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The supplemental material first provides additional experiments on open-vocabulary
detection (OVD) on the LVIS dataset in Sec. A.1, a faster version of VL-PLM to
speed-up pseudo label (PL) extraction in Sec. A.2, and additional experiments on
semi-supervised detection (SSOD) in Sec. A.3. Then, we give additional analysis
on fusing pseudo labels in SSOD in Sec. B.1, the quality of PLs in Sec. B.2,
how to model the background category in PL generation in Sec. B.3, and the
generalization ability of the proposal generator in Sec. B.4. Finally, qualitative
results of PLs and the final OVD detector are given in Sec. C.

A Additional Experiments

A.1 Open-vocabulary detection results on LVIS

In addition to our open-vocabulary detection (OVD) experiments on COCO [6]
in Sec. 4.1 of the main paper, we also evaluate our model on the LVIS [4] dataset.
LVIS is a large-vocabulary dataset with 1203 categories and shares images with
COCO [6]. We follow the experimental setup of ViLD [3], the state-of-the-art
method on LVIS for OVD (LVIS-OVD): All categories are divided into three
sets, namely, frequent, common, and rare, based on the numbers of their objects.
Following [3], we take frequent and common categories as the base categories
and regard rare categories as the novel categories. We leverage base categories
to train our two-stage class-agnostic proposal generator and adopt VL-PLM to
generate PLs for novel categories. Then, a standard OVD detector was trained
with both the ground truth of base categories and our PLs.
Comparison with ViLD: Table 1 compares our detector via VL-PLM with
Supervised and the state-of-the-art method ViLD. Supervised is the supervised
baseline model trained on the whole LVIS with repeat factor sampling [4,7].
We report the box mAP to better indicate the performance on detection. For
ViLD [3], we took the model provided by the authors and re-ran the evaluation
to ensure a fair comparison. For the Supervised baseline, we adopted the numbers
from [3]. As shown, our method outperforms ViLD on all splits. We gain +0.6
APr for rare categories (novel) and +2.6 APc/+3.5 APf for common/frequent
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Table 1. Evaluations for open vocabulary detection on LVIS-v1 [4].

Method Training data APr APc APf mAP

Supervised Base + Novel 12.3 24.3 32.4 25.4
ViLD [3] Base 16.6 21.1 31.6 24.4
VL-PLM (Ours) Base 17.2 23.7 35.1 27.0

categories (base). This indicates that training with our PLs has less influence on
base categories than the distillation in ViLD does. We observed a similar trend
on COCO [6] in Sec. 4.1. Compared with the improvement on base categories, the
improvement on novel categories is relatively small, likely due to the long-tailed
distribution of novel categories. Still, VL-PLM outperforms Supervised by a
large margin in terms of APr. A possible explanation is that our PLs provide
more annotations for rare categories. In general, our PLs provide more (but
noisy) annotation than the grounded truth “federated” annotations of LVIS [4],
where only subsets of categories are annotated per image. This may explain why
VL-PLM even outperforms Supervised in mAP. Although those annotations are
not fully accurate, they still provide useful information for rare categories in the
training, e.g., the texture of objects of rare categories.

A.2 Fast VL-PLM and Multi-scale Fast VL-PLM

This section provides more details about Fast VL-PLM and Multi-scale Fast
VL-PLM that are mentioned in the discussion of Time efficiency in Sec. 4.3
of the main paper. Table 2 compares original VL-PLM with the two variants in
terms of time cost and pseudo label quality. As shown, Fast VL-PLM reduces
runtime by 5× with a slight drop in PL quality. Multi-scale Fast VL-PLM almost
entirely removes the accuracy drop and still reduces runtime by 3×. Our Fast
VL-PLM and Multi-scale Fast VL-PLM are only designed for ResNet-based CLIP
not for ViT-based CLIP, which are described as follows.

Table 2. Average time to get pseudo labels per image and their quality.

CLIP Backbone Time (s) AP@PL #@PL

Original VL-PLM ResNet50 0.5413 15.9 7.31
Fast VL-PLM ResNet50 0.1199 13.5 7.39
Multiscale Fast VL-PLM ResNet50 0.1685 15.4 7.38

For Fast VL-PLM, we feed the whole input image into CLIP’s ResNet50 to
get shared feature maps. Then, we bound the coordinates of each region proposal
to the close integer. For example, a proposal of {10.9, 50.2, 110.1, 100.9} in xyxy
format is converted into a box of {11, 50, 110, 101}. Third, based on the bounded
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box, we crop features on the shared feature maps for the corresponding proposal.
Finally, we ignore the positional embedding and feed the cropped features into
the last attention layer of CLIP to output the region embedding for each proposal.
Please refer to [8] for details on the structure of ResNet-based CLIP. Please note
the difference to ROI-pooling, where each cropped region would be pooled into
the same spatial dimensions. Here, the cropped feature size is proportional to
the bounding box and we let the attention layer in CLIP “pool” the input into a
fixed-size output. We tried ROI-pooling but observed worse performance.

Multi-scale Fast VL-PLM is a mutli-scale version of Fast VL-PLM. We first
construct an image pyramid and feed those images into CLIP’s ResNet50 to get
shared multi-scale feature maps. Then, for region proposals of small size, we
crop features on shared feature maps of a large scale so that more details are
attained in the cropped feature maps. Shared feature maps of a small scale are
for region proposals of large size. Specially, we resize the smallest dimension of
input images into three scales, i.e., 224, 224 · 3 = 672, and 224 · 5 = 1120. Thus,
the shared feature maps are in one scale among 7, 7 · 3 = 21, and 7 · 5 = 35.
Region proposals are assigned to different scales by their areas. The area > 64 is
for the first scale, the area between 16 and 64 for the second, and others for the
third. Our design is inspired by FPN [5] and enjoys its advantages, as well.

A.3 Scaling up unlabeled images for SSOD

To better understand the impact of the ratio between labeled and unlabeled
images, we continue our experiments on semi-supervised object detection (SSOD).
In Sec. 4.2 of the main paper, we varied the fraction of labeled images. Here, we
use a fixed amount of labeled images and vary the number of unlabeled images.
We train Faster R-CNN models using 5% of labeled COCO images with different
amounts of unlabeled images. We randomly select our unlabeled images from the
unlabeled images provided by the COCO dataset [6]. All models are trained for
90k iterations with a batch size of 16. As shown in Table 3, as the amount of
unlabeled data increases, the performance increases as well, but with diminishing
returns. In future work, we want to explore this aspect more and evaluate PLs
from VL-PLM in an omni-supervised setting [9].

Table 3. Detection accuracy in mAP for Faster R-CNN on 5% of labeled COCO
images with varied amounts of unlabeled images.

# of labeled images 5764 5764 5764 5764 5764
# of unlabeled images 0 5764 28820 57640 115280
Ratio 1:0 1:1 1:5 1:10 1:20

mAP 17.7 21.1 22.7 23.1 23.7
mAP increase - +3.4 +5.0 +5.4 +6.0
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Table 4. Pseudo label fusion for semi-supervised object detection on COCO 2017 [6].

Methods 1% COCO 2% COCO 5% COCO 10% COCO

SSL PLs only 11.18 14.88 21.20 25.98
VL-PLM w/o fusion 13.27 15.97 20.64 24.20
VL-PLM 15.35 18.60 23.70 27.23

B Additional Analysis and Discussion

B.1 Fusing Pseudo Labels from SSOD teacher with VL-PLM

This section provides more details for Sec. 3.3 of the main paper on how we
merge PLs for SSOD. As illustrated in Fig. 1, we use the proposed VL-PLM to
generate PLs and merge the PLs from the semi-supervised teacher. Then, we
apply thresholding and NMS on the merged PLs to obtain the final PLs for SSOD.
To validate the effectiveness of this fusion strategy, we consider the following
baselines. (1) SSL PLs only: We only adopt the PLs from the semi-supervised
teacher as the final PLs. (2) VL-PLM w/o fusion: We only pick the PLs from the
vision and language model. (3) VL-PLM: The fused PLs. We base our experiments
on 1%, 2%, 5% and 10% COCO splits [6,10] for SSOD and report the results in
Table 4. As shown, compared with SSL PLs only, VL-PLM w/o fusion is better
on 1% and 2% COCO splits but worse on 5% and 10% COCO splits. A possible
explanation is that V&L models provide more useful information that boosts the
performance when the amount of annotated data is smaller. Moreover, VL-PLM
outperforms SSL PLs only and VL-PLM w/o fusion on all splits. This clearly
demonstrates that our PLs from VL-PLM are better than the PLs from the
teacher model. Our fusion method successfully improves the quality of the final
PLs. Since putting PLs from the teacher and V&L model together brings about
the best results even for 5% and 10% COCO splits, we believe that PLs from the
teacher and the V&L model are complementary.

VL-PLM Thresholding
& NMS

PLs from semi-
supervised teacher 

Final pseudo labels

External PLs

Our PLs

Fig. 1. Overview of pseudo labels (PLs) fusion for semi-supervised object detection
(SSOD). We fuse our PLs with those from the semi-supervised teacher model before
the thresholding and NMS.
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Table 5. Relationship between the quality of pseudo labels and the performance of the
final open vocabulary detectors on COCO 2017 [6].

PL Setting
Pseudo Labels Final Detector
AP@PL #@PL Base AP Novel AP Overall AP

PL v1 No RoI, τ = 0.05 17.4 89.92 33.3 14.6 28.4
PL v2 No RoI, τ = 0.95 14.6 2.88 56.1 26.0 48.2

PL v3 VL-PLM, τ = 0.05 20.6 85.15 29.7 19.3 27.0
PL v4 VL-PLM, τ = 0.95 18.0 2.93 55.4 31.3 49.1
PL v5 VL-PLM, τ = 0.99 11.1 1.62 56.7 27.2 49.0

B.2 Analysis on the Quality of PLs

In this section, we provide a more detailed analysis and discussion for Under-
standing the quality of PLs of Sec. 4.3 in the main paper.

Quality of PLs and performance of final detectors: In this section, we
provide more analysis for Table 5 which is also present in the main paper. We
recall our 5 baselines as follows, (1) PL v1 : We take the raw region proposals
from region proposal network (RPN) without RoI refinement in our pseudo label
generation and set τ = 0.05. (2) PL v2 : The same as PL v1 but with τ = 0.95.
(3) PL v3 : VL-PLM with τ = 0.05. (4) PL v4 : VL-PLM with τ = 0.95. (5) PL
v5 : VL-PLM with τ = 0.99. In Table 5, the evaluations are conducted on the
zero-shot splits [1] on COCO [6] (COCO-ZS). We report the AP50 (AP@PL) and
the number (#@PL) on novel categories for different PLs with the performance
of detection models trained with corresponding PLs. Novel AP, Base AP, and
Overall AP are provided to indicate the performance of detectors.

Based on Table 5, we have the following findings. First, compared with PL v4,
PL v1 shares similar AP@PL but has much more pseudo annotations. The final
detector of PL v4 significantly outperforms that of PL v1. Second, compared with
PL v4, PL v2 has nearly the same amount of PLs with a lower AP@PL. In terms
of Novel AP, the final detector of PL v4 outperforms that of PL v1 by a large
margin. Based on those facts, we conclude that neither AP@PL nor #@PL alone
can decide the quality of PLs. We need to consider both AP@PL and #@PL. Good
PLs come with high AP@PL and low #@PL. Third, based on the comparison
between PL v4 and PL v5, we find that an extremely high threshold τ harms
the predictions of novel categories but results in a slightly better performance on
base categories. Empirically, we find a reasonable τ ∈ [0.6, 0.95] and set τ = 0.8
as default. Fourth, comparing PL v2 and PL v4, we find that with RoI head
refinement, our PLs gain a significant improvement. For the final detector, PL
v4 achieves similar performance on base categories as PL v2 and much better
results on novel categories, which clearly demonstrate the effectiveness of using
RoI head as box refinement.
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Table 6. The quality of pseudo labels generated with different ways to model the
background. τ is tuned to keep similar #@PL. See text for more details.

Novel Novel+BG Novel+Base Novel+Base+BG Novel+OV set

τ 0.80 0.80 0.59 0.59 0.501
AP@PL 25.5 25.7 26.3 26.4 25.1
#@PL 4.86 4.18 4.36 4.22 4.35

B.3 Modeling Background in PL Generation

Background is a latent category for the detection task and should be considered
in our pseudo label generation, as well. In this section, we demonstrate how
different ways of modeling the background affects the quality of PLs for OVD on
COCO-ZS. Since there may be region proposals for base categories, we generalize
the concept of background as categories that are not in the target categories,
and consider 5 category spaces with different backgrounds as

1. Novel : The label space for pseudo labels only contains novel categories, no
explicit modeling of background

2. Novel+BG The text “background” is used as one additional background
category

3. Novel+Base: Both novel and base categories are used in the label space of
PLs, where base categories should model the background (since those are
annotated in the OVD setting)

4. Novel+Base+BG : Same as Novel+Base, but with the additional category of
“background”

5. Novel+OV : We remove novel categories in COCO from the 1203 categories
in LVIS [4]. The remaining categories are used to model background. We
name this background set as OV.

Table 6 provides AP@PL and #@PL on novel categories for different category
spaces of the background.

As shown, Novel+BG is slightly better than Novel with higher AP@PL
and lower #@PL. Novel+Base and Novel+Base+BG result in the same obser-
vation. BG does improve the quality but the improvement is not significant.
Moreover, Novel+Base gains a clear improvement over Novel, likely because it
helps V&L models to identify objects of base categories which will be removed
as the background, improving the quality of PLs for novel categories. Third,
OV as the background decreases the quality of PLs based on the comparison
betweenNovel+OV and Novel+Base. This is reasonable because V&L models
may be influenced by the large amount of OV categories that are absent in the
scene.

B.4 Generalization ability of the proposal generator

For OVD, we need to identify the objects of novel categories in the unlabeled
data. Similar to [3], we study if the two-stage class-agnostic detector trained
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Fig. 2. Visualization of pseudo labels. Only novel categories in the image are shown.
Top: Good cases with multiple instances. Bottom: Failure cases with missing instances,
grouped instances, part domination and redundant annotations.

on base categories generalizes to novel ones. Basing our experiments on COCO
and LVIS datasets, we train a Faster R-CNN with either base or all categories
(base+novel). Table 7 presents the top-N average recall (AR@N) of the RPN on
novel categories. As shown, on COCO-ZS, RPN trained without novel categories
suffers a clear performance drop. But it can still achieve a reasonable AR@1000,
and we adopt top 1000 boxes from RPN in our pseudo label generation. On the
contrary, models on LVIS achieve nearly the same average recall (AR) on novel
categories with either base categories or base + novel categories as the training
data. Possibly, there are more categories and instances in base categories of LVIS
than in those of COCO. Thus, the proposal generator is able to learn a better
concept about the objects in LVIS.

Table 7. The generalization ability of RPN of the proposal generator on COCO 2017
[6] and LVIS-v1 [4]. We report the average recall (AR) on novel categories.

Dataset Training Data AR@100 AR@300 AR@500 AR@1000

COCO
Base 34.5 43.4 47.2 51.7
Base + Novel 54.2 59.3 61.1 62.8

LVIS
Base 33.3 42.3 45.9 50.5
Base + Novel 33.7 43.0 46.6 50.5

C Qualitative Results

C.1 Visualization of Our Pseudo Labels

We illustrate good cases and failure cases of our PLs for OVD on COCO in
Fig. 2 and Fig. 3. We only visualize boxes for target (novel) categories that are
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included in the scene. Good cases show that VL-PLM is able to locate multiple
objects correctly. However, in the recent caption-based pseudo label generation
method [2], it’s a major issue to find multiple objects of the same categories.
For failure cases, there are four major types, i.e., part domination, redundant
boxes, missing instances, and grouped instances. We believe that part domination
and redundant boxes are mainly caused by the poor localization ability of the
adopted V&L model CLIP [8]. Missing and grouped instances usually happen
when multiple instances are close to each other or only part of instances appears.
Possibly, the major reason is that the proposal generator cannot provide correct
region proposals, leading to poor quality of PLs. In this sense, an improvement
on either the V&L models or the proposal generator in VL-PLM will boost PLs’
quality.

C.2 Visualization of Our OVD Detector

This section visualizes the good and failure cases of the final detector for OVD.
Fig. 4 illustrates those cases on novel and base categories, respectively. As shown,
the detector trained with our PLs is able to detect objects of novel categories.
Moreover, unlike PLs, the results of the final detector mainly include three types
of failure cases, i.e., missing instances, redundant boxes, and grouped instances.
Possibly, the part domination that degrades the quality of PLs is reduced during
the training with both ground truth and PLs.
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Fig. 3. Visualizations of the pseudo labels (PLs) from VL-PLM. Only boxes for target
categories in the scene are shown. (a) Good cases. All target objects are located with
appropriate boxes. (b) The most common types of failure cases in our PLs, i.e., part
domination, redundant boxes, missing instances, and grouped instances.
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Fig. 4. Visualization of the final detection results. Only boxes for target categories
in the scene are shown. (a) Novel categories as the target. (b) Base categories as the
target. The major failure cases belong to three types, i.e., missing instances, redundant
boxes, or grouped instances.
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