
INT: Towards Infinite-frames 3D Detection with
An Efficient Framework

Jianyun Xu, Zhenwei Miao†, Da Zhang, Hongyu Pan, Kaixuan Liu, Peihan
Hao, Jun Zhu, Zhengyang Sun, Hongmin Li, and Xin Zhan

Alibaba Group
{xujianyun.xjy,zhenwei.mzw}@alibaba-inc.com †corresponding author

Abstract. It is natural to construct a multi-frame instead of a single-
frame 3D detector for a continuous-time stream. Although increasing
the number of frames might improve performance, previous multi-frame
studies only used very limited frames to build their systems due to the
dramatically increased computational and memory cost. To address these
issues, we propose a novel on-stream training and prediction framework
that, in theory, can employ an infinite number of frames while keeping
the same amount of computation as a single-frame detector. This infinite
framework (INT), which can be used with most existing detectors, is uti-
lized, for example, on the popular CenterPoint, with significant latency
reductions and performance improvements. We’ve also conducted exten-
sive experiments on two large-scale datasets, nuScenes and Waymo Open
Dataset, to demonstrate the scheme’s effectiveness and efficiency. By em-
ploying INT on CenterPoint, we can get around 7% (Waymo) and 15%
(nuScenes) performance boost with only 2˜4ms latency overhead, and
currently SOTA on the Waymo 3D Detection leaderboard.
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1 Introduction

3D object detection from pointclouds has been proven as a viable robotics vision
solution, particularly in autonomous driving applications. Many single-frame
3D detectors [27,23,42,15,36,39,10,26,20] are developed to meet the real-time re-
quirement of the online system. Nevertheless, it is more natural for a continuous-
time system to adopt multi-frame detectors that can fully take advantage of the
time-sequence information. However, as far as we know, few multi-frame 3D de-
tectors are available for long frame sequences due to the heavy computation and
memory burden. It is desirable to propose a concise real-time long-sequence 3D
detection framework with promising performance.

Existing works [39,22,11,38,5,32,37] demonstrate that multi-frame models
yield performance gains over single-frame ones. However, these approaches re-
quire loading all the used frames at once during training, resulting in very limited
frames being used due to computational, memory, or optimization difficulties.
Taking the SOTA detector CenterPoint [39] as an example, it only uses two
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Fig. 1. Impact of frames used in detectors on Waymo val set. While CenterPoint’s
performance improves as the number of frames grows, the latency also increases dra-
matically. On the other hand, our INT keeps the same latency while increasing frames.

frames [39] on the Waymo Open Dataset [29]. While increasing the number of
frames can boost the performance, it also leads to significant latency burst as
shown in Fig. 1. Memory overflow occurs if we keep increasing the frames of
CenterPoint, making both training and inference impossible. As a result, we be-
lieve that the number of frames used is the bottleneck preventing multi-frame
development, and we intend to break through this barrier first.

There are two major problems that limit the number of frames in a multi-
frame detector: 1) repeated computation. Most of the current multi-frame frame-
works have a lot of repeated calculations or redundant data that causes compu-
tational spikes or memory overflow; 2) optimization difficulty. Some multi-frame
systems have longer gradient conduction links as the number of frames increases,
introducing optimization difficulties.

To alleviate the above problems, we propose INT (short for infinite), an
on-stream system that theoretically allows training and prediction to utilize in-
finite number of frames. INT contains two primary components: 1) a Memory
Bank (MB) for temporal information fusion and 2) a Dynamic Training Sequence
Length (DTSL) strategy for on-stream training. The MB is a place to store the
recursively updated historical information so that we don’t have to compute
past frames’ features repeatedly. As a result, it only requires a small amount of
memory but can fuse infinite data frames. To tackle the problem of optimization
difficulty, we truncate the gradient of back propagation to the MB during train-
ing. However, an inherent flaw of iteratively updating MB on a training stream
is that historical and current information are not given by the same model pa-
rameters, leading to training issues. To solve this problem, DTSL is employed.
The primary idea of DTSL is to start with short sequences and quickly clear the
MB to avoid excessive inconsistency between historical and current data; then
gradually lengthen the sequence as training progresses since the gap between
historical and current model parameters becomes negligible.

To make INT feasible, we propose three modules: SeqFusion, SeqSampler and
SeqAug. SeqFusion is a module in MB for temporal fusion that proposes multiple
fusion methods for two types of data commonly used in pointcloud detection, i.e.,
point-style and image-style. SeqSampler is a sequence index generator that DTSL
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uses to generate training sequences of different lengths at each epoch. Finally,
SeqAug is a data augmentation for on-stream training, capable of maintaining
the same random state on the same stream.

Our contributions can be summarized as:

– We present INT, an on-stream multi-frame system made up of MB and
DTSL that can theoretically be trained and predicted using infinite frames
while consuming similar computation and memory as a single-frame system.

– We propose three modules, SeqFusion, SeqSampler and SeqAug, to make
INT feasible.

– We conduct extensive experiments on nuScenes and Waymo Open Dataset
to illustrate the effectiveness and efficiency of INT.

2 Related Work

2.1 3D Object Detection

Recent studies on 3D object detection can be broadly divided into three cate-
gories: LiDAR-based [27,23,42,15,36,39,10,16,19,43,35], image-based [14,4,31,17],
and fusion-based [3,18,24,30,40,22,41]. Here we focus on LiDAR-based schemes.

According to the views of pointclouds, 3D detectors can be classified as point-
based, voxel-based, range-based, and hybrid. PointRCNN [27] and VoteNet [23]
are two representative point-based methods that use a structure like Point-
Net++ [25] to extract point-by-point features. These schemes are characterized
by better preservation of pointclouds’ original geometric information. Still, they
are sensitive to the number of pointclouds that pose serious latency and memory
issues. In contrast, voxel-based solutions, such as VoxelNet [42], PointPillars [15],
Second [36], CenterPoint [39] and AFDetV2 [10] are less sensitive to the number
of pointclouds. They convert the pointcloud into 2D pillars or 3D voxels first,
then extract features using 2D or 3D (sparse) convolution, making them easier
to deploy. Another category is rangeview-based schemes [16,19,6] that perform
feature extraction and target prediction on an efficient unfolded spherical pro-
jection view. Meanwhile, they contend with target scale variation and occlusion
issues, resulting in performance that is generally inferior to that of voxel-based
schemes. Hybrid methods [26,43,35,20] attempt to integrate features from several
views to collect complementing information and enhance performance.

We define two data styles according to the data format to facilitate the
analysis of different detectors:

– Image-style. Well-organized data in 2D, 3D, or 4D dimensions similar to
that of an image.

– Point-style. Disorganized data such as pointclouds and sparse 3D voxels.

The data in pointcloud-based detectors, including input, intermediate fea-
ture, and output, is generally point-style or image-style. We design the fusion
algorithms for both point-style and image-style data in INT’s Memory Bank, so
that INT can be employed in most 3D detectors. In this work, we choose the
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Fig. 2. Training phase of different multi-frame schemes. Operations inside dash rect-
angle either involve repetitive computation or raise memory burden, which leads to a
very limited frame number for training.

recently popular CenterPoint [39] as the baseline for studies since it performs
better in terms of efficiency and performance, and it is now scoring at SOTA level
on the large-scale open datasets nuScenes [2] and Waymo Open Dataset [29].

2.2 Multi-frame Methods

There have been a variety of LSTM-based techniques in the field of video object
detection, such as [7,13,33]. Transformer-based video detection schemes have
recently emerged [9], however transformer may not be suitable for working on-
stream because it naturally needs to compute the relationship between all frames,
which implies a lot of repeated computations.

Recent methods for multi-frame pointclouds can be roughly divided into three
categories as shown in Fig. 2(a), (b) and (c). [2,22,36] directly concatenate multi-
frame pointclouds and introduce a channel indicating their relative timestamps,
as shown in Fig. 2(a). While this method is simple and effective, it involves a
lot of unnecessary computations and increases the memory burden, making it
unsuitable for more frames. Instead of merging at the point level, Minkowsk-
iNet [5] and MotionNet [32] combine multiple frames at the feature map level.
They must voxelize multi-frame pointclouds independently before stacking the
feature maps together and extracting spatio-temporal information using 3D or
4D convolution, as depicted in Fig. 2(b). Obviously, this approach requires re-
peated data processing and is memory intensive, thus the number of frames is
very limited.

To overcome above difficulties, 2020An [11] and 3DVID [38] proposed LSTM
or GRU-based solutions to solve the computational and memory issues in the
inference phase. However, the gradient transfer to the history frames still results
in a considerable memory overhead and introduce optimization difficulties dur-
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ing training, so the number of frames cannot be high, as shown in Fig. 2(c). To
handle the problem more thoroughly, we propose computing the gradient for the
current data and not for the historical data during training, as shown in Fig. 2(d).
We then employ a Dynamic Training Sequence Length (DTSL) strategy to elim-
inate the potential information inconsistency problem. Similarly, 3D-MAN [37]
stores historical information in a Memory Bank that does not participate in the
gradient calculation. However, 3D-MAN needs to store a fixed number of frames
of historical proposals and feature maps, which increases the amount of mem-
ory required for its training as the number of frames increases. To get around
this problem, we propose recursively updating the Memory Bank’s historical
information.

To the best of our knowledge, we are the first 3D multi-frame system that
can be trained and inferred with infinite frames.

3 Methodology

We present INT framework in this section. The overall architecture is detailed in
Sec. 3.1. Sec. 3.2 gives the sequence fusion (SeqFusion) methods of Memory Bank.
Sec. 3.3 and 3.4 illustrate the training strategies, including sequence sampler
(SeqSampler) and sequence data augmentation (SeqAug), respectively.

3.1 Overview of INT Framework

The INT framework in Fig. 3 is highly compact. The main body consists of
a single-frame detector and a recursively updated Memory Bank (MB). The
Dynamic Training Sequence Length (DTSL) below serves as a training strategy
that is not needed for inference (inference only needs the pointclouds input in
chronological order). In addition, there are no special requirements for single-
frame detector selection. For example, any detector listed in Sec. 2.1 can be
utilized.

Memory Bank (MB). The primary distinction between INT and a regular
multi-frame detector is the MB, which stores historical data so that we do not
have to compute past features repeatedly. MB is comparable to the hidden state
in LSTM while it is more flexible, interpretable, and customizable. The user has
complete control over where and what information should be saved or retrieved.
For example, in Sec. 3.2, we show how to store and update several forms of data.
Furthermore, we choose to update the MB recursively to solve the problem
of excessive memory cost. To tackle the problem of optimization difficulty, we
truncate the gradient of backpropagation to the MB during training.

Dynamic Training Sequence Length (DTSL). A problem with INT train-
ing on stream is the information gained from the current observation is not de-
rived using the same model parameters as the past data in the MB. This could
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Fig. 3.Overview of INT framework. It consists of a single-frame detector and a Memory
Bank. The Dynamic Training Sequence Length below serves as a training strategy.

lead to inconsistencies in training and prediction, which is one of the key reasons
why prior multi-frame work was not trained on stream. To solve this problem,
we offer the DTSL: beginning with a small sequence length and gradually in-
creasing it, as indicated at the bottom of Fig. 3. This is based on the following
observation: as the number of training steps increases, model parameter updates
get slower, and the difference in information acquired from different model pa-
rameters becomes essentially trivial. As a result, when the model parameters
are updated quickly, the training sequence should be short so that the Memory
Bank can be cleaned up in time. Once the training is stable, the sequence length
can be increased with confidence. DTSL could be defined in a variety of ways,
one of which is as follows:

DTSL = max(1, ⌊lmax ·min(1, max(0, 2 · epcur
epall

− 0.5))⌋) (1)

where lmax is the maximum training sequence length, epcur and epall is current
epoch and total epoch number, respectively.

3.2 SeqFusion

Temporal fusion in the Memory Bank is critical in the INT framework. As the
type of data in a 3D detector is either point-style or image-style, as indicated
in Sec. 2.1, we develop both the point-style and image-style fusion algorithms.
In general, original pointcloud, sparse voxel, predicted object, etc., fall into the
point-style category. Whereas dense voxel, intermediate feature map, final pre-
diction map, etc., fall into the image-style category.

Point-style fusion. Here we propose a general and straightforward practice:
concatenating past point-style data with present data directly, using a channel
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to identify the temporal relationship. The historical point-style data is put into
a fixed length FIFO queue, and as new observations arrive, foreground data is
pushed into it, while oldest data is popped out. According to the poses of ego ve-
hicle, the position information in the history data must be spatially transformed
before fusion to avoid the influence of ego movement. The point-style fusion is
formulated as:

Trel = T−1
cur · Tlast, (2)

Pf = PointConcat(Pcur, Trel · Plast) (3)

where Tlast and Tcur are the last and current frame’s ego vehicle poses, respec-
tively, while Trel is the calculated relative pose between the two frames. Plast

refers to the past point-style data in Memory Bank and Pf is the fused data of
Plast and current Pcur.
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Fig. 4. Four temporal fusion methods for image-style data. Occupancy Mask and Oc-
cupancy Count in Add and Max are used to distinguish different moments.

Image-style fusion. We propose four fusion algorithms for the image-style
data, including Add, Max, Concat and GRU-like as depicted in Fig. 4 (a), (b), (c)
and (d). As the historical image-style data and current data should be identical
in dimensions based on recursive updates, Add and Max are simple in design
and implementation. The computational overhead of these two fusion methods
is cheap. We also devise the Concat fusion approach, in which both the historical
and the current feature channels are first compressed to 1/2 of the origin and
then concatenated along channel dimension. To investigate the impact of long-
term data, we develop a GRU-like fusion method with learnable parameters to
select which data should be kept and which should be discarded. To eliminate
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the effect of ego vehicle motion, historical image-style data must be spatially
transformed first. The image-style fusion process can be summarized as follows:

Ĩlast = Fsample(Ilast, Faffine(Trel, s)), (4)

If = Fusion(Icur, Ĩlast) (5)

where Trel is the same as Eq. 3. Faffine(·) and Fsample(·) refer to affine grid
and grid sample operation respectively, which are proposed in [12] for image-
style data transformation. Ilast refers to the past image-style data in Memory
Bank and If is the fused data of Ilast and current Icur. s is the shape of Ilast.
Fusion(·) can be Add, Max, Concat and GRU-like, as shown in Fig. 4.

3.3 SeqSampler

SeqSampler is the key to perform the training of INT in an infinite-frames man-
ner. It is designed to split original sequences to target length, and then generate
the indices of them orderly. If the sequence is infinite-long, the training or infer-
ence can go on infinitely. DTSL is formed by executing SeqSampler with different
target lengths for each epoch.

The length of original sequences in a dataset generally varies, for as in the
Waymo Open Dataset [29], where sequence lengths oscillate around 200. Certain
datasets, such as nuScenes [2], may be interval labeled, with one frame labeled
every ten frames. As a result, the SeqSampler should be designed with the idea
that the source sequence will be non-fixed in length and will be annotated at
intervals. The procedures of SeqSampler are as simple as Sequence Sort and
Sequence Split, as indicated in Fig. 5. In Sequence Sort, we rearrange the random
input samples orderly by sequences. Then split them to target length in Sequence
Sort, and may padding some of them to meet the batch or iteration demands.
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Fig. 5. An example of SeqSampler. There are two sequences: seq1 contains 5 frames and
seq2 has 3, both are interval labeled. Given the desired batch size 2 and target length 4,
we need to get the final iteration indices. First, the two sequences are sorted separately.
Then, the original sequences are splitted to 3 segments in the target length, and a
segment is randomly replicated (dashed rectangles) to guarantee that both batches
have the same number of samples.
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3.4 SeqAug

Data augmentation has been successful in many recent 3D detectors [36,15,39].
However, because of the shift in training paradigm, our suggested INT frame-
work can not directly migrate current validated data augmentation methods.
One of the main reasons for this is that INT is trained on a stream with a clear
association between the before and after frames, whereas data augmentation is
typically random, and the before and after frames could take various augmen-
tation procedures. To solve this problem and allow INT to benefit from data
augmentation, we must verify that a certain method of data augmentation on
the same stream maintains the same random state at all times. We term the
data augmentation that meets this condition SeqAug. According to the data
augmentation methods widely employed in pointcloud detection, SeqAug can
be split into two categories: Sequence Point Transformation (flipping, rotation,
translation, scaling, and so on) and Sequence GtAug (copy and paste of the
ground truth pointclouds).

Sequence Point Transformation. If a pointcloud is successively aug-
mented by flipping Tf , rotation Tr, scaling Ts, and translation Tt, the other
frames in the same stream must keep the same random state to establish a
reasonable temporal relationship. In addition, because of these transformations,
Trel in Eq. 3 must be recalculated:

Trel = Tt · Ts · Tr · Tf · T−1
cur · Tlast · Tf · T−1

r · T−1
s · T−1

t (6)

where Tlast and Tcur are the last and current frame’s ego vehicle poses.

Sequence GtAug. Similarly, recording random states of the same stream
is required to ensure that the sequential objects from the Gt database can be
copied and pasted consecutively, as shown in Fig. 6.

D���%HIRUH�6HTXHQFH�*W$XJ E���$IWHU�6HTXHQFH�*W$XJ

Fig. 6. An example of Sequence GtAug. The colors of pointclouds represent different
moments, with red being the current frame.
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4 Experiments

In this paper, we build the proposed INT framework based on the highly com-
petitive and popular detector CenterPoint [39]. In the following sections, we first
briefly introduce the datasets in Sec. 4.1, followed by a description of a few crit-
ical experimental setups in Sec. 4.2. The efficiency and effectiveness of the INT
framework are then illustrated in Sec. 4.3 by comparing it to the baseline Cen-
terPoint, followed by Sec. 4.4, which compares the results of INT on the Waymo
test set to other SOTAs. Finally, Sec. 4.5 is several INT ablation experiments.

4.1 Datasets

This section briefly describes the two open datasets used in this paper.
Waymo Open Dataset. Waymo [29] comprises 798, 202 and 150 sequences

for train, validation and test, respectively. Each sequence lasts around 20 sec-
onds and contains about 200 frames. There are three categories for detection:
VEHICLE, PEDESTRIAN, and CYCLIST. The mean Average Precision (mAP)
and mAP weighted by heading accuracy (mAPH) are the official 3D detection
metrics. There are two degrees of difficulty: LEVEL 1 for boxes with more than
five LiDAR points, and LEVEL 2 for boxes with at least one LiDAR point. In
this paper, we utilize the officially prescribed mAPH on LEVEL 2 by default.

nuScenes. There are 1000 driving sequences in nuScenes [2], with 700, 150,
and 150 for training, validation, and testing, respectively. Each sequence lasts
about 20 seconds and has a LiDAR frequency of 20 frames per second. The pri-
mary metrics for 3D detection are mean Average Precision (mAP) and nuScenes
Detection Score (NDS). NDS is a weighted average of mAP and other attribute
measurements such as translation, scale, orientation, velocity, and other box
properties. In this study, we employ mAP and NDS as experimental results.

4.2 Experimental Settings

We employ the same network designs and training schedules as CenterPoint [39]
and keep the positive and negative sample strategies, post-processing settings,
loss functions, etc., unchanged.

Backbone settings. VoxelNet [36,42] and PointPillars [15] are two 3D en-
coders used by CenterPoint, dubbed CenterPoint-Voxel and CenterPoint-Pillar,
respectively. Our INT also experiments with these two backbones, which corre-
spond to INT-Voxel and INT-Pillar, respectively.

Frame settings. Although INT can be trained and inferred on an infinite
number of frames, the sequence length of the actual dataset is finite. To facilitate
comparison with previous work and demonstrate the benefits of the INT frame-
work, we select a few specific frames on nuScenes and Waymo Open Dataset.
We use 10, 20 and 100 training frames on nuScenes, and 10 training frames on
Waymo Open Dataset.

Fusion settings. On INT, we choose three kinds of data added to Memory
Bank: point-style foreground pointcloud, image-style intermediate feature map,
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and image-style final prediction map. For the foreground pointcloud, we fuse the
historical points with the current points during the input phase and then update
them based on the predictions at the end of network. For the intermediate feature
map, we fuse and update its historical information at the same position before
the Region Proposal Network. For the final prediction map, we fuse and update
historical information simultaneously before the detection header. Appendix A.4
takes INT-Voxel as a typical example to provide a more specific explanation.

Latency settings. To test the network’s actual latency, we remove redun-
dant parts of the data processing in CenterPoint [39] and just maintain the data
IO and memory transfer (to the GPU) operations. We shift the essential vox-
elization component to the GPU to limit the CPU’s influence. We also build up
data prefetching in the dataloader to lessen IO effect and run latency tests when
it is stabilized. Finally, the following test circumstances are used: CUDA Version
10.2, cudnn 7.6.5, GeForce RTX 2070 SUPER, Driver Version 460.91.03.

4.3 Effectiveness and Efficiency

As shown in Table 1 and 2, we first compare to the baseline CenterPoint to
demonstrate the paper’s main point, i.e., the effectiveness and efficiency of INT.
In these two tables, we try two types of backbone, termed E-PointPillars and
E-VoxelNet in the columns, and the unit of latency is milliseconds. The settings
of INT can be referred to Table 4 and 5. CenterPoint with multiple frames refers
to concatenating multi-frame pointclouds at the input level, which introduces
repetitive computation and additional memory burden as analyzed in Sec. 2.2.
For example, two-frames CenterPoint in Table 1 increases the latency by around
20 ms when compared to its single-frame counterpart (more details in Appendix
A.6). In contrast, the latency of INT is unaffected by the number of frames
used, and its performance is much better than that of multi-frame CenterPoint
as the number of frames grows. As can be obviously observed in Table 1 and 2,
INT shows significant improvements in both latency and performance, gaining
around 7% mAPH (Waymo) and 15% NDS (nuScenes) boost while only adding
2˜4 ms delay when compared to single-frame CenterPoint.

4.4 Comparison with SOTAs

In this section, we compare the results of INT on the Waymo test set with those
of other SOTAs schemes, as shown in Table 3. The approaches are divided into
two groups in the table: single-frame and multi-frame. It is seen that the multi-
frame scheme is generally superior to the single-frame scheme. Most multi-frame
approaches employ the original pointclouds concatenation [28,39,10], and we can
see that the number of frames is used fewer due to computational and memory
constraints. Finally, our suggested INT scheme outperforms other SOTA schemes
by a large margin. As far as we know, INT is the best non-ensemble approach
on Waymo Open Dataset leaderboard1.

1 https://waymo.com/open/challenges/2020/3d-detection/

https://waymo.com/open/challenges/2020/3d-detection/
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Table 1. Effectiveness and efficiency of INT on Waymo Open Dataset val set. The
APH of L2 difficulty is reported. The ”-2s” suffix in the rows means two-stage model.
CenterPoint’s mAPH results are obtained from official website, except for those with
a *, which are missing from the official results and were reproduced by us.

methods frames
E-PointPillars E-VoxelNet

VEH↑ PED↑ CYC↑ mAPH↑ latency↓ VEH↑ PED↑ CYC↑ mAPH↑ latency↓
CenterPoint 1 65.5 55.1 60.2 60.3 57.7 66.2 62.6 67.6 65.5 71.7
CenterPoint 2 66.6* 61.9* 62.3* 63.6* 77.8 67.3 67.5 69.9 68.2 90.9
INT (ours) 2 66.2 60.4 64.4 63.7 61.6 69.4 69.1 72.6 70.3 74.0
INT (ours) 10 69.6 66.3 65.7 67.2 61.6 72.2 72.1 75.3 73.2 74.0

CenterPoint-2s 1 66.7 55.9 61.7 61.4 61.7 67.9 65.6 68.6 67.4 76.6
CenterPoint-2s 2 68.4* 63.0* 64.3* 65.2* 82.9 69.7 70.3 70.9 70.3 95.8
INT-2s (ours) 2 67.9 61.7 66.0 65.2 65.9 70.8 68.7 73.1 70.8 78.9
INT-2s (ours) 10 70.8 67.0 68.1 68.6 65.9 73.3 71.9 75.6 73.6 78.9

Table 2. Effectiveness and efficiency of INT on nuScenes val set. CenterPoint’s mAP
and NDS results are obtained from official website, except for those with a *, which
are missing from the official results and were reproduced by us.

methods frames
E-PointPillars E-VoxelNet

mAP↑ NDS↑ latency↓ mAP↑ NDS↑ latency↓
CenterPoint 1 42.5* 46.4* 39.2 49.7* 50.7* 81.1
CenterPoint 10 50.3 60.2 49.4 59.6 66.8 117.2
INT (ours) 10 49.3 59.9 43.0 58.5 65.5 84.1
INT (ours) 20 50.7 61.0 43.0 60.9 66.9 84.1
INT (ours) 100 52.3 61.8 43.0 61.8 67.3 84.1

Table 3. Comparison with SOTAs on Waymo Open Dataset test set. We only present
the non-emsemble approaches, and INT is currently the best non-emsemble solution
on the Waymo Open Dataset leaderboard1, to the best of our knowledge. Accessed on
2 March 2022.

Methods Frames
VEH-APH↑ PED-APH↑ CYC-APH↑ mAPH↑
L1 L2 L1 L2 L1 L2 L1 L2

StarNet [21] 1 61.0 54.5 59.9 54.0 - - - -
PointPillars [15] 1 68.1 60.1 55.5 50.1 - - - -

RCD [1] 1 71.6 64.7 - - - - - -
M3DeTR [8] 1 77.2 70.1 58.9 52.4 65.7 63.8 67.1 61.9

HIK-LiDAR [34] 1 78.1 70.6 69.9 64.1 69.7 67.2 72.6 67.3
CenterPoint [39] 1 79.7 71.8 72.1 66.4 - - - -

3D-MAN [37] 15 78.3 70.0 66.0 60.3 - - - -
RSN [28] 3 80.3 71.6 75.6 67.8 - - - -

CenterPoint [39] 2 80.6 73.0 77.3 71.5 73.7 71.3 77.2 71.9
CenterPoint++ [39] 3 82.3 75.1 78.2 72.4 73.3 71.1 78.0 72.8

AFDetV2 [10] 2 81.2 73.9 78.1 72.4 75.4 73.0 78.2 73.1
INT (ours) 10 83.1 76.2 78.5 72.8 74.8 72.7 78.8 73.9
INT (ours) 100 84.3 77.6 79.7 74.0 76.3 74.1 80.1 75.2

https://github.com/tianweiy/CenterPoint/tree/master/configs/waymo
https://github.com/tianweiy/CenterPoint/tree/master/configs/nusc
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4.5 Ablation Studies

Impact of different fusion data. This section investigates the impact of vari-
ous fusion data used in INT. We use one kind of point-style data, the foreground
pointcloud, and two kinds of image-style data, the intermediate feature map
before RPN and the final prediction map in this paper. The fusion method of
foreground pointcloud is termed as PC Fusion which is explained in Sec. 3.2.
The fusion method of the intermediate feature map and the final prediction map
is Concat, as described in Sec. 3.2, named as FM Fusion and PM Fusion, respec-
tively. The fusion results of these three kinds of data on Waymo Open Dataset
and nuScenes are shown in Table 4 and 5. First, the tables’ performance columns
show that all the three fusion data have considerable performance boosts, with
PC Fusion having the highest effect gain. Then according to the latency columns,
the increase in time of different fusion data is relatively small, which is very cost-
effective given the performance benefit.

Table 4. Impact of different fusion data on Waymo Open Dataset val set. By default,
the training sequence length was set to 10 frames. In order to indicate how the final
result comes in Table 1, we also add a column called ”Two Stage”.

PC
Fusion

FM
Fusion

PM
Fusion

Two
Stage

E-PointPillars E-VoxelNet
VEH↑ PED↑ CYC↑ mAPH↑ latency↓ VEH↑ PED↑ CYC↑ mAPH↑ latency↓
65.5 55.1 60.2 60.3 57.4 66.2 62.6 67.6 65.5 71.5√
68.1 65.8 65.4 66.4 59.5 71.7 70.8 74.2 72.3 72.7√
63.6 63.3 64.7 63.8 59.0 66.1 67.3 73.8 69.1 72.2√
66.4 64.0 64.2 64.5 58.2 67.7 68.1 74.1 70.0 72.0√ √
69.5 66.8 64.8 67.0 60.9 72.0 71.8 76.5 73.5 73.3√ √ √
69.6 66.3 65.7 67.2 61.6 72.2 72.1 76.1 73.5 74.0√ √ √ √
70.8 67.0 68.1 68.6 65.9 73.3 71.9 75.6 73.6 78.9

Table 5. Impact of different fusion data on nuScenes val set. By default, the training
sequence length was set to 10 frames. In order to indicate how the final result comes
in Table 2, we also add a column called ”100 frames”.

PC
Fusion

FM
Fusion

PM
Fusion

100
frames

E-PointPillars E-VoxelNet
mAP NDS latency mAP NDS latency

42.5 46.4 39.2 49.7 50.7 81.1√
47.1 58.5 41.2 56.6 64.5 82.4√
48.4 57.4 40.5 55.9 56.6 82.1√
45.3 56.0 39.7 53.9 62.7 82.0√ √
48.7 59.8 42.4 58.4 65.2 83.3√ √ √
49.3 59.9 43.0 58.5 65.5 84.1√ √ √ √
52.3 61.8 43.0 61.8 67.3 84.1

Impact of training sequence length. The length indicated here actually refer
to the maximum length since Dynamic Training Sequence Length (DTSL) is used
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in training. Fig. 1 depicts the relationship between frames and performance for
the 2-stage INT-Voxel model on the Waymo Open Dataset. We also plot the 2-
stage CenterPoint-Voxel results together to make comparisons clearer. As shown
in Fig. 1(b), INT improves as the number of frames increases, although there is
saturation after a certain point (See Appendix A.5 for more explanation); as for
Fig. 1(c), the time consumed by INT is slightly higher than that of single-frame
CenterPoint, but it does not increase with the number of frames.

Impact of sequence augmentation. Sec. 3.4 introduces SeqAug, a data aug-
mentation technique for on-stream training, and this section examines the role of
Point Transformation and GtAug in SeqAug. As seen in Table 6, both augmen-
tation strategies result in significant performance improvements, making data
augmentation essential for INT training just as regular detectors do.

Table 6. Impact of SeqAug on Waymo Open Dataset val set. One-stage INT-Pillar
and INT-Voxel are used.

Sequence
Point Trans.

Sequence
GtAug

E-PointPillars E-VoxelNet
VEL-APH↑ PED-APH↑ CYC-APH↑ mAPH↑ VEL-APH↑ PED-APH↑ CYC-APH↑ mAPH↑

59.6 56.7 56.2 57.5 65.0 62.4 61.9 63.1√
69.3 65.0 62.4 65.6 71.8 71.4 73.1 72.1√ √
69.6 66.3 65.7 67.2 72.2 72.1 76.1 73.5

More ablation studies in appendix. The impact of sequence length on
nuScenes is shown in Appendix A.1. The performance and latency of temporal
fusion methods for image-style data (proposed in Sec. 3.2) are shown in Appendix
A.2. The impact of DTSL proposed in Sec. 3.1 can be found in Appendix A.3.

5 Conclusion

In this paper, we present INT, a novel on-stream training and prediction frame-
work that, in theory, can employ an infinite number of frames while using about
the same amount of computational and memory cost as a single-frame detector.
To make INT feasible, we propose three key modules, i.e., SeqFusion, SeqSam-
pler, and SeqAug. We utilize INT on the popular CenterPoint, with significant
latency reductions and performance improvements, and rank 1st currently on
Waymo Open Dataset 3D Detection leaderboard among the non-ensemble SOTA
methods. Moreover, the INT is a general multi-frame system, which may be used
for tasks like segmentation and motion as well as detection.

Acknowledgement: This work was supported by Alibaba Group through Al-
ibaba Innovative Research (AIR) Program and Alibaba Research Intern Pro-
gram.
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