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Abstract. Detection transformers have achieved competitive perfor-
mance on the sample-rich COCO dataset. However, we show most of
them suffer from significant performance drops on small-size datasets,
like Cityscapes. In other words, the detection transformers are generally
data-hungry. To tackle this problem, we empirically analyze the factors
that affect data efficiency, through a step-by-step transition from a data-
efficient RCNN variant to the representative DETR. The empirical re-
sults suggest that sparse feature sampling from local image areas holds
the key. Based on this observation, we alleviate the data-hungry issue of
existing detection transformers by simply alternating how key and value
sequences are constructed in the cross-attention layer, with minimum
modifications to the original models. Besides, we introduce a simple yet
effective label augmentation method to provide richer supervision and
improve data efficiency. Experiments show that our method can be read-
ily applied to different detection transformers and improve their perfor-
mance on both small-size and sample-rich datasets. Code will be made
publicly available at https://github.com/encounter1997/DE-DETRs.

Keywords: Data Efficiency, Detection Transformer, Sparse Feature, Rich
Supervision, Label Augmentation

1 Introduction

Object detection is a long-standing topic in computer vision. Recently, a new
family of object detectors, named detection transformers, has drawn increasing
attention due to their simplicity and promising performance. The pioneer work
of this class of methods is DETR [3], which views object detection as a direct
set prediction problem and applies a transformer to translate the object queries
to the target objects. It achieves better performance than the seminal Faster
RCNN [31] on the commonly used COCO dataset [24], but its convergence is
significantly slower than that of CNN-based detectors. For this reason, most
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Fig. 1. Performance of different object detectors on COCO 2017 with 118K train-
ing data and Cityscapes with 3K training data. The respective training epochs are
shown below the name of each method. While the RCNN family show consistently
high average precision, the detection transformer family degrades significantly on the
small-size dataset. FRCN-FPN, SRCN, and SMCA-SS represent Faster-RCNN-FPN,
Sparse RCNN, and single-scale SMCA, respectively.

of the subsequent works have been devoted to improving the convergence of
DETR, through efficient attention mechanism [50], conditional spatial query [29],
regression-aware co-attention [14], etc. These methods are able to achieve better
performance than Faster RCNN with comparable training costs on the COCO
dataset, demonstrating the superiority of detection transformers.

Current works seem to suggest that detection transformers are superior to
the CNN-based object detector, like Faster RCNN, in both simplicity and model
performance. However, we find that detection transformers show superior perfor-
mance only on datasets with rich training data like COCO 2017 (118K training
images), while the performance of most detection transformers drops signifi-
cantly when the amount of training data is small. For example, on the commonly
used autonomous driving dataset Cityscapes [7] (3K training images), the aver-
age precisions (AP) of most of the detection transformers are less than half of
Faster RCNN AP performance, as shown in Fig. 1. Moreover, although the per-
formance gaps between different detection transformers on the COCO dataset
are less than 3 AP, a significant difference of more than 15 AP exists on the
small-size Cityscapes dataset.

These findings suggest that detection transformers are generally more data-
hungry than CNN-based object detectors. However, the acquisition of labeled
data is time-consuming and labor-intensive, especially for the object detection
task, which requires both categorization and localization of multiple objects in a
single image. What’s more, the large amount of training data means more train-
ing iterations to traverse the dataset, and thus more computational resources are



Towards Data-Efficient Detection Transformers 3

consumed to train the detection transformers, increasing the carbon footprint.
In a word, it takes a lot of human labor and computational resources to meet
the training requirements of existing detection transformers.

To address these issues, we first empirically analyze the key factors affecting
the data efficiency of detection transformers through a step-by-step transfor-
mation from the data-efficient Sparse RCNN to the representative DETR. Our
investigation and analysis show that sparse feature sampling from local area
holds the key: on the one hand, it alleviates the difficulty of learning to focus
on specific objects, and on the other hand, it avoids the quadratic complexity
of modeling image features and makes it possible to utilize multi-scale features,
which has been proved critical for the object detection task.

Based on these observations, we improve the data efficiency of existing detec-
tion transformers by simply alternating how the key and value are constructed
in the transformer decoder. Specifically, we perform sparse sampling features on
key and value features sent to the cross-attention layer under the guidance of the
bounding boxes predicted by the previous decoder layer, with minimum modifi-
cations to the original model, and without any specialized module. In addition,
we mitigate the data-hungry problem by providing richer supervisory signals to
detection transformers. To this end, we propose a label augmentation method to
repeat the labels of foreground objects during label assignment, which is both
effective and easy to implement. Our method can be applied to different detec-
tion transformers to improve their data efficiency. Interestingly, it also brings
performance gain on the COCO dataset with a sufficient amount of data.

To summarize, our contributions are listed as follows.

– We identify the data-efficiency problem of detection transformers. Though
they achieve excellent performance on the COCO dataset, they generally
suffer from significant performance degradation on small-size datasets.

– We empirically analyze the key factor that affects detection transformers’
data efficiency through a step-by-step model transformation from Sparse
RCNN to DETR, and find that sparse feature sampling from local areas
holds the key to data efficiency.

– With minimum modifications, we significantly improve the data efficiency
of existing detection transformers by simply alternating how key and value
sequences are constructed in the cross-attention layer.

– We propose a simple yet effective label augmentation strategy to provide
richer supervision and improve the data efficiency. It can be combined with
different methods to achieve performance gains on different datasets.

2 Related Work

2.1 Object Detection

Object detection [13,16,31,30,26,23,35] is essential to many real-world applica-
tions, like autonomous driving, defect detection, and remote sensing. Represen-
tative deep-learning-based object detection methods can be roughly categorized
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into two-stage detectors like Faster RCNN [31] and one-stage object detectors
like YOLO [30] and RetinaNet [23]. While effective, these methods generally rely
on many heuristics like anchor generation and rule-based label assignments.

Recently, DETR [3] provides a simple and clean pipeline for object detec-
tion. It formulates object detection as a set prediction task, and applies a
transformer [37] to translate sparse object candidates [33] to the target ob-
jects. The success of DETR has sparked the recent surge of detection transform-
ers [50,8,14,29,25,39,12,40,4,44] and most of the following-up works focus on alle-
viating the slow convergence problem of DETR. For example, DeformDETR [50]
propose the deformable attention mechanism for learnable sparse feature sam-
pling and aggregates multi-scale features to accelerate model convergence and
improve model performance. CondDETR [29] proposes to learn a conditional
spatial query from the decoder embedding, which helps the model quickly learn
to localize the four extremities for detection.

These works achieve better performance than Faster RCNN on the COCO
dataset [24] with comparable training costs. It seems that detection transformers
have surpassed the seminal Faster RCNN in both simplicity and superior perfor-
mance. But we show that detection transformers are generally more data-hungry
and perform much worse than Faster RCNN on small-size datasets.

2.2 Label Assignment

Label assignment [38,43,48,49,15,32] is a crucial component in object detection.
It matches the ground truth of an object with a specific prediction from the
model, and thereby provides the supervision signal for training. Prior to DETR,
most object detectors [31,30,23] adopt the one-to-many matching strategy, which
assigns each ground truth to multiple predictions based on local spatial relation-
ships. By contrast, DETR makes one-to-one matching between ground truths
and predictions by minimizing a global matching loss. This label assignment ap-
proach has been followed by various subsequent variants of the detection trans-
former [50,29,8,12,40]. Despite the merits of avoiding the duplicates removal
process, only a small number of object candidates are supervised by the object
labels in each iteration. As a result, the model has to obtain enough supervised
signals from a larger amount of data or more training epochs.

2.3 Data-Efficiency of Vision Transformers

Vision Transformers [10,45,17,28,41,42,46,11,6] (ViTs) are emerging as an alter-
native to CNN for feature extractors and visual recognition. Despite the superior
performance, they are generally more data-hungry than their CNN counterparts.
To tackle this problem, DeiT [36] improves its data efficiency by knowledge dis-
tillation from pre-trained CNNs, coupled with a better training recipe. Liu et al .
propose a dense relative localization loss to improve ViTs’ data efficiency [27].
Unlike the prior works [36,27,2] that focus on the data efficiency issue of trans-
former backbones on image classification tasks, we tackle the data efficiency issue
of detection transformers on the object detection task.
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Model Added Removed 50E AP 300E AP Params FLOPs

SRCN – 29.4 35.9 106M 631G

Net1 DETR Recipe SRCN Recipe 30.6 (+1.2) 34.4 (-1.5) 106M 294G
Net2 – FPN 23.3 (-7.3) 26.6 (-7.8) 103M 244G
Net3 transformer encoder – 21.0 (-2.3) 27.5 (+0.9) 111M 253G
Net4 cross-attn in decoder dynamic conv 18.1 (-2.9) 25.4 (-2.1) 42M 86G
Net5 dropout in decoder – 16.7 (-1.4) 26.1 (+0.7) 42M 86G
Net6 – bbox refinement 15.0 (-1.7) 22.7 (-3.4) 41M 86G
Net7 – RoIAlign 6.6 (-8.4) 17.7 (-5.0) 41M 86G

DETR – initial proposals 1.6 (-5.0) 11.5 (-6.2) 41M 86G

Table 1. Model transformation from Sparse RCNN (SRCN for short) to DETR, ex-
perimented on Ciytscapes [7]. “50E AP” and “300E AP” indicate average precision
after training for 50 and 300 epochs respectively. The change in AP is shown in the
brackets, where red indicates drops and blue indicates gains on AP.

3 Difference Analysis of RCNNs and DETRs

As can be seen in Fig. 1, detection transformers are generally more data-hungry
than RCNNs. To find out the key factors to data efficiency, we transform a data-
efficient RCNN step-by-step into a data-hungry detection transformer to ablate
the effects of different designs. Similar research approach has also been adopted
by ATSS [47] and Visformer [5], but for different research purposes.

3.1 Detector Selection

To obtain insightful results from the model transformation, we need to choose the
appropriate detectors to conduct the experiments. To this end, we choose Sparse
RCNN and DETR for the following reasons. Firstly, they are representative
detectors from the RCNN and detection transformer families, respectively. The
observations and conclusions drawn from the transformation between them shall
also be helpful to other detectors. Secondly, there is large difference between the
two detectors in data efficiency, as shown in Fig. 1. Thirdly, they share many
similarities in label assignment, loss design, and optimization, which helps us
eliminate the less significant factors while focus more on the core differences.

3.2 Transformation from Sparse RCNN to DETR

During the model transformation, we consider two training schedules that are
frequently used in detection transformers. The first is training for 50 epochs and
learning rate decays after 40 epochs, denoted as 50E. And the second is training
for 300 epochs and learning rate decays after 200 epochs. The transformation
process is summarized in Table 1.
Alternating training recipe. Though Sparse RCNN and DETR share many
similarities, there are still slight differences in their training Recipes, including
the classification loss, the number of object queries, learning rate, and gradient
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clip. We first eliminate these differences by replacing the Sparse RCNN training
recipe with the DETR training recipe. Eliminating the differences in training
recipes helps us focus more on the key factors that affect the data-efficiency.

Removing FPN. Multi-scale feature fusion has been proved effective for object
detection [22]. The attention mechanism has a quadratic complexity with respect
to the image scale, making the modeling of multi-scale features in DETR non-
trivial. Thus DETR only takes 32× down-sampled single-scale feature for predic-
tion. In this stage, we remove the FPN neck and send only the 32× down-sampled
feature to the detection head, which is consistent with DETR. As expected, with-
out multi-scale modeling, the model performance degrades significantly by 7.3
AP under the 50E schedule, as shown in Table 1.

Introducing transformer encoder. In DETR, the transformer encoder can
be regarded as the neck in the detector, which is used to enhance the features
extracted by the backbone. After removing the FPN neck, we add the trans-
former encoder neck to the model. It can be seen that the AP result decreases
at 50E schedule while improves at 300E schedule. We conjecture that similar to
ViT [10], the attention mechanism in the encoder requires longer training epochs
to converge and manifest its advantages, due to the lack of inductive biases.

Replacing dynamic convolutions with cross-attention. A very interesting
design in Sparse RCNN is the dynamic convolution [20,34] in the decoder, which
acts very similar to the role of cross-attention in DETR. Specifically, they both
adaptively aggregate the context from the image features to the object candi-
dates based on their similarity. In this step, we replace the dynamic convolution
with the cross-attention layer with learnable query positional embedding, and the
corresponding results are shown in Table 1. Counter-intuitively, a larger number
of learnable parameters does not necessarily make the model more data-hungry.
In fact, the dynamic convolutions with about 70M parameters can exhibit better
data efficiency than the parameter-efficient cross-attention layer.

Aligning dropout settings in the decoder. A slight difference between
Sparse RCNN and DETR is the use of dropout layers in self-attention and FFN
layers in the decoder. In this stage, we eliminate the interference of these factors.

Removing cascaded bounding box refinement. Sparse RCNN follows the
cascaded bounding box regression in Cascade RCNN [1], where each decoder
layer iteratively refines the bounding box predictions made by the previous layer.
We remove it in this stage and as expected, the model performance degrades to
some extent.

Removing RoIAlign. Sparse RCNN, like other detectors in the RCNNs family,
samples features from local regions of interest, and then makes predictions based
on the sampled sparse features [33]. By contrast, each content query in DETR
aggregates object-specific information directly from the global features map. In
this step, we remove the RoIAlign [18] operation in Sparse RCNN, with the
box target transformation [16]. It can be seen that significant degradation of
the model performance occurs, especially under the 50E schedule, the model
performance decreases by 8.4 AP. We conjecture that learning to focus on local
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object regions from the entire feature map is non-trivial. The model requires
more data and training epochs to capture the locality properties.
Removing initial proposals. Finally, DETR directly predicts the target bound-
ing boxes, while RCNNs make predictions relative to some initial guesses. In this
step, we eliminate this difference by removing the initial proposal. Unexpectedly,
this results in a significant decrease in model performance. We suspect that the
initial proposal works as a spatial prior that helps the model to focus on object
regions, thus reducing the need to learn locality from large training data.

3.3 Summary

By far, we have completed the model transformation from Sparse RCNN to
DETR. From Table 1 and our analysis in Section 3.2, it can be seen that three
factors result in more than 5 AP performance changes, and are key to data-
efficient: (a) sparse feature sampling from local regions, e.g ., using RoIAlign;
(b) multi-scale features which depend on sparse feature sampling to be compu-
tationally feasible; (c) prediction relative to initial spatial priors. Among them,
(a) and (c) help the model to focus on local object regions and alleviate the re-
quirement of learning locality from a large amount of data, while (b) facilitates a
more comprehensive utilization and enhancement of the image features, though
it also relies on sparse features.

It is worth mentioning that DeformDETR [50] is a special case in the de-
tection transformer family, which shows comparable data efficiency to Sparse
RCNN. Our conclusions drawn from the Sparse RCNN to DETR model transfor-
mation can also explain DeformDETR’s data efficiency. Specifically, multi-scale
deformable attention samples sparse features from local regions of the image
and utilizes multi-scale features. The prediction of the model is relative to the
initial reference points. Thus, all three key factors are satisfied in DeformDETR,
though it was not intended to be data-efficient on small-size datasets.

4 Method

In this section, we aim to improve the data efficiency of existing detection trans-
formers, while making minimum modifications to their original designs. Firstly,
we provide a brief revisiting of existing detection transformers. Subsequently,
based on experiments and analysis in the previous section, we make minor modifi-
cations to the existing data-hungry detection transformer models, like DETR [3]
and CondDETR [29], to significantly improve their data efficiency. Finally, we
propose a simple yet effective label augmentation method to provide richer super-
vised signals to detection transformers to further improve their data efficiency.

4.1 A Revisit of Detection Transformers

Model Structure. Detection transformers generally consist of a backbone, a
transformer encoder, a transformer decoder, and the prediction heads. The back-

bone first extracts multi-scale features from the input image, denoted as
{
f l
}L

l=1
,
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where f l ∈ RHl×W l×Cl

. Subsequently, the last feature level with the lowest reso-

lution is flattened and embedded to obtain zL ∈ RSL×D where SL = HL×WL is
sequence length and D is the feature dimension. Correspondingly, the positional

embedding is denoted as pL ∈ RSL×D. Afterward, The single-scale sequence

feature is encoded by the transformer encoder to obtain zLe ∈ RSL×D.
The decoder consists of a stack of Ld decoder layers, and the query content

embedding is initialized as q0 ∈ RN×D, where N is the number of queries. Each
decoder layer DecoderLayerℓ takes the previous decoder layer’s output qℓ−1, the
query positional embedding pq, the image sequence feature zℓ and its position
embedding pℓ as inputs, and outputs the decoded sequence features.

qℓ = DecoderLayerℓ (qℓ−1, pq, zℓ, pℓ) , ℓ = 1 . . . Ld. (1)

In most detection transformers, like DETR and CondDETR, single-scale image
feature is utilized for decoder, and thus zℓ = zLe and pℓ = pL, where ℓ = 1 . . . Ld.
Label Assignment. Detection transformers view the object detection task
as a set prediction problem and perform deep supervision [21] on predictions
made by each decoder layer. Specifically, the labels set can be denoted as y =
{y1, . . . , yM ,∅, . . . ,∅}, where M denotes the number of foreground objects in
the image and the ∅ (no object) pads the label set to a length of N . Correspond-

ingly, the output of each decoder layer can be written as ŷ = {ŷi}Ni=1. During
label assignment, detection transformers search for a permutation τ ∈ TN with
the minimum matching cost:

τ̂ = argmin
τ∈TN

N∑
i

Lmatch

(
yi, ŷτ(i)

)
, (2)

where Lmatch

(
yi, ŷτ(i)

)
is the pair-wise loss between ground truth and the pre-

diction with index τ(i).

4.2 Model Improvement

In this section, we make slight adjustments to data-hungry detection transform-
ers such as DETR and CondDETR, to largely boost their data efficiency.
Sparse Feature Sampling. From the analysis in Section 3, we can see that lo-
cal feature sampling is critical to data efficiency. Fortunately, in detection trans-
formers, the object locations are predicted after each decoder layer. Therefore,
we can sample local features under the guidance of the bounding box predic-
tion made by the previous decoder layer without introducing new parameters,
as shown in Fig. 2. Although more sophisticated local feature sampling methods
can be used, we simply adopt the commonly used RoIAlign [18]. Formally, the
sampling operation can be written as:

zLℓ = RoIAlign
(
zLe ,bℓ−1

)
, ℓ = 2 . . . Ld (3)

where bℓ−1 is the bounding boxes predicted by the previous layer, zLℓ ∈ RN×K2×D

is the sampled feature, K is the feature resolution in RoIAlign sampling. Note
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Fig. 2. The proposed data-efficient detection transformer structure. With minimum
modifications, we perform sparse sampling feature on key and value feature sent to the
cross-attention layers in the decoder, under the guidance of bounding boxes predicted
by the previous layer. Note the box head is part of the original detection transformers,
which utilize deep supervision on the predictions made by each decoder layer. The
backbone, the transformer encoder, and the first decoder layer are kept unchanged.

the reshape and flatten operations are omitted in Equation 3. Similarly, the
corresponding positional embedding pLℓ can be obtained.

The cascaded structure in the detection transformer makes it natural to use
layer-wise bounding box refinement [1,50] to improve detection performance. Our
experiments in Section 3 also validate the effectiveness of the iterative refinement
and making predictions with respect to initial spatial references. For this reason,
we also introduce bounding box refinement and initial reference points during
our implementation, as did in CondDETR [29].

Incorporating Multi-scale Feature. Our sparse feature sampling makes it
possible to use multi-scale features in detection transformers with little compu-
tation cost. To this end, we also flatten and embed the high-resolution features

extracted by the backbone to obtain
{
zl
}L−1

l=1
∈ RSl×D for local feature sam-

pling. However, these features are not processed by the transformer encoder.
Although more sophisticated techniques can be used, these single-scale features
sampled by RoIAlign are simply concatenated to form our multi-scale feature.
These features are naturally fused by the cross-attention in the decoder.

zms
ℓ =

[
z1ℓ , z

2
ℓ , . . . , z

L
ℓ

]
, ℓ = 2 . . . Ld, (4)

where zms
ℓ ∈ RN×LK2×D is the multi-scale feature, and zlℓ = RoIAlign

(
zl,bℓ−1

)
, l =

1 . . . L− 1. The corresponding positional embedding pms
ℓ is obtained in a similar

way. The decoding process is the same as original detection transformers, as
shown in Equation 1, where we have zℓ = zms

ℓ and pℓ = pms
ℓ . Please refer to the

Appendix for details in implementation.
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(b) Bipartite matching with the proposed  
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Fig. 3. Illustration of the proposed label augmentation method. The predictions and
the ground truths are represented by circles and rectangles, respectively. The matching
between foreground instances is represented by solid lines, while the matching between
background instances is represented by dotted lines. The prediction in blue that was
originally matched to a background instance in (a) is now matched to a foreground
instance in our method (b), thus obtaining more abundant supervision.

4.3 Label Augmentation for Richer Supervision

Detection transformers perform one-to-one matching for label assignment, which
means only a small number of detection candidates are provided with a positive
supervision signal in each iteration. As a result, the model has to obtain enough
supervision from a larger amount of data or more training epochs.

To alleviate this problem, we propose a label augmentation strategy to pro-
vide a richer supervised signal to the detection transformers, by simply repeating
positive labels during bipartite matching. As shown in Fig. 3, we repeat the la-
bels of each foreground sample yi for Ri times, while keeping the total length of
the label set N unchanged.

y =
{
y11 , y

2
1 , . . . , y

R1
1 , . . . , y1M , y2M , . . . , yRM

M , . . . ,∅, . . . ,∅
}
. (5)

Subsequently, the label assignment is achieved according to the operation in
Equation 2.

Two label repeat strategies are considered during our implementation as
follows. (a) Fixed repeat times, where all positive labels are repeated for the
same number of times, i.e., Ri = R, i = 1 . . .M . (b) Fixed positive sample ratio,
where the positive labels are sampled repeatedly to ensure a proportion of r
positive samples in the label set. Specifically, F = N × r is the expected number
of positive samples after repeating labels. We first repeat each positive label for
F//M times, and subsequently, randomly sample F%M positive labels without
repetition. By default, we use the fixed repeat times strategy, because it is easier
to implement and the resultant label set is deterministic.

5 Experiments

Datasets. To explore detection transformers’ data efficiency, most of our exper-
iments are conducted on small-size datasets including Cityscapes [7] and sub-
sampled COCO 2017 [24]. Cityscapes contains 2,975 images for training and 500
images for evaluation. For the sub-sampled COCO 2017 dataset, the training
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images are randomly sub-sampled by 0.1, 0.05, 0.02, and 0.01, while the eval-
uation set is kept unchanged. Besides, we also validate the effectiveness of our
method on the full-size COCO 2017 dataset with 118K training images.

Implementation details. By default, our feature sampling is implemented
as RoIAlign with a feature resolution of 4. Three different feature levels are
included for multi-scale feature fusion. A fixed repeat time of 2 is adopted for
our label augmentation and non-maximum suppression (NMS) with a threshold
of 0.7 is used for duplicate removal. All models are trained for 50 epochs and the
learning rate decays after 40 epochs, unless specified. ResNet-50 [19] pre-trained
on ImageNet-1K [9] is used as backbone. To guarantee enough number of training
iterations, all experiments on Cityscapes and sub-sampled COCO 2017 datasets
are trained with a batch size of 8. And the results are averaged over five repeated
runs with different random seeds. Our data-efficient detection transformers only
make slight modifications to existing methods. Unless specified, we follow the
original implementation details of corresponding baseline methods [3,29]. Run
time is evaluated on NVIDIA A100 GPU.

5.1 Main Results

Table 2. Comparison of detection transformers on Cityscapes. DE denotes data-
efficient and LA denotes label augmentation. † indicates the query number is increased
from 100 to 300.

Method Epochs AP AP50 AP75 APS APM APL Params FLOPs FPS

DETR [3] 300 11.5 26.7 8.6 2.5 9.5 25.1 41M 86G 44
UP-DETR [8] 300 23.8 45.7 20.8 4.0 20.3 46.6 41M 86G 44
PnP-DETR-α=0.33 [39] 300 11.2 11.5 8.7 2.3 21.2 25.6 41M 79G 43
PnP-DETR-α=0.80 [39] 300 11.4 26.6 8.1 2.5 9.3 24.7 41M 83G 43
CondDETR [29] 50 12.1 28.0 9.1 2.2 9.8 27.0 43M 90G 39
SMCA (single scale) [14] 50 14.7 32.9 11.6 2.9 12.9 30.9 42M 86G 39
DeformDETR [50] 50 27.3 49.2 26.3 8.7 28.2 45.7 40M 174G 28

DE-DETR 50 21.7 41.7 19.2 4.9 20.0 39.9 42M 88G 34

DELA-DETR† 50 24.5 46.2 22.5 6.1 23.3 43.9 42M 91G 29

DE-CondDETR 50 26.8 47.8 25.4 6.8 25.6 46.6 44M 107G 29
DELA-CondDETR 50 29.5 52.8 27.6 7.5 28.2 50.1 44M 107G 29

Results on Cityscapes. In this section, we compare our method with existing
detection transformers. As shown in Table 2, most of them suffer from the data-
efficiency issue. Nevertheless, with minor changes to the CondDETR model, our
DE-CondDETR is able to achieve comparable data efficiency to DeformDETR.
Further, with the richer supervision provided by label augmentation, our DELA-
CondDETR surpasses DeformDETR by 2.2 AP. Besides, our method can be
combined with other detection transformers to significantly improve their data
efficiency, for example, our DE-DETR and DELA-DETR trained for 50 epochs
perform significantly better than DETR trained for 500 epochs.
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(b) CondDETR variants(a) DETR variants

Fig. 4. Performance comparison of different methods on sub-sampled COCO 2017
dataset. Note the sample ratio is shown on a logarithmic scale. As can be seen, both
local feature sampling and label augmentation consistently improve the model perfor-
mance under varying data sampling ratios.

Results on sub-sampled COCO 2017. Sub-sampled COCO 2017 datasets
contain 11,828 (10%), 5,914 (5%), 2,365 (2%), and 1,182 (1%) training images,
respectively. As shown in Fig 4, our method consistently outperforms the baseline
methods by a large margin. In particular, DELA-DETR trained with only ∼1K
images significantly outperforms the DETR baseline with five times the training
data. Similarly, DELA-CondDETR consistently outperforms the CondDETR
baseline trained with twice the data volume.

5.2 Ablations

In this section, we perform ablated experiments to better understand each com-
ponent of our method. All the ablation studies are implemented on the DELA-
CondDETR and the Cityscapes dataset, while more ablation studies based on
DELA-DETR can be found in our Appendix.

Table 3. Ablations on each component in DELA-CondDETR. “SF”, “MS”, and “LA”
represent sparse feature sampling, multi-scale feature fusion, and label augmentation.

Method SF MS LA AP AP50 AP75 APS APM APL Params FLOPs FPS

CondDETR [29] 12.1 28.0 9.1 2.2 9.8 27.0 43M 90G 39

✓ 14.7 31.6 12.1 2.9 12.5 32.1 43M 90G 38
✓ 20.4 40.7 17.7 2.9 16.9 42.0 44M 95G 32

DE-CondDETR ✓ ✓ 26.8 47.8 25.4 6.8 25.6 46.6 44M 107G 29
DELA-CondDETR ✓ ✓ ✓ 29.5 52.8 27.6 7.5 28.2 50.1 44M 107G 29

Effectiveness of each module. We first ablate the role of each module in
our method, as shown in Table 3. The use of local feature sampling and multi-
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scale feature fusion significantly improves the performance of the model by 8.3
and 6.4 AP, respectively. In addition, label augmentation further improves the
performance by 2.7 AP. Besides, using it alone also brings a gain of 2.6 AP.

Table 4. Ablations on multi-scale feature levels and feature resolutions for RoIAlign.
Note label augmentation is not utilized for clarity.

MS Lvls RoI Res. AP AP50 AP75 APS APM APL Params FLOPs FPS

1 1 14.8 35.1 11.0 2.4 11.7 31.1 44M 90G 32
1 4 20.4 40.7 17.7 2.9 16.9 42.0 44M 95G 32
1 7 20.7 40.9 18.5 2.9 16.8 42.7 44M 104G 31

3 4 26.8 47.8 25.4 6.8 25.6 46.6 44M 107G 29
4 4 26.3 47.1 25.1 6.5 24.8 46.5 49M 112G 28

Feature resolution for RoIAlign. In general, a larger sample resolution in
RoIAlign provides richer information and thus improves detection performance.
However, sampling larger feature resolution is also more time-consuming and
increases the computational cost of the decoding process. As shown in Table 4,
the model performance is significantly improved by 5.6 AP when the resolution
is increased from 1 to 4. However, when the resolution is further increased to 7,
the improvement is minor and the FLOPs and latency are increased. For this
reason, we set the feature resolution for RoIAlign as 4 by default.
Number of multi-scale features. To incorporate multi-scale features, we also
sample the 8× and 16× down-sampled features from the backbone to construct
multi-scale features of 3 different levels. As can be seen from Table 4, it signif-
icantly improves the model performance by 6.4 AP. However, when we further
add the 64× down-sampled features for multi-scale fusion, the performance drops
by 0.5 AP. By default, we use 3 feature levels for multi-scale feature fusion.
Strategies for label augmentation. In this section, we ablate the proposed
two label augmentation strategies, namely fixed repeat time and fixed positive
sample ratio. As shown in Table 5, using different fixed repeated times con-
sistently improves the performance of DE-DETR baseline, but the performance
gain tends to decrease as the number of repetitions increases. Moreover, as shown

Table 5. Ablations on label augmen-
tation using fixed repeat time. Params,
FLOPs, and FPS are omitted since they
are consistent for all settings.

Time AP AP50 AP75 APS APM APL

– 26.8 47.8 25.4 6.8 25.6 46.6

2 29.5 52.8 27.6 7.5 28.2 50.1
3 29.4 52.6 28.0 7.6 28.1 50.3
4 29.0 52.0 27.7 7.8 27.9 49.5
5 28.7 51.3 27.4 7.8 27.7 49.3

Table 6. Ablations on label augmenta-
tion using fixed positive sample ratio.

Ratio AP AP50 AP75 APS APM APL

– 26.8 47.8 25.4 6.8 25.6 46.6

0.1 27.7 49.7 26.1 7.4 26.5 47.2
0.2 28.2 50.2 26.9 7.4 26.8 48.5
0.25 28.3 50.5 27.2 7.5 27.1 48.3
0.3 27.9 50.3 26.5 7.3 27.1 47.4
0.4 27.6 49.7 26.0 7.0 27.0 46.8



14 W. Wang et al.

in Table 6, although using different ratios can bring improvement on AP, the
best performance is achieved when the positive to negative samples ratio is 1:3,
which, interestingly, is also the most commonly used positive to negative sam-
pling ratio in the RCNN series detectors, e.g . Faster RCNN.

Table 7. Performance of our data-efficient detection transformers on COCO 2017. All
models are trained for 50 epochs.

Method Epochs AP AP50 AP75 APS APM APL Params FLOPs FPS

DETR [3] 50 33.6 54.6 34.2 13.2 35.7 53.5 41M 86G 43
DE-DETR 50 40.2 60.4 43.2 23.3 42.1 56.4 43M 88G 33

DELA-DETR† 50 41.9 62.6 44.8 24.9 44.9 56.8 43M 91G 29

CondDETR [29] 50 40.2 61.1 42.6 19.9 43.6 58.7 43M 90G 39
DE-CondDETR 50 41.7 62.4 44.9 24.4 44.5 56.3 44M 107G 28
DELA-CondDETR 50 43.0 64.0 46.4 26.0 45.5 57.7 44M 107G 28

5.3 Generalization to Sample-Rich Dataset

Although the above experiments show that our method can improve model per-
formance when only limited training data is available, there is no guarantee that
our method remains effective when the training data is sufficient. To this end,
we evaluate our method on COCO 2017 with a sufficient amount of data. As
can be seen from Table 7, our method does not degrade the model performance
on COCO 2017. Conversely, it delivers a promising improvement. Specifically,
DELA-DETR and DELA-CondDETR improve their corresponding baseline by
8.3 and 2.8 AP, respectively.

6 Conclusion

In this paper, we identify the data-efficiency issue of detection transformers.
Through step-by-step model transformation from Sparse RCNN to DETR, we
find that sparse feature sampling from local areas holds the key to data effi-
ciency. Based on these, we improve existing detection transformers by simply
sampling multi-scale features under the guidance of predicted bounding boxes,
with minimum modifications to the original models. In addition, we propose a
simple yet effective label augmentation strategy to provide richer supervision and
thus further alleviate the data-efficiency issue. Extensive experiments validate
the effectiveness of our method. As transformers become increasingly popular
for visual tasks, we hope our work will inspire the community to explore the
data efficiency of transformers for different tasks.
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