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A Structured3D Dataset Details

In this section, we provide the details for preparing the Structured3D [14] dataset.
Due to copyright constraints, the 3D models of the dataset is unavailable to the
public. Therefore we generated synthetic 3D meshes using the layout annota-
tions and color values from the panorama images, where qualitative samples are
shown in Figure A.1. As explained in Section 4.1, Structured3D contains 21845
rooms from which we select 672 rooms for evaluation, and each room has three
object configurations (empty, simple, full). We create the 3D model using the
empty object layout and set the query panorama as the full object layout. To
additionally evaluate illumination robustness, we randomly choose the lighting
setup from the three possible configurations (raw, cold, warm) for each object
configuration.

B Baseline Details

In this section, we describe the details for implementing the baselines compared
against CPO. As we implement PICCOLO [10] using the publically available
codebase released by the authors, we focus our description on the Structure-
based and depth-based approaches. For fair comparison, we set the transla-
tion/rotation starting points Nt, Nr and the number of candidate poses K iden-
tical to CPO.

Structure-Based Approach As explained in Section 4, structured-based approach
first finds promising candidate poses using robust image retrieval and then refines
poses using PnP-RANSAC from feature matches. For image retrieval we use
OpenIBL [8], which is a widely used image retrieval method that outputs a
global feature vector for each image. To deploy OpenIBL in out setup, we first
render Nt×Nr synthetic views from the point cloud. Then, we extract the global
features for each synthetic view and the query image, and choose the top K
synthetic views whose feature vectors are closest to that of the query image. As
the final step, we perform feature matching [13] from each chosen synthetic view
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Fig.A.1. Visualization of synthesized 3D point clouds in Structured3D [14].

against the query image, and determine the final view with the most matches.
The pose from the final view is refined with feature matches from the previous
step via PnP-RANSAC [6].

Depth-Based Approach Inspired from Jenkins et al. [9], depth-based approach
first finds candidate poses by comparing estimated monocular depth with the
3D point cloud and refining pose with PnP-RANSAC. For monocular depth es-
timation we use the pretrained model from Albanis et al. [2], which can reliably
estimate the underlying 3D structure from the query panorama. Then, we find
the top K poses from a pool of Nt ×Nr starting points that have the smallest
Chamfer distance with the 3D point cloud. Similar to the structure-based ap-
proach, we perform feature matching and refine the view with the most matches
via PnP-RANSAC.

C Additional Details on Score Maps

We provide additional details about score map generation. Recall that we gen-
erate 2D, 3D score maps using color consistency from histograms of synthetic
views Y. Here we generate N score

t × N score
r synthetic views, similar to the can-

didate pose selection introduced in Section 3.3. The exact number of synthetic
views used to generate score maps is further specified in Section D.

D Hyperparameter Setup

In this section, we report the hyperparameter setups of CPO. As explained in
Section 3.3, from Nt × Nr poses we select the top K candidate poses with the
highest histogram intersection (Equation 4) for pose refinement. We follow the
identical hyperparameter setup as PICCOLO [10] for pose refinement. Below we
specify other hyperparameter setups that differ by the localization scenario.

D.1 Localization with Raw Color

For OmniScenes [10], Stanford 2D-3D-S [3] and Structured3D [14], where local-
ization was done with raw color inputs, we set Nt = 100,K = 6. We set the
number of rotation starting points as Nr = 216 for OmniScenes and Stanford
2D-3D-S, whereas for Structured3D we use Nr = 24 to run the baselines in a
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reasonable amount of time. For pose selection we split the input image into 8×16
patches and generate color histograms for each patch using the fast histogram
generation presented in Section 3.2. Other hyperparameter setups slightly differ
by dataset, which we elaborate below.

OmniScenes Dataset As OmniScenes is mainly an indoor dataset, we employ
octree-based translation starting point selection. For generating 2D and 3D score
maps, we use synthetic views from N score

t = 100, N score
r = 216 poses and divide

the input image into 16× 32 patches. We use patches of finer scale and generate
more accurate score maps to cope with large scene changes in OmniScenes [10].

Stanford 2D-3D-S Similar to OmniScenes, we employ octree-based translation
starting point selection, as Stanford 2D-3D-S dataset is also an indoor dataset.
For generating 2D and 3D score maps, we use synthetic views from N score

t = 100,
N score

r = 216 poses and divide the input image into 8× 16 patches.

Structured3D As explained in Section A, the 3D models in the Structured3D
dataset are synthetically generated cuboids lacking clutter. Therefore we use a
uniform grid partition for this dataset. Similar to the Stanford 2D-3D-S dataset,
for score map generation we use synthetic views from N score

t = 100, N score
r = 24

poses and divide the input image into 8× 16 patches.

D.2 Localization with Semantic Labels

For Stanford 2D-3D-S [3] and Data61/2D3D [12], where localization was done
with semantic labels, we set Nr = 216, similar to localization with raw color.
The number of translation starting points Nt differ by dataset, which is further
specified below. In addition, we do not apply score maps in these scenarios as
there are no scene changes in both datasets and the color values of semantic
labels do not reflect any photometric information.

Stanford 2D-3D-S We employ octree-based translation starting point selection
and set the number of translation starting points to Nt = 100, as in raw color
localization. Further, we divide the input image into 8×16 patches for histogram-
based initialization.

Data61/2D3D We employ grid-based translation starting point selection and set
the number of translation starting points to Nt = 300, as the dataset is captured
outdoor. Further, we confine the translation domain to a cuboid spanning 50×
10× 5m, similar to the initialization procedure used in Campbell et al. [4]. The
cuboid is placed to cover two lanes within the outdoor scene, which reflects the
prior knowledge that the camera was mounted on a vehicle. For histogram-based
initialization, we divide the input image into 4× 8 patches.
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Fig. F.1. Synthetic color variations for evaluating illumination robustness.

Table F.1. Ablation study on color preprocessing evaluated in a subset of Stanford
2D-3D-S [3]. The images are modified by average intensity (Int.), gamma (Gam.), and
white balance (W.B.).

t-error (m) R-error (◦) Accuracy
Method Orig. Int. Gam. W.B. Orig. Int. Gam. W.B. Orig. Int. Gam. W.B.

CPO w/o
Preprocessing

- 3.85 3.48 3.40 - 153.92 136.96 129.05 - 0.00 0.00 0.03

CPO 0.01 0.01 0.01 0.01 0.19 0.21 0.25 0.25 0.94 0.88 0.88 0.88

E Distortion Handling in Histogram Intersection

In this section we describe the distortion handling operation used for calculating
histogram intersections in Equation 4. Since panorama images have spherical
distortion, we compensate for such irregularities by applying additional weights
proportional to the sin value of the latitude. To elaborate, we add an additional
weight to the histogram intersection equation,

w(Y ) =
1

2

∑
i

(Mi + Si)Λ(hi(Y ), hi(IQ)), (1)

where Si is the sine value of the ith patch centroid’s latitude. The modified
intersection equation can correctly place lesser weight on patches near the pole,
as these areas are unevenly stretched in the panorama images.

F Additional Ablation Study

Color Preprocessing for Illumination Robustness We report the impact of prepro-
cessing the color values of the panorama and point cloud for robustness against
illumination changes. Recall that we match the color distributions of 2D and
3D via optimal transport, as mentioned in Section 3.1. We apply synthetic color
variations to the subset of images in Area 3 from Stanford 2D-3D-S [3], as shown
in Figure F.1. These images are originally used for obtaining results in Table 4
to make comparisons between CPO, PICCOLO, and GOSMA [5].

We consider three synthetic color variations: average intensity, gamma, and
white balance change. For average intensity change we lower each pixel intensity
by 33%. For gamma change, we set the image gamma to 3. For white balance
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Fig.G.1. Qualitative results of CPO on OmniScenes [10] and Structured3D [14]. We
display the input query image (left) and the projected point cloud under the estimated
camera pose (right).

Fig.G.2. Visualization of 2D, 3D score maps. The 2D score map assigns lower scores
to the capturer’s hand and dislocated objects. Similarly, the 3D score map assigns lower
scores to dislocated chairs and tables.

change, we apply the following transformation matrix to the raw RGB color

values:

1 0 0
0 0.5 0
0 0 0.5

.

Table F.1 shows the results for illumination robustness. CPO using color pre-
processing shows robust performance amidst the three variations, whereas CPO
without color distribution matching leads to poor performance in illumination
changes. While more sophisticated color modification methods [1, 7, 11, 15] may
account for complex illumination shifts, we find that our simple matching scheme
suffices for handling modest color variations in practical settings.

G Additional Qualitative Results

Localization in Scenes with Changes We further report additional qualitative re-
sults of CPO in OmniScenes [10] and Structured3D [14]. As shown in Figure G.1,
CPO performs robust localization under various scenes in both datasets contain-
ing large amounts of scene change.
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2D, 3D Score Maps We display additional 2D and 3D score maps generated for
room 4 from OmniScenes [10]. As shown in Figure G.2, the object arrangements
have changed since the 3D scan. Both 2D and 3D score maps assign smaller
scores to dislocated objects and the 2D score map further attenuates capturer’s
hand, which is not present in the 3D scan. The score maps effectively place
smaller weight on regions with scene changes, leading to robust localization in
CPO as demonstrated in Section 4.
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