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Abstract. Open-vocabulary object detection, which is concerned with
the problem of detecting novel objects guided by natural language, has
gained increasing attention from the community. Ideally, we would like
to extend an open-vocabulary detector such that it can produce bound-
ing box predictions based on user inputs in form of either natural lan-
guage or exemplar image. This offers great flexibility and user experience
for human-computer interaction. To this end, we propose a novel open-
vocabulary detector based on DETR—hence the name OV-DETR—
which, once trained, can detect any object given its class name or an
ezemplar image. The biggest challenge of turning DETR into an open-
vocabulary detector is that it is impossible to calculate the classification
cost matrix of novel classes without access to their labeled images. To
overcome this challenge, we formulate the learning objective as a binary
matching one between input queries (class name or exemplar image)
and the corresponding objects, which learns useful correspondence to
generalize to unseen queries during testing. For training, we choose to
condition the Transformer decoder on the input embeddings obtained
from a pre-trained vision-language model like CLIP, in order to enable
matching for both text and image queries. With extensive experiments on
LVIS and COCO datasets, we demonstrate that our OV-DETR—the first
end-to-end Transformer-based open-vocabulary detector—achieves non-
trivial improvements over current state of the arts. Code is available at
https://github.com/yuhangzang/0V-DETR.

1 Introduction

Object detection, a fundamental computer vision task aiming to localize objects
with tight bounding boxes in images, has been significantly advanced in the
last decade thanks to the emergence of deep learning [25/32/9/29/15]. However,
most object detection algorithms are unscalable in terms of the vocabulary size,
i.e., they are limited to a fixed set of object categories defined in detection
datasets [822]. For example, an object detector trained on COCO [22] can only
detect 80 classes and is unable to handle new classes beyond the training ones.

A straightforward approach to detecting novel classes is to collect and add
their training images to the original dataset, and then re-train or fine-tune the
detection model. This is, however, both impractical and inefficient due to the
large cost of data collection and model training. In the detection literature, gen-
eralization from base to novel classes has been studied as a zero-shot detection
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Fig.1: Comparison between a RPN-based detector and our Open-
Vocabulary Transformer-based detector (OV-DETR) using condi-
tional queries. The RPN trained on closed-set object classes is easy to ig-
nore novel classes (e.g., the “cat” region receives little response). Hence the cats
in this example are largely missed with few to no proposals. By contrast, our
OV-DETR is trained to perform matching between a conditional query and its
corresponding box, which helps to learn correspondence that can generalize to
queries from unseen classes. Note we can take input queries in the form of either
text (class name) or exemplar images, which offers greater flexibility for open-
vocabulary object detection.

problem [I] where zero-shot learning techniques like word embedding projec-
tion [I0] are widely used.

Recently, open-vocabulary detection, a new formulation that leverages large
pre-trained language models, has gained increasing attention from the commu-
nity [B6/I3]. The central idea in existing works is to align detector’s features with
embedding provided by models pre-trained on large scale image-text pairs like
CLIP [27] (see Fig[l] (a)). This way, we can use an aligned classifier to recognize
novel classes only from their descriptive texts.

A major problem with existing open-vocabulary detectors [S6JI3] is that they
rely on region proposals that are often not reliable to cover all novel classes in
an image due to the lack of training data, see Fig. a). This problem has also
been identified by a recent study [I7], which suggests the binary nature of the
region proposal network (RPN) could easily lead to overfitting to seen classes
(thus fail to generalize to novel classes).

In this paper, we propose to train end-to-end an open-vocabulary detector
under the Transformer framework, aiming to enhance its novel class general-
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ization without using an intermediate RPN. To this end, we propose a novel
open-vocabulary detector based on DETR [2]—hence the name OV-DETR—
which is trained to detect any object given its class name or an exemplar image.
This would offer greater flexibility than conventional open-vocabulary detection
from natural language only.

Despite the simplicity of end-to-end DETR training, turning it into an open-
vocabulary detector is non-trivial. The biggest challenge is the inability to cal-
culate the classification cost for novel classes without their training labels. To
overcome the challenge, we re-formulate the learning objective as binary match-
ing between input queries (class name or exemplar image) and the corresponding
objects. Such a matching loss over diverse training pairs allows to learn useful
correspondence that can generalize to unseen queries during testing. For training,
we extend the Transformer decoder of DETR to take conditional input queries.
Specifically, we condition the Transformer decoder on the query embeddings ob-
tained from a pre-trained vision-language model CLIP [27], in order to perform
conditional matching for either text or image queries. Fig. [I|shows this high-level
idea, which proves better at detecting novel classes than RPN-based closed-set
detectors.

We conduct comprehensive experiments on two challenging open-vocabulary
object detection datasets, and show consistent improvements in performance.
Concretely, our OV-DETR method achieves 17.4 mask mAP of novel classes on
the open-vocabulary LVIS dataset [13] and 29.4 box mAP of novel classes on
open-vocabulary COCO dataset [30], surpassing SOTA methods by 1.3 and 1.8
mAP, respectively.

2 Related Work

Open-Vocabulary Object Detection leverages the recent advances in large
pre-trained language models [36/I3] to incorporate the open-vocabulary infor-
mation into object detectors. OVR-CNN [36] first uses BERT [6] to pre-train
the Faster R-CNN detector [29] on image-caption pairs and then fine-tunes the
model on downstream detection datasets. VILD [I3] adopts a distillation-based
approach that aligns the image feature extractor of Mask R-CNN [I5] with
the image and text encoder of CLIP [27] so the CLIP can be used to syn-
thesize the classification weights for any novel class. The prompt tuning tech-
niques [39I38I37] for the pre-trained vision-language model have also been applied
for open-vocabulary detectors, like DetPro [7]. Our approach differs from these
works in that we train a Transformer-based detector end-to-end, with a novel
framework of conditional matching.

Zero-Shot Object Detection is also concerned with the problem of detecting
novel classes [TI20040128)3T]. However, this setting is less practical due to the
harsh constraint of limiting access to resources relevant to unseen classes [36].
A common approach to zero-shot detection is to employ word embeddings like
GloVe [26] as the classifier weights [I]. Other works have found that using ex-
ternal resources like textual descriptions can help improve the generalization
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of classifier embeddings [20128]. Alternatively, Zhao et al. [31I] used Generative
Adversarial Network (GAN) [I2] to generate feature representations of novel
classes. While Zhu et al. [40] synthesized unseen classes using a data augmenta-
tion strategy.

Visual Grounding is another relevant research area where the problem is to
ground a target object in one image using natural language input [53]. Different
from open-vocabulary detection that aims to identify all target objects in an
image, the visual grounding methods typically involve a particular single object,
hence cannot be directly applied to generic object detection. There is a relevant
visual grounding method though, which is called MDETR [16]. This method
similarly trains DETR along with a given language model so as to link the
output tokens of DETR with specific words. MDETR also adopts a conditional
framework, where the visual and textual features are combined to be fed to
the Transformer encoder and decoder. However, the MDETR method is not
applicable to open-vocabulary detection because it is unable to calculate the
cost matrix for novel classes under the classification framework. Our OV-DETR
bypasses this challenge by using a conditional matching framework instead.
Object Detection with Transformers. The pioneer DETR approach [2]
greatly simplifies the detection pipeline by casting detection as a set-to-set
matching problem. Several follow-up methods have been developed to im-
prove performance and training efficiency. Deformable DETR [4]] features a
deformable attention module, which samples sparse pixel locations for comput-
ing attention, and further mitigates the slow convergence issue with a multi-
scale scheme. SMCA [I1]] accelerates training convergence with a location-aware
co-attention mechanism. Conditional DETR [24] also addresses the slow conver-
gence issue, but with conditional spatial queries learned from reference points
and the decoder embeddings. Our work for the first time extends DETR to the
open-vocabulary domain by casting open-vocabulary detection as a conditional
matching problem, and achieves non-trivial improvements over current SOTA.

3 Open-Vocabulary DETR

Our goal is to design a simple yet effective open-vocabulary object detector that
can detect objects described by arbitrary text inputs or exemplar images. We
build on the success of DETR [2] that casts object detection as an end-to-end
set matching problem (among closed classes), thus eliminating the need of hand-
crafted components like anchor generation and non-maximum suppression. This
pipeline makes it appealing to act as a suitable framework to build our end-to-
end open-vocabulary object detector.

However, it is non-trivial to retrofit a standard DETR with closed-set match-
ing to an open-vocabulary detector that requires matching against unseen
classes. One intuitive approach for such open-set matching is to learn a class-
agnostic module (e.g., VILD [13]) to handle all classes. This is, however, still
unable to match for those open-vocabulary classes that come with no labeled
images. Here we provide a new perspective on the matching task in DETR, which
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Fig.2: Overview of OV-DETR. Unlike the standard DETR, our method does
not separate ‘objects’ from ‘non-objects’ for a closed set of classes. Instead,
OV-DETR performs open-vocabulary detection by measuring the matchability
(‘matched’ vs. ‘not matched’) between some conditional inputs (text or exemplar
image embeddings from CLIP) and detection results. We show such pipeline is
flexible to detect open-vocabulary classes with arbitrary text or image inputs.

leads us to reformulate the fixed set-matching objective into a conditional binary
matching one between conditional inputs (text or image queries) and detection
outputs.

An overview of our Open-Vocabulary DETR is shown in Fig. 2l At high
level, DETR first takes query embeddings (text or image) as conditional inputs
obtained from a pre-trained CLIP [27] model, and then a binary matching loss
is imposed against the detection result to measure their matchability. In the
following, we will revisit the closed-set matching process in standard DETR in
Section We then describe how to perform conditional binary matching in
our OV-DETR in Section

3.1 Revisiting Closed-Set Matching in DETR

For input image «, a standard DETR infers N object predictions ¢y where N is
determined by the fixed size of object queries q that serve as learnable positional
encodings. One single pass of the DETR pipeline consists of two main steps: (i)
set prediction, and (ii) optimal bipartite matching.

Set Prediction. Given an input image x, the global context representations ¢
is first extracted by a CNN backbone f,; and then a Transformer encoder h:

¢ = hy(fy(e)), (1)
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where the output ¢ denotes a sequence of feature embeddings of g. Taking the
context feature ¢ and object queries g as inputs, the Transformer decoder hgy
(with prediction heads) then produce the set prediction ¢ = {g;}}¥; :

i/ = hG(c7 Q)7 (2>

where ¢ contains both bounding box predictions b and class predictions p for a
closed-set of training classes.

Optimal Bipartite Matching is to find the best match between the set of
N predictions ¢ and the set of ground truth objects y = {y;}}, (including no
object @). Specifically, one needs to search a permutation of N elements o € Sy
that has the lowest matching cost:

N
& = argmin Z Leost(Yis Yo (i) 3)

oceGN i
where Leost(Yi, Yo (i) is a pair-wise matching cost between ground truth y; and
the prediction g,(;) with index o (¢). Note L4 is comprised of the losses for both

class prediction Lqs(p, p) and bounding box localization Ebox(i), b). The whole
bipartite matching process produces one-to-one label assignments, where each
prediction g; is assigned to a ground-truth annotation y; or @ (no object). The
optimal assignment can be efficiently found by the Hungarian algorithm [I§].
Challenge. As mentioned above, the bipartite matching method cannot be di-
rectly applied to an open-vocabulary setting that contains both base and novel
classes. The reason is that computing the matching cost in Eq. requires
access of the label information, which is unavailable for novel classes. We can
follow previous works [I3I35]7] to generate class-agnostic object proposals that
may cover the novel classes, but we do not know the ground-truth classification
labels of these proposals. As a result, the predictions for the N object queries
cannot generalize to novel classes due to the lack of training labels for them. As
shown in Fig. [3| (a), bipartite matching can only be performed for base classes
with available training labels.

3.2 Conditional Matching for Open-Vocabulary Detection

To enable DETR to go beyond closed-set classification and perform open-
vocabulary detection, we equip the Transformer decoder with conditional inputs
and reformulate the learning objective as binary matching problem.

Conditional Inputs. Given an object detection dataset with standard anno-
tations for all the training (base) classes, we need to convert those annotations
to conditional inputs to facilitate our new training paradigm. Specifically, for
each ground-truth annotation with bounding box b; and class label name y§ass,

we use the CLIP model [27] to generate their corresponding image embedding
2" and text embedding z{":

z;mage = CLIPimage (m7 bi)7
Z;EXt — CLIPtemt (yglass).

7

(4)
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Fig.3: Comparing the label assignment mechanisms of DETR and our
OV-DETR. (a) In the original DETR, the set-to-set prediction is conducted
via bipartite matching between predictions and closed-set annotations, in which
a cost matrix in respect of the queries and categories. Due to the absence of class
label annotations for nowvel classes, computing such a class-specific cost matrix
is impossible. (b) On the contrary, our OV-DETR casts the open-vocabulary
detection as a conditional matching process and formulate a binary matching
problem that computes a class-agnostic matching cost matrix for conditional
inputs.

Such image and text embeddings are already well-aligned by the CLIP model.
Therefore, we can choose either of them as input queries to condition the DETR’s
decoder and train to match the corresponding objects. Once training is done, we
can then take arbitrary input queries during testing to perform open-vocabulary
detection. To ensure equal training conditioned on image and text queries, we
randomly select 2! or 2z;"*¢ with probability £ = 0.5 as conditional inputs.
Moreover, we follow previous works [I3II35/7] to generate additional object pro-
posals for novel classes to enrich our training data. We only extract image em-
beddings z;"*¢ for such novel-class proposals as conditional inputs, since their
class names are unavailable to extract text embeddings. Please refer to supple-
mentary materials for more details.

Conditional Matching. Our core training objective is to measure the matcha-

bility between the conditional input embeddings and detection results. In order

to perform such conditional matching, we start with a fully-connected layer IF,;o;
image

to project the conditional input embeddings (2!*** or z; ) to have the same

dimension as q. Then the input to the DETR decoder ¢’ is given by:

qd=q® Fproj(z;-md), mod € {text,image}, (5)
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Fig. 4: DETR decoder with (a) single conditional input or (b) multiple condi-
tional inputs in parallel.

where we use a simple addition operation @ to convert the class-agnostic object
queries g into class-specific ¢’ informed by Ty (2m0d).

In practice, adding the conditional input embeddings z to only one object
query will lead to a very limited coverage of the target objects that may appear
many times in the image. Indeed, in existing object detection datasets, there
are typically multiple object instances in each image from the same or different
classes. To enrich the training signal for our conditional matching, we copy the
object queries g for R times, and the conditional inputs (z!*** or z‘mage) for
N times before performing the conditioning in Eq. (5). As a result, we obtain
a total of N x R queries for matching during each forward pass, as shown in
Fig. 4| (b). Experiments in the supplementary material will validate the impor-
tance of such “feature cloning” and also show how we determine N and R based
on the performance-memory trade-off. Note for the final conditioning process,
we further add an attention mask to ensure the independence between different
query copies, as is similarly done in [4].

Given the conditioned query features g’, our binary matching loss for label
assignment is given as:

Ccost (y7 yo) = ﬁmatch (pvﬁa) + Ebox (bv BU) ’ (6)

where Lpaten (P, Po) denotes a new matching loss that replaces the classification
loss Les (P, po) in Eq. . Here in our case, p is a 1-dimensional sigmoid prob-
ability vector that characterizes the matchability (‘matched’ vs. ‘not matched’),
and Lyaten is simply implemented by a Focal loss [21] Lgocal between predicted
Po and groud-truth p. For instance, with the ‘bird’ query as input, our matching
loss should allow us to match all the bird instances in one image, while tagging
instances from other classes as ‘not matched’.
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3.3 Optimization

After optimizing Eq. @, we obtain the optimized label assignments o for differ-
ent object queries. This process produces a set of detected objects with assigned
box coordinates b and 2-dim matching probability p that we will use to compute
our final loss function for modeling training. We further attach an embedding
reconstruction head to the model, which learns to predict embedding e to be
able to reconstruct each conditional input embedding z'*** or zimage;

Lembed(€, 2) = He - z“‘OdH1 , mod € {text,image}. (7)

Supplementary materials validate the effectiveness of Lemped-
Our final loss for model training combines Lompeq With bounding box losses

[’match(paﬁ) and »Cbox(b, I;) again:

ﬁloss(y» g) = L:match(pa ﬁ) + £box(ba l;) + Cembed(ea Z)
= AlLpoeas LFocal T ALy LL1 + ALgrou £GI0U + ALepea Lembed s

(®)

where Lpox consists of the L1 loss and the generalized IoU (GIoU) [30] loss for

boxes, while Az, ..., AL, ALai, a0d Ar,,... are the weighting parameters.

3.4 Inference

During testing, for each image, we send the text embedding z%** of all the
base+novel classes to the model and merge the results by selecting the top
k predictions with highest prediction scores. We follow the prior work [I3] to
use k = 100 for COCO dataset and k = 300 for LVIS dataset. To obtain the
context representation c in Eq. , we forward the input image through the
CNN backbone fs and Transformer encoder hy. Note ¢ is computed only once
and shared for all conditional inputs for efficiency. Then the conditioned object
queries from different classes are sent to the Transformer decoder in parallel. In
practice, we copy the object queries for R times as shown in Fig. 4] (b).

4 Experiments

Datasets. We evaluate our approach on two standard open-vocabulary detection
benchmarks modified from LVIS [I4] and COCO [22] respectively. LVIS [14] con-
tains 100K images with 1,203 classes. The classes are divided into three groups,
namely frequent, common and rare, based on the number of training images.
Following ViLD [13], we treat 337 rare classes as novel classes and use only the
frequent and common classes for training. The COCO [22] dataset is a widely-
used benchmark for object detection, which consists of 80 classes. Following
OVR-CNN [36], we divide the classes in COCO into 48 base categories and 17
novel categories, while removing 15 categories without a synset in the WordNet
hierarchy. The training set is the same as the full COCO but only images con-
taining at least one base class are used. We refer to these two benchmarks as
OV-LVIS and OV-COCO hereafter.
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# Method AP™ AP e AP AP Table 1: Mask R-CNN and Def
1 Mask R-CNNt 22.5 0.0 22.6 32.4 DETR on OV-LVIS, both trained

2 Def DETR 22.4 0.0 22.4 32.0 on base classes. J[: COpied from
ViLD [13].

P M AP™ AP. .. APM APP
— — Table 2: Ablation study on us-

#
1 242 95 232 3LT7  ing object proposals (P) and our
2
3

v 19.9 6.3 174 28.6  conditional binary matching mecha-
v / 266 17.4 25.0 32.5 igm (M).

Evaluation Metrics. For OV-LVIS, we report the mask mAP for rare, common
and frequent classes, denoted by AP, APY* and AP{". The rare classes are
treated as novel classes (AP™ ). The symbol AP™ denotes to the mAP of all
the classes. For OV-COCO, we follow previous work that only reports the AP50"
metric, which means the box mAP at IoU threshold 0.5.

Extension for Instance Segmentation. For OV-LVIS, instance segmenta-
tion results are needed for the evaluation process. Although DETR [2] and its
follow-ups [41I24] are developed for the object detection task, they can also
be extended to the instance segmentation task. We follow DETR [2] to add
an external class-agnostic segmentation head to solve the instance segmentation
task. The segmentation head employs the fully convolutional network (FCN [23])
structure, which takes features extracted from the Transformer decoder as input
and produces segmentation masks.

Implementation Details. Our model is based on Deformable DETR [41]. Fol-
lowing ViLD [I3], we also use the open-source CLIP model [27] based on ViT-
B/32 for extracting text and image embeddings. Please refer to our supplemen-
tary material for more training details.

4.1 Ablation Studies

We conduct ablation study on OV-LVIS to evaluate the main components in our
approach.

The Architecture Difference. Previous works such as ViLD [I3] are based on
the RPN-based Mask R-CNN [I5], while our work is based on the Transformer-
based detector Deformable DETR [41]. We first study the difference of these
two detectors on the open-vocabulary setting trained with base classes only. As
shown in Table [1| row(1-2), we observe that Mask R-CNN performs a slightly
better than Deformable DETR [41]. This gap is small, indicating that we have
a fair starting point compared to VIiLD [I3].

Object Proposals. We then replace Deformable DETR’s classifier layer as text
embedding provided by CLIP and trained with base classes only. This step is
similar to the previous ViLD-text [I3] method. Results is presented in Table
row 1. We observe that the AP}, metric improved from 0.0 to 9.5. To further

nove
improve the AP} | metric, we add the object proposals that may contain the
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Table 3: Main results on OV-LVIS and OV-COCO. For OV-LVIS (w/ 886 base
classes and 317 novel classes), we report mask mAP and a breakdown on novel (rare),
common, and frequent classes. For OV-COCO (w/ 48 base classes and 17 novel classes),
we report bounding box mAP at IoU threshold 0.5. }: zero-shot methods that do not
use captions or image-text pairs. I: ensemble model.

4 Method OV-LVIS OV-COCO
AP™ AP™ . AP™ AP® AP50® AP50°,.., AP50P...
1 SB[t - - - - 24.9 0.3 29.2
2 DELO [0]f - - - - 13.0 3.1 13.8
3 PL [28]t - - - - 27.9 4.1 35.9
4 OVR-CNN [36] - - - - 46.0 22.8 39.9
5 VilLD-text [I3] 24.9 101 239 32.5 49.3 5.9 61.8
6 ViLD [13] 225 161 200 283 51.3 27.6 59.5
7 ViLD-ens. [I3]f 25.5 166  24.6  30.3 - - -
8 OV-DETR 26.6 17.4 25.0 32.5 52.7 29.4 61.0

(ours vs. #6)  (+4.1) (+1.3) (4+5.0) (+4.2) (+1.4) (+1.8) (+1.5)

region of nowel classes into the training stage. Because we do not know the
category id of these object proposals, we observe that the label assignment of
these object proposals is inaccurate and will decrease the AP} | performance
from 9.5 to 6.3.

Conditional Binary Matching. Now we replace DETR’s default close-set la-
beling assignment as our proposed conditional binary matching. The comparison
results between Table [2[ row 2-3 shows that our binary matching strategy can
better leverage the knowledge from object proposals and improve the AP™
from 9.5 to 17.4. Such a large improvement shows that the proposed condi-
tional matching is essential when applying the DETR-series detector for the

open-vocabulary setting.

4.2 Results on Open-vocabulary Benchmarks

Table [3] summarizes our results. We compare our method with SOTA open-
vocabulary detection methods including: (1) OVR-CNN [36] (see Table |3| row
4). Tt pre-trains the detector’s projecting layer on image-caption pairs using
contrastive loss and then fine-tunes on the object detection task; (2) Variants of
ViLD [I3] such as ViLD-text and ViLD-ensemble (see Table |3| rows 5-7). VILD
is the first study that uses CLIP embeddings [27] for open-vocabulary detection.
Compared with ViLD-text, ViLD uses knowledge distillation from the CLIP
visual backbone, improves AP,over at the cost of hurting APpaee. ViLD-ens.
combines the two models and shows improvements for both metrics. Such an
ensemble-based method also brings extra time and memory cost.

For completeness, we also list the results of some previous zero-shot methods
such as SB [1], DELO [40] and PL [28] in Table [|rows 1-3. On OV-LVIS bench-
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Table 4: Generalization to other datasets. We evaluate OV-DETR trained on
LVIS when transferred to other datasets such as PASCAL VOC 2007 test set and
COCO validation set by simply replacing the text embeddings. The experimental set-
ting is the same as that of VILD [13]. We observe that OV-DETR achieves better
generalization performance than ViLD [13].

Pascal VOC CcOoCoO

# Method

AP2, APE, AP® AP2, APE
1 ViLD-text [I3] 40.5 31.6 28.8 434 314
2 ViLD [13] 72.2  56.7 36.6 55.6  39.8
3 OV-DETR 76.1 59.3 38.1 58.4 41.1

(ours vs #2 ) (+3.9) (+2.6) (+1.5) (+2.8) (+1.3)

mark, OV-DETR improves the previous SOTA ViLD by 4.1 on AP™ and 1.3 on
AP - Compared with ViLD, our method will not affect the performance of
base classes when improve the novel classes. Even compared with the ensemble
result of ViLD-ensemble, OV-DETR still boosts the performance by 1.5, 0.8, 1.0
and 2.2, respectively (%). Noted that OV-DETR only uses a single model and
does not leverage any ensemble-based technique. On OV-COCO benchmark,
OV-DETR improves the baseline and outperforms OVR-CNN [36] by a large
margin, notably, the 6.6 mAP improvements on nowvel classes. Compared with
ViLD [13], OV-DETR still achieves 1.4 mAP gains on all the classs and 1.8 mAP
gains on novel classes. In summary, it is observed that that OV-DETR achieves
superior performance across different datasets compared with different methods.

4.3 Generalization Ability of OV-DETR.

We follow VIiLD [I3] to test the generalization ability of OV-DETR by train-
ing the model on LVIS [14] dataset and evaluated on PASCAL VOC [§] and
COCO [22]. We keep the same implementation details with ViLD [13]. We
switch the text embeddings of the category names from the source dataset to
new datasets. The text embeddings of new classes are used as conditional inputs
during the inference phase. As shown in Table [dl we observe that OV-DETR
achieves better transfer performance than ViLD. The experimental results show
that the model trained by our conditional-based mechanism has transferability
to other domains.

4.4 Qualitative Results

We visualize OV-DETR’s detection and segmentation results in Fig. [f] The re-
sults based on conditional text queries, conditional image queries, and a mixture
of conditional text and image queries are shown in the top, middle and bottom
row, respectively. Overall, our OV-DETR can accurately localize and precisely
segment out the target objects from novel classes despite no annotations of these
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Fig.5: Qualitative results on LVIS. OV-DETR can precisely detect and seg-
ment novel objects (e.g., ‘crape’, ‘fishbowl’, ‘softball’) given the conditional text
query (top) or conditional image query (middle) or a mixture of them (bottom).

classes during training. It is worth noting that the conditional image queries, such
as “crape” in (d) and “fork” in (h), appear drastically different from those in
the target images but OV-DETR can still robustly detect them.

4.5 Inference Time Analysis

OV-DETR exhibits great potential in open-vocabulary detection but is by no
means a perfect detector. The biggest limitation of OV-DETR is that the in-
ference speed is slow when the number of classes to detect is huge like 1,203
on LVIS [13]. This problem is caused by the conditional design that requires
multiple forward passes in the Transformer decoder (depending on the number
of classes).

We show a detailed comparison on the inference time between Deformable
DETR and OV-DETR in Table [5] Without using any tricks, the vanilla OV-
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7# Method COCO LVIS Table 5: Comparison of the
1 Def DETR 0.31 1.49 inference time (second per it-
2 Ours 0.72 23.84 eration) between Deformable
3 Ours (optimized) 0.63 9.57 DETR [4I] and our QV'

(vs #2) (+1 12.5%) (+1 59.9%) DETR before/after optimiza-

tion on LVIS and COCO.

DETR (#2), i.e., using a single forward pass for each class, is about 2x slower
than Deformable DETR (#1) on COCO (w/ 80 classes) while 16x slower on
LVIS (w/ 1,203 classes). As discussed in Sec. and shown in Fig. [[b), we op-
timize the speed by forwarding multiple conditional queries to the Transformer
decoder in parallel, which reduces the inference time by 12.5% on COCO and
nearly 60% on LVIS (see #3 in Table . Still, there is much room for improve-
ment.

It is worth noting that such a slow inference problem is not unique to our
approach—most instance-conditional models would have the same issue [19],
which is the common price to pay in exchange for better performance. The
computation bottleneck of our method lies in the computation of the Transformer
decoder in Eq. . A potential solution is to design more efficient attention
modules [33134], which we leave as future work. In human-computer interaction
where users already have target object(s) in mind, e.g., a missing luggage or a
specific type of logo, the conditional input is fixed and low in number, thus the
inference time is negligible.

5 Conclusion

Open-vocabulary detection is known to be a challenging problem due to the lack
of training data for unseen classes. Recent advances in large language models
have offered a new perspective for designing open-vocabulary detectors. In this
work, we show how an end-to-end Transformer-based detector can be turned into
an open-vocabulary detector based on conditional matching and with the help
of pre-trained vision-language models. The results show that, despite having a
simplified training pipeline, our open-vocabulary detector based on Transformer
significantly outperforms current state of the arts that are all based on two-stage
detectors. We hope our approach and the findings presented in the paper can
inspire more future work on the design of efficient open-vocabulary detectors.
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