needed. Thirdly, we can apply the label augmentation only
on the shallower decoder layers while keeping the supervision on the deep de-
coder layers unchanged. In this way, the queries at the shallower decoder layers
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can receive a rich supervision signal, while the deeper decoder layers only select
the most promising query for each target instance.
Further improving the data efficiency of existing detection transform-
ers. Although outperforming all existing detection transformers, there is still a
gap between the data efficiency of our method and the seminal Faster-RCNN-
FPN. To bridge this gap, a possible solution is to gradually transform a Faster-
RCNN-FPN to a Sparse RCNN, to find the key reasons for Faster-RCNN-FPN’s
data efficiency. Afterward, we can adjust the detection transformer structures
accordingly to improve their data efficiency.
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