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A Appendix

A.1 Impact of training sequence length on nuScenes.

In Sec. 4.5 Impact of training sequence length of main paper, we have
showed the results on Waymo Open Dataset [2]. This section we show the results
on nuScenes [1], as depicted in Fig. 7, which depicts the relationship between
frames and performance for the proposed INT-Pillar and CenterPoint-Pillar [3]
model. Looking at the left panel first, INT performance improves as the number
of frames increases, although there is saturation after a certain point; as for the
right panel, the time consumed by INT is slightly higher than that of single-frame
CenterPoint, but it does not increase with the number of frames.
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Fig. 7. Impact of training frame length on nuScenes val set. While CenterPoint’s perfor-
mance improves as the number of frames grows, the latency also increases dramatically.
On the other hand, our INT keeps the same latency while increasing performance.

A.2 Impact of fusion methods for image-style data.

As indicated in images-style fusion of Sec. 3.2 in the main paper, we propose
four fusion algorithms for image-style data. This section examines the perfor-
mance and latency of these fusion methods. As shown in Table 7, the Concat and
GRU-like solutions provide better performance, whereas Add and Max require
less amount of latency. Taking both performance and efficiency into account,
we choose the Concat as the default temporal fusion method for image-style
data fusion experiments in both the main paper and the appendix. To accelerate
experiments in Table 7, we use 1/4 training sequences for both Waymo Open
Dataset and nuScenes, and we use 1/4 validation sequences for Waymo and the
whole validation sequences for nuScenes.
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Table 7. Impact of different fusion methods for image-style data on Waymo Open
Dataset [2] and nuScenes [1] val set. INT-Pillars is employed in these experiments. To
accelerate experiments, only 1/4 training sequences are used.

Fusion
methods

nuScenes Waymo
mAP↑ NDS↑ latency↓ VEL↑ PED↑ CYC↑ mAPH↑ latency↓

Baseline 26.8 35.5 39.2 59.1 48.6 41.1 49.6 57.4
Add 31.5 42.0 39.6 58.9 54.6 54.8 56.1 58.3

Concat 33.7 45.3 40.5 59.8 58.3 62.5 60.2 59.0
Max 30.3 42.9 39.6 58.7 54.9 55.1 56.2 58.4

GRU-like 31.9 44.8 41.0 58.1 58.9 63.8 60.2 59.7

A.3 Impact of Dynamic Training Sequence Length (DTSL).

Dynamic Training Sequence Length (DTSL) in Sec 3.1 of main paper
explains why DTSL is required for INT training, and this part confirms DTSL’s
function. Training a 100-frame INT-Pillars network on nuScenes improves the
NDS with DTSL by 2.5% compared to no DTSL, as demonstrated in Table 8.

Table 8. Impact of Dynamic Training Sequence Length (DTSL) on nuScenes val set.

mAP NDS

w/o DTSL 50.2 59.3
w/ DTSL 52.3 61.8

A.4 A typical example of INT-Voxel framework.

The point-style data in MB is initialized as a B×N ×C tensor, and image-style
data is a B ×C ×H ×W tensor, where B is batch size, C is feature dimension,
N is points number (50,000 in the paper), H/W is the feature map size. Here we
take INT-Voxel as an example, and Fig. 8 shows the positions of fusion modules,
which are commonly described in Fusion settings of Sec. 4.2.

A.5 Explanation on performance saturation.

From Fig. 1 and 7, we can see a performance saturation while frames increases.
The reason for this phenomenon is that: (1) Point-style data in MB has a limited
number of points (current 50,000), so points that are too old do not remain in
the MB any more. Enlarging the point MB or improving the update policy
may ease the problem. (2) Image-style data is exponentially decaying in current
fusion methods, so the contribution of too old information is almost negligible.
Improving the fusion methods may alleviate this problem.
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Fig. 8. Pipeline of INT-VoxelNet on Waymo. PC, FM and PM represent Point Cloud,
Feature Map and Prediction Map, respectively.

A.6 Latency details for CenterPoint in Table 1

As illustrated in Latency settings of Sec. 4.2, we put the voxelization to GPU.
The voxelization implementation follows OpenPCDet for E-Pillar, and Ceneter-
Point for E-Voxel. Table 9 and 10 show the detailed cost of each module in
CenterPoint [3].

Table 9. Detailed latency of CenterPoint-Pillar on Waymo Open Dataset.

latency(ms)
copy to
GPU

voxelization
MLP +
scatter to bev

2D CNN
+ post

total

E-Pillar 1f 0.6 1.8 5.5 49.8 57.7
E-Pillar 2f 1.4 (+0.8) 11.4 (+9.6) 14.6 (+9.1) 50.4 (+0.6) 77.8 (+20.1)

Table 10. Detailed latency of CenterPoint-Voxel on Waymo Open Dataset.

latency(ms)
copy to
GPU

voxelization sparse conv
2D CNN
+ post

total

E-Voxel 1f 0.6 1.9 43.6 25.6 71.7
E-Voxel 2f 1.3 (+0.7) 3.7 (+1.8) 60.1 (+16.5) 25.8 (+0.2) 90.9 (+19.2)

A.7 Prediction Visualizations

We compared the prediction results of 2-stage CenterPoint-Voxel and INT-Voxel
on Waymo Open Dataset val set in Figure 9.

https://github.com/open-mmlab/OpenPCDet/blob/master/pcdet/models/backbones_3d/vfe/dynamic_pillar_vfe.py
https://github.com/tianweiy/CenterPoint/blob/new_release/det3d/models/readers/dynamic_voxel_encoder.py
https://github.com/tianweiy/CenterPoint/blob/new_release/det3d/models/readers/dynamic_voxel_encoder.py
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Fig. 9. The detection results on Waymo Open Dataset val set. The bounding boxes
of VEHICLE, PEDESTRIAN and CYCLIST are in the color blue, red and magenta
respectively. As pointed out in green circles, INT is obviously more advantageous in
detecting long-range targets because it has more historical information.
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