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Outline

The supplemental document provides additional studies about the proposed prob-
abilistic ensembling technique (ProbEn). Below is a sketch of document and we
refer the reader to each of these sections for details.

– Section 1: Analysis of ProbEn and comparisons to other late-fusion methods.
– Section 2: Score calibration for ProbEn
– Section 3: Further study of weight score fusion
– Section 4: Further study of class prior in ProbEn
– Section 5: A detailed derivation of probabilistic box fusion
– Section 6: A study of fusing more models
– Section 7: Qualitative results and video demo

1 Probabilistic Fusion for Logits

In this section, we compare ProbEn to additional late fusion approaches in the lit-
erature that extends beyond detection. Because classic fusion approaches [5,7,3]
often operate on logit scores that are input into a softmax (rather than operating
on the output of a softmax), we re-examine ProbEn in terms of logit scores.

Let us rewrite the single-modal softmax posterior for class k given modality i
in terms of single-modal logit scores si[k]. For notational simplicity, we suppress

∗Equal contribution. The work was mostly done when authors were with CMU.
†Equal supervision.

https://github.com/Jamie725/RGBT-detection
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(a) NMS (b) AvgScore
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Fig. 1. Fusing logits from two single-modal, single-class detectors. Given a
single class detector k ∈ {0, 1}, the single-modal class posterior for modality i depends
on the relative logit si = si[1]− si[0]. We visualize the probability surface obtained by
different fusion strategies that operate on logit scores s1 and s2 (associated with two
overlapping detections). We first point out that simply returning the maximum score,
corresponding to non-maximal suppression (NMS), is a surprisingly effective late fusion
strategy that already outperforms much prior work (see Table 1 from main paper and
Table 1 in appendix). AvgLogits (c) and ProbEn (d) have similar score landscapes, but
differ in a scaling parameter. Our empirical results show that this scaling parameter
has a large effect in multimodal detection, because one needs to compare multi-modal
detections with single-modal detections with “missing data modalities”. By overlaying
the score landscapes of NMS and AvgScore (e), one can see that AvgScore is always
less than NMS. Similarly, by overlaying the score landscapes of ProbEn and NMS (f),
we find that ProbEn returns (1) a higher probability than NMS when both modalities
have large logits (e.g., s1=4 and s2=4) but (2) a lower probability than NMS when
logit scores disagree (e.g., s1 = 3 and s2 = −3, corresponding to p(y = 1|x1) = 0.95
and p(y = 1|x2) = 0.05). In the latter case, NMS outputs an over-confident score 0.95;
ProbEn decreases the score, which helps reduce false positives as illustrated in Fig. 3.

its dependence on the underlying input modality xi:

p(y = k|xi) =
esi[k]∑
j e

si[j]
∝ esi[k] (1)

where we exploit the fact that the partition function in the denominator is not
a function of the class label k. We now plug the above into Eq. 6 from the main
paper:

p(y = k|x1, x2) ∝
p(y = k|x1)p(y = k|x2)

p(y = k)
∝ es1[k]+s2[k]

p(y = k)
(2)

If we assume a uniform prior over classes, Bayesian posteriors are propor-
tional to es[k] where s[k] = s1[k] + s2[k] are the summed per-modality logits.
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Table 1. Additional late fusion baselines measured by LAMR↓ on KAIST
reasonable-test. Numbers are identical to Table 1 from the main paper with an addi-
tional row for logit averaging (AvgLogits), which outperforms class-posterior averaging
(AvgScore). However, both methods underperform a simple NMS (MaxFusion). Eq.(2)
derives that ProbEn is equivalent to summing logits instead of averaging. Intuitively,
summing allows fusion to become more confident as more modalities agree, while aver-
aging does not. Even more importantly, this small modification allows one to properly
compare detections with missing modalities, which is frequently needed in NMS when-
ever all modalities fail to fire on a given object. Finally, we also explore a learned
late fusion baseline that learns to combine logits with logistic regression (LogRegFu-
sion), which provides a marginal improvement over ProbEn at the cost of training on
a carefully curated multimodal dataset. Our analysis shows that learned fusion can be
seen as a generalization of ProbEn that no longer assumes conditionally-independant
modalities (6).

Method Day Night All

RGB 14.56 27.42 18.67
Thermal 24.59 7.76 18.99

Pooling 37.92 22.61 32.68
NMS (MaxFusion) 13.25 6.42 10.78
AvgScore 21.68 15.16 19.53
AvgLogits 18.78 11.70 16.28
LogRegFusion 10.70 6.11 9.08
ProbEn 10.21 5.45 8.62

ProbEn+bbox 9.93 5.41 8.50

Hence, ProbEn corresponds to adding logits from each modality. This suggests
another practical implementation of ProbEn that may improve numerical stabil-
ity: given single-modal detections with cached logit scores, sum logit scores on
overlapping detections before pushing them through a softmax.

Summing vs. averaging logits. Let us now revisit prior approaches to
logit-based fusion in detail. Late fusion was popularized by video classification
networks that made use of two-stream architectures [5]. This seminal work pro-
posed an influential baseline for “fusing softmax scores” by averaging. However,
practical implementations average logits [9,1] or sum logits [2], often omitting
the final softmax [6] because one can obtain a class prediction by simple max-
imization of the fused logits. In the classification setting, the distinction be-
tween summing versus averaging does not matter because both produce the same
argmax label prediction. But the distinction does matter in detection, which re-
quires ranking and comparison of scores for non-maximal suppression (NMS)
and global thresholding. Intuitively, summing allows detections to become more
confident as more modalities agree, while averaging does not. Most crucially,
summing logits allows one to optimally compare detections with missing modal-
ities, which is frequently needed in NMS whenever all modalities fail to fire on a
given object. Here, optimality holds in the Bayesian sense whenever modalities
are conditionally independent (as derived in (2)).
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Fig. 2. LAMR as a function of a calibration temperature parameter T (de-
signed to return more realistic probabilities) [4] on KAIST reasonable-test, We fuse de-
tections from two single-modal detectors (RGB and thermal). Here, T=1 corresponds
to ProbEn. Tuning the temperature T yields only marginally better performance. We
conjecture that the scores from the two single-modal detectors are already comparable,
presumably because both of them are trained with the same loss function, annotation
labels, and network architecture.

Fusion from logits. We can succintly compare various fusion approaches
from the logit perspective with the following:

sAvgLogit[k] = .5(s1[k] + s2[k]) (3)

sBayes[k] = s1[k] + s2[k] (4)

It is easy to see that
sAvgLogit[k] ≤ sBayes[k]

Note that the relative ordering of the fused logits does not necessarily imply the
same holds for the final posterior because the other class logits are needed to
compute the softmax partition function. One particularly simple case to ana-
lyze is a single-class detector k ∈ {0, 1}, as is true for the KAIST benchmark
(that evaluates only pedestrians). Here we can analytically compute posteriors
by looking at the relative logit score si = si[1]− si[0] for modality i (by relying
on the well-known fact that a 2-class softmax function reduces to a sigmoid func-
tion of the relative input scores). We visualize the fused probability as a function
of the relative per-modality logits s1 and s2 in Fig. 1. Finally, Table 1 explic-
itly compares the performance of such fusion approaches with other diagnostic
variants. We refer the reader to both captions for more analysis.

2 Score Calibration for Fusion

ProbEn assumes that detectors return true class posteriors. However, deep net-
works are notoriously over-confident in their predictions, even when wrong [4].
One popular calibration strategy is adding a temperature parameter T to the
final softmax, typically to “soften” overconfident estimates [4]. This can be im-
plemented by scaling logits by a temperature T :

si[k]← si[k]/T, T > 0 (5)



Multimodal Object Detection via Probabilistic Ensembling 5

Table 2. Late-fusion methods on different underlying detectors measured by
LAMR↓ on KAIST reasonable-test. This table is comparable to Table 1 in the main
paper. A: RGB detector; B : Thermal detector; C : EarlyFusion detector; D : MidFusion
detector. Clearly, ProbEn consistently outperforms all other late-fusion methods. In-
terestingly, fusing detections from non-independent detectors (e.g., A+B+D) achieves
better performance than independent detectors (e.g., A+B). Lastly, probabilistically
fusing boxes (using v-avg) improves further over 8 / 9 fusion methods.

Method A+B A+C A+D B+C B+D C+D A+B+C A+B+D A+B+C+D
Pooling 32.68 28.87 29.70 36.68 36.36 23.24 43.04 43.56 46.03
AvgScore 19.53 19.94 18.67 21.58 18.18 22.26 21.98 21.06 24.06
NMS 10.85 11.59 13.05 18.74 13.81 14.18 10.91 12.11 12.09
ProbEn 8.62 9.63 10.99 16.88 11.90 11.58 8.40 8.54 8.21
ProbEn + bbox 8.50 9.87 10.30 16.87 11.20 11.32 8.55 7.66 7.45

(a) RGB-detector (b) thermal-detector (c) NMS fusion (d) ProbEn fusion

Fig. 3. ProbEn handles false positives by lowering scores. Fig. 1 (d) shows that ProbEn
will reduce the fused score of overlapping detections with at least one low-scoring modal-
ity. This is an example from KAIST, where RGB- and thermal-detectors produce false-
positive pedestrian detections for the statues. NMS fusion keeps the higher-scoring
false-positive, while ProbEn lowers the fused score while keeping the higher score for
the true-positive (that contain overlapping detections with consistently high scores).

In the two-modality detection setting, because monotonic transformations of
probability scores will not affect ranks (and hence not effect LAMR or AP),
one can show that we need only calibrate one of two modalities. In practice, we
calibrate thermal detector scores so as to better match scores from the RGB
detector. Figure 2 plots LAMR as a function of a single scalar temperature T
used to scale thermal detections. Tuning T yields only a marginal improvement
over standard ProbEn (i.e., when T = 1). We conjecture that the two single-
modal detectors are trained with the same annotation and network architecture,
making their output scores comparable to each other already.

Interestingly, when we ensemble an off-the-self multimodal detector GAFF [8],
our Thermal and RGB detectors (trained in-house), we find score calibration is
particularly important. Importantly, we find that calibration requires not only
a temperature variable but also a shift variable on the logits of GAFF. We con-
jecture that this is because GAFF is trained in a very different way; we do not
know how GAFF is trained as there is not a publicly available codebase. Fig. 4
depicts the miss-rate as a function of the two variables, temperature T and shift
b. Clearly, the shift variable b makes a significant impact on the fusion results.
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Fig. 4. LAMR as a function of calibration temperature parameter T and
shift parameter b [4] on the KAIST validation set. We fuse single-modal detectors
(RGB and thermal trained in-house) and an off-the-shelf detector GAFF [8]. Clearly,
both the temperature T and shift b greatly affect the final detection performance.

Table 3. Late-fusion methods on different underlying detectors on FLIR
dataset, measured by percent AP↑ in percentage. A: thermal detector; B : EarlyFusion
detector; C : MidFusion detector. Our ProbEn method consistently outperforms other
late-fusion methods. By fusing all the underlying detectors, ProbEn performs the best.
Lastly, probabilistically fusing boxes (using v-avg) improves further for 3 / 4 fusion
methods.

Method A+B A+C B+C A+B+C

Pooling 54.04 61.48 63.38 53.66
AvgScore 81.65 81.47 82.43 82.65
NMS 81.75 82.34 82.43 83.14
ProbEn 82.05 82.26 82.67 83.27
ProbEn + bbox 81.93 82.85 83.04 83.76

3 Further Study of Weighted Score Fusion

All late fusion approaches discussed thus far do not require training on multi-
modal data. Because prior work on late fusion has also explored learned variants,
we also consider (learned) linear combinations of single-modal logits:

sLearned[k] = w1[k]s1[k] + w2[k]s2[k] (6)

One can view ProbEn, AvgLogits, and Temperature Scaling as special cases of
the above. ProbEn and AvgLogits use predefined weights that do not require
learning and so are easy to implement. Temperature scaling requires single-
modal validation data to tune each temperature parameter, but does not require
multimodal learning. This can be advantageous in settings where modalities do
not align (e.g., FLIR) or where there exists larger collections of single-modal
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RGB frame thermal frame annotations our predictions

Fig. 5. We zoom in a frame from Fig. 8 to visualize more clearly that the ground-
truth anntoations can even miss bicycles and persons as shown in the third image.
In contrast, our ProbEn model can detect these miss-labeled objects (cf. red arrows).
This shows the issues in the FLIR dataset.

training data (e.g., COCO training data for RGB detectors). Truly joint learning
of weights requires multimodal training data, but joint learning may better deal
with correlated modalities by downweighting the contribution of modalities that
are highly correlated (and don’t provide independant sources of information). We
experimented with joint learning of the weights with logistic regression. To do
so, we assembled training examples of overlapping single-modal detections (and
cached logit scores) encountered during NMS, assigning a binary target label
(corresponding to true vs false positive detection). After training on such data,
we observe a small improvement over non-learned fusion (Table 1), consistent
with prior art on late fusion [5]. We also tested learning-based late fusion methods
on the FLIR dataset. We further tested learning class priors. However, these
methods do not yield better performance than the simple non-learned ProbEn
(both achieve 82.91 AP). The reason is that FLIR annotations are inconsistent
across frames, making it hard for learning-based late fusion methods to shine,
as explained in Fig. 8 and 5.

4 Further Study of Class Prior in ProbEn

In the main paper, we assume uniform class priors when using ProbEn. Now we
test ProbEn with computed class priors. For consistent experiments as done in
the main paper, we use FLIR dataset and fuse three models (Thermal, Early
and Mid). Recall that FLIR has imbalanced classes: person (21,744), bicycle
(3,806), and car (39,372). First, we count the number of annotated objects of
each of the three class, and assign the fourth background class with a dummy
number. Then, we normalize them to be sum-to-one as class priors. We vary
the background prior and evaluate the final detection performance measured by
AP at IoU>0.5, as shown in Fig. 6. Clearly, ProbEn works better with uniform
priors than the computed the class piriors.

Furthermore, we ablate which class is more important by manually assigning
a prior. Concretely, we vary one class prior by fixing all the others the same. We
plot the performance vs. the per-class prior in Fig. 7. We can see tuning specific
class priors leads to marginal improvements compared to using uniform prior.
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5 A Detailed Derivation of Probabilistic Box Fusion

In the main paper, we present a probabilistic method to fuse multiple bounding
boxes. Below is a detailed derivation. We write z for the continuous random
variable defining the bounding box (parameterized by its centroid, width, and
height) associated with a given detection. We assume single-modal detections
provide a posterior p(z|xi) that takes the form of a Gaussian with a single vari-
ance σ2

i , i.e., p(z|xi) = N (µi, σ
2
i I) where µi are box coordinates predicted from

modality i. We also assume a uniform prior on p(z), implying bbox coordinates
can lie anywhere in the image plane. Doing so, we derive probabilistic box fusion:

p(z|x1, x2) ∝ p(z|x1)p(z|x2)

∝ exp
(∥z− µ1∥2

−2σ2
1

)
exp

(∥z− µ2∥2

−2σ2
2

)
∝ exp
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6 A Study of Fusing More Models

We study late fusion methods on more combinations of underlying detectors. Ta-
ble 2 and 3 list results on KAIST and FLIR datasets, respectively. Importantly,
ProbEn consistently performs the best on each of combinations. Interestingly,
applying ProbEn method to detectors that are not independent to each other
(e.g., Thermal and MidFusion) can achieve better performance. Admittedly, the
improvements may not be statistically significant and overfitting may be an issue.
This can not be resolved or studied further using contemporary datasets which
are relatively small. Therefore, we solicit a larger-scale dataset to benchmark
multimodal detection in the commmunity.

7 Qualitative Results and Video Demo

We attach a demo video named video demo.mp4 on a testing video (captured
at night) provided by the FLIR dataset. In the demo video, we compare the



Multimodal Object Detection via Probabilistic Ensembling 9

Fig. 6. A study of ProbEn with class priors as class frequencies in the training set. We
use FLIR dataset for this study as it has 3 imbalanced classes. We fuse three models
(Thermal, Early and Mid) as used in the main paper. As there is a background class, we
vary the background class and proportionally change the class priors. Clearly, ProbEn
with uniform class priors performs better than using the computed priors. Tuning the
background prior does not notably affect the final detection performance once this prior
is set to be larger than 0.1.

Fig. 7. A study of tuning a single class prior while keeping others the same. Moti-
vated by the superior performance of ProbEn with uniform priors, we tune each of the
class prior by fixing others the same. We study this on the FLIR dataset by fusing
three models (Thermal, Early and Mid). We can see that tuning specific classes only
marginally improves detection performance.
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Fig. 8. We demosntrate inconsistent annotations in FLIR dataset with four consecutive
frames in the validation set. top-row lists four RGB frames for reference. mid-row
displays thermal images and the ground-truth annotations. Looking at the annotations
in the orange rectangle, we can see that the annotations are not consistent across
frames. This is an critical issue that prevent learning-based late fusion from improving
further on the FLIR dataset. Bottom-row displays the detection results by ProbEn
of the three models (Thermal, Early, and Mid). Interestingly, the predictions look
more reasonable in detecting pedestrians within the orange rectangles. In this sense,
predictions is “better” than annotations, intuitively explaining why learning based late
fusion does not improve performance further. Please also refer to Fig. 5 for a zoom-in
visualization.

detection results by the Thermal model and ProbEn that fuses results of three
models (Thermal + Eary + Mid). Recall that the FLIR dataset does not align
RGB and thermal frames, and annotates only thermal frames. Therefore, we
only provide RGB frames as reference (cf. Fig. 9).

Lastly, we provide more qualitative results in Figure 10 and 11 for KAIST
and FLIR, respectively. Visually, we can see our ProbEn method performs better
than the compared methods.
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Fig. 10. Qualitative results on more testing examples in KAIST dataset. We place
RGB-thermal images in pairs: in each macro row, we show RGB images in the upper
row and thermal images in lower row. Over RGB images, we overlay the detection
results from our MidFusion model; on the thermal images, we show results from our
best-performing ProbEn model. Green, red and blue boxes stand for true positives,
false negative (miss-detected persons) and false positives.
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Fig. 11. Qualitative results on more testing examples in FLIR dataset. We place RGB-
thermal images in triplet: in each macro row (divided by the black line), we show RGB
images in the upper row and thermal images in two lower rows. Over RGB images,
we overlay ground-truth annotations, highlighting that RGB and thermal images are
strongly unaligned. To avoid clutter, we do not mark class labels for the bounding boxes.
On the thermal images, we show detection results from our thermal-only (mid-row) and
best-performing ProbEn (with bounding box fusion) model (bottom-row). Green, red
and blue boxes stand for true positives, false negative (mis-detected persons) and false
positives.
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