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1 Details of the Attention Maps

In this section, we first analyze the strategies of generating attention map A. We
then visualize the attention maps including A and {Aj , j = 1, ..., J} from the
multiple head of the class-attention layer.

Method CorLoc mAP
Vanilla 57.0 33.3
Top 1 58.8 35.0
Min-max norm 61.0 37.2

Table 1: Performance of SPE with respect to the strategies of generating the
final attention map A on PASCAL VOC 2007 test set.

1.1 Generation of Attention Map A

Table 1 shows the performance of SPE with respect to strategies of generating
A on PASCAL VOC 2007 test set. For attention maps {Aj , j = 1, ..., J} from
the J heads of the class-attention layer, the final attention map A is generated
as

A =

J∑
j

wjAj (1)

where wj is weight of Aj , and can be defined as:
(1) Vanilla, wj = 1/J ,
(2) Top 1, wj = 1(σj = maxi σi),

(3) Min-max Norm: σj =
σj−mini σi

maxi σi−mini σi
.

⋆ Corresponding author.
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σj is the standard deviation of attention map Aj . It can be seen that “Top
1” outperforms “Vanilla” by 1.8% and 1.7% on CorLoc accuracy and mAP re-
spectively, indicating the attention maps with small standard deviation contain
non-negligible noise. “Min-max Norm” further use the attention maps with large
standard deviation while suppressing those with small standard deviation, which
significantly outperforms the Vanilla method by 4.0% and 3.9% on CorLoc ac-
curacy and mAP respectively.

1.2 Visualization of the Attention Maps

Fig. 1 shows the attention maps {Aj , j = 1, ..., J} generated by the multiple
heads of the class-attention layer. It can be seen that activation maps {Aj , j =
1, ..., J} various among the attention heads, where each of them activates full
object(s), object parts or backgrounds. It is observed that the attention maps
which activate a large area of backgrounds have small standard deviation, while
those actives foreground areas have large standard deviations.

Fig. 2 shows the attention map A generated by three weighting strategies
defined in the last subsection. It shows that “Min-Max Norm” can significantly
reduce the activation of backgrounds and thus improve the quality of generated
seed proposals.

2 Additional Visualization Results

In this section, we present additional visualization results, including the local-
ization results of SPR with/without proposal augmentation. We also give more
visualization about seed proposals and matched proposals.

2.1 SPR w(/o) Proposal Augmentation

Fig. 3 shows the matched proposals in SPR with/without seed proposal aug-
mentation. Without seed proposal augmentation, the matched proposals contain
localization noise caused by the seed proposals. When introducing seed proposal
augmentation, the sparse proposals are able to enjoy the “teacher ensemble” to
suppress noise proposals and thereby achieve more accurate localization.

2.2 Seed Proposals and Matched Proposals

Fig. 4 shows the additional visualization of seed proposals generated by SPG
and matched proposals learned by SPR. It can be seen that SPG is able to
generate sparse yet high-quality seed proposals. When introducing SPR, the
matched proposal is able to reduce the error in the seed proposals and achieves
preciser object localization. These results again validate the effectiveness of the
“teacher-student” learning mechanism of SPE, where the seed proposals and
sparse proposals evolve towards true object locations.
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Fig. 1: Attention maps generated by each heads of class-attention layer
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Fig. 2: Activation map generated by different normalization methods



SPE 5

Object Object w/o augmentation w/ augmentationw/o augmentation w/ augmentation

Si
ng

le
 O

bj
ec

t
M

ul
tip

le
 O

bj
ec

ts

Object w/o augmentation w/ augmentationw/o augmentation w/ augmentation

Fig. 3: Matched proposals (yellow bounding boxes) learned by SPR w(/o) seed
proposal augmentation. Heatmaps show the cross-attention maps of the matched
proposals.
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2.3 Proposal Evolution

Fig. 5 shows more results of the evolution of seed proposals and matched pro-
posals and their corresponding attention maps (heatmaps) generated by SPG
and SPR. It is also observed that proposals generated by SPG suffer from cov-
ering background areas or only part of objects at early training epochs. SPR
then refine proposals that match to seed proposals to more accurate object loca-
tions, which demonstrates the effectiveness of the SPR module with the proposal
augmentation strategy. As training goes on, seed proposals can be gradually re-
fined by and matched with the sparse proposals, and finally evolve to full object
extent.

3 Per-Class Performance on PASCAL VOC

Table 2 and Table 3 show the per-class performance of SPE and state-of-the-art
methods. For categories of “bird”, “cat”, “dog”, “horse” and “person”, which
are known to be dominated by the part localization problem in WSOD, SPE
achieves creditable performance, i.e., significantly outperforming OICR [10] by
13.4%∼43.1%. It reflects that SPE is able to take advantage of the self-attention
mechanism of transformer and activate full object extent for accurate localiza-
tion.

Network Method Set aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP

VGG16

“Enumerate-and-Select” Methods (Two-Stage)

WSDDN [2] 07 39.4 50.1 31.5 16.3 12.6 64.5 42.8 42.6 10.1 35.7 24.9 38.2 34.4 55.6 9.4 14.7 30.2 40.7 54.7 46.9 34.8

OICR [10] 07 58.0 62.4 31.1 19.4 13.0 65.1 62.2 28.4 24.8 44.7 30.6 25.3 37.8 65.5 15.7 24.1 41.7 46.9 64.3 62.6 41.2

SLV [3] 07 65.6 71.4 49.0 37.1 24.6 69.6 70.3 70.6 30.8 63.1 36.0 61.4 65.3 68.4 12.4 29.9 52.4 60.0 67.6 64.5 53.5

DC-WSOD [1] 07 66.7 69.5 52.8 31.4 24.7 74.5 74.1 67.3 14.6 53.0 46.1 52.9 69.9 70.8 18.5 28.4 54.6 60.7 67.1 60.4 52.9

TS2C [12] 07 59.3 57.5 43.7 27.3 13.5 63.9 61.7 59.9 24.1 46.9 36.7 45.6 39.9 62.6 10.3 23.6 41.7 52.4 58.7 56.6 44.3

SDCN [6] 07 59.8 67.1 32.0 34.7 22.8 67.1 63.8 67.9 22.5 48.9 47.8 60.5 51.7 65.2 11.8 20.6 42.1 54.7 60.8 64.3 48.3

C-MIL [4] 07 62.5 58.4 49.5 32.1 19.8 70.5 66.1 63.4 20.0 60.5 52.9 53.5 57.4 68.9 8.4 24.6 51.8 58.7 66.7 63.5 50.5

PCL [9] 07 54.4 69.0 39.3 19.2 15.7 62.9 64.4 30.0 25.1 52.5 44.4 19.6 39.3 67.7 17.8 22.9 46.6 57.5 58.6 63.0 43.5

ICM [7] 07 68.8 77.7 57.0 27.7 28.9 69.1 74.5 67.0 32.1 73.2 48.1 45.2 54.4 73.7 35.0 29.3 64.1 53.8 65.3 65.2 54.9

WSDDN† [2] 0712 58.0 45.1 34.1 20.6 13.1 73.6 36.9 33.1 14.2 40.9 37.2 35.2 29.5 56.9 11.1 14.1 34.9 48.6 50.0 49.2 36.9

OICR† [10] 0712 66.7 70.2 40.0 23.1 19.8 68.5 67.1 25.8 25.3 46.8 38.4 25.8 39.8 69.4 4.8 21.3 47.8 44.7 59.6 66.8 43.6

“Enumerate-and-Select” Methods (End-to-End)

WeakRPN [11] 07 57.9 70.5 37.8 5.7 21.0 66.1 69.2 59.4 3.4 57.1 57.3 35.2 64.2 68.6 32.8 28.6 50.8 49.5 41.1 30.0 45.3

UWSOD [8] 07 - - - - - - - - - - - - - - - - - - - - 44.0

“Seed-and-Refine” (End-to-End)

CaiT TS-CAM [5] 0712 23.9 11.9 10.7 10.8 3.5 24.6 19.2 26.6 0.8 17.0 18.2 21.8 30.1 36.1 6.0 2.0 8.8 6.9 39.0 10.9 16.4

SPE(Ours) 0712 65.6 64.7 63.5 29.9 12.6 64.4 47.2 82.4 15.0 42.6 49.8 78.7 66.6 57.2 31.4 24.2 45.7 59.0 77.0 43.5 51.0

Table 2: Detection Performance(%) on the PASCAL VOC 2007 test set. Compar-
ison of SPE to the state-of-the-arts. “07” in “Set” column denotes the trainval
set of VOC 2007, and “0712” denotes trainval set of VOC 2007 and 2012
datasets. † refers to our implementation.
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Fig. 4: Seed proposals generated by SPG and matched sparse proposals learned
by SPR (yellow bounding boxes). Heatmaps in “seed proposal” column show the
semantic-aware attention maps for object classes, while heatmaps in “matched
proposal” column show the cross-attention maps of the matched sparse propos-
als.
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Fig. 5: Evolution of seed proposals and matched sparse proposals (yellow bound-
ing boxes) during training. Heatmaps in the “Seed” column show the semantic-
aware attention maps, while heatmaps in “Matched” column show the cross-
attention maps of the matched sparse proposals.
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Network Method Set aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv CorLoc

VGG16

“Enumerate-and-Select” Methods (Two-Stage)

WSDDN [2] 07 65.1 58.8 58.5 33.1 39.8 68.3 60.2 59.6 34.8 64.5 30.5 43.0 56.8 82.4 25.5 41.6 61.5 55.9 65.9 63.7 53.5

OICR [10] 07 81.7 80.4 48.7 49.5 32.8 81.7 85.4 40.1 40.6 79.5 35.7 33.7 60.5 88.8 21.8 57.9 76.3 59.9 75.3 81.4 60.6

SLV [3] 07 84.6 84.3 73.3 85.5 49.2 80.2 87.0 79.4 46.8 83.6 41.8 79.3 88.8 90.4 19.5 59.7 79.4 67.7 82.9 83.2 71.0

DC-WSOD [1] 07 88.6 86.3 71.8 53.4 51.2 87.6 89.0 65.3 33.2 86.6 58.8 65.9 87.7 93.3 30.9 58.9 83.4 67.8 78.7 80.2 70.9

TS2C [12] 07 84.2 74.1 61.3 52.1 32.1 76.7 82.9 66.6 42.3 70.6 39.5 57.0 61.2 88.4 9.3 54.6 72.2 60.0 65.0 70.3 61.0

SDCN [6] 07 85.8 83.1 56.2 58.5 44.7 80.2 85.0 77.9 29.6 78.8 53.6 74.2 73.1 88.4 18.2 57.5 74.2 60.8 76.1 79.2 66.8

C-MIL [4] 07 - - - - - - - - - - - - - - - - - - - - 65.0

PCL [9] 07 79.6 85.5 62.2 47.9 37.0 83.8 83.4 43.0 38.3 80.1 50.6 30.9 57.8 90.8 27.0 58.2 75.3 68.5 75.7 78.9 62.7

ICM [7] 07 87.5 82.4 76.0 58.0 44.7 82.2 87.5 71.2 49.1 81.5 51.7 53.3 71.4 92.8 38.2 52.8 79.4 61.0 78.3 76.0 68.8

WSDDN† [2] 0712 83.8 78.4 56.5 41.0 35.5 74.1 71.9 44.2 45.5 56.2 47.2 37.0 57.5 85.9 11.0 51.3 73.3 40.9 71.9 74.6 56.8

OICR† [10] 0712 84.9 82.3 66.2 49.6 47.3 83.9 79.9 33.0 48.4 73.9 51.0 39.7 63.6 89.6 12.2 54.7 74.5 44.6 71.0 84.1 61.7

“Enumerate-and-Select” Methods (End-to-End)

WeakRPN [11] 07 77.5 81.2 55.3 19.7 44.3 80.2 86.6 69.5 10.1 87.7 68.4 52.1 84.4 91.6 57.4 63.4 77.3 58.1 57.0 53.8 63.8

UWSOD [8] 07 - - - - - - - - - - - - - - - - - - - - 63.0

“Seed-and-Refine” (End-to-End)

CaiT TS-CAM [5] 0712 56.6 36.7 43.7 34.9 13.4 54.6 35.4 47.8 11.8 53.2 28.2 45.3 52.0 62.6 26.5 11.8 36.9 32.4 58.7 16.6 37.9

SPE(Ours) 0712 86.3 80.8 82.0 54.6 32.5 81.4 72.5 88.9 44.0 72.4 65.2 85.9 82.1 79.8 59.2 54.3 77.6 62.5 83.8 62.8 70.4

Table 3: Localization Performance(%) on the PASCAL VOC. Comparison of
SPE to the state-of-the-arts. “07” in “Set” column denotes the trainval set of
VOC 2007, and “0712” denotes trainval set of VOC 2007 and 2012 datasets. †
refers to our implementation.
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