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This supplementary file provides more details on the conflict validation, the
evaluation of m in loss change validation, quantitative detection results of SSD,
MTD, our RobustDet (without CFR) and RobustDet* for each category, and
more clear visualization results of SSD, MTD and our RobustDet (with CFR).

A Evaluation of the Conflict between Clean and
Adversarial Images

Algorithm 1: Impact of learning the mini-batch X on X®

Data: mini-batch X?, X°, attacker A, training steps m.
Result: change of the loss Al

1 lbefo’re — ﬂ(@,Xb) ; // calculate the loss of X’ before the model
learns X“.

2 for i=1 to m do

3 § + Ayexa(f,x) ; // calculate attack perturbations.

// update model parameters.

4 | go < ngo — Ezexa [VoLl(0,2 4 05)];

5 0« 0+ vgo;

6 end

7 lafter — L:(Q,Xb) ; // calculate the loss of X" after the model
learns X“.

8 Al + lafter - lbefore;

To empirically analyze the conflict between the learning of clean images and
adversarial images, we evaluate the changes in loss of the model on mini-batch X
after learning mini-batch X* and inspect their impacts of learning two kinds of
images, as shown in Algorithm 1. Firstly, the loss lye fore is calculated by taking
images from the mini-batch X?® as model inputs. Then, the model is further
trained on images from another mini-batch X for m steps. With the derived
model, the loss I, ¢ter is calculated on images from the mini-batch X b The loss
change (lufter — lpe fore) accounts for the impact of X on X°. For evaluating the
impact of learning the clean images for the adversarial images clean — adv, X®
are from the clean images and X are from the adversarial images.
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B Details of “Loss change validation”
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Fig. I shows the results of the MTD model under different values of the hyper-
parameter “m”. It can be noticed that the larger m is the greater the variation of
the loss is. So we choose m = 5 in our experiments. These results are statistical
results obtained from 3000 times of experiments, with two batches of images
randomly selected for each experiment. We attack both classification and local-
ization loss in these experiments. These results capture the overall properties of
the object detector. The adversarial images are generated by the model before

tuning.
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C Evaluation Results for Each Category

Table I: The performance comparison of standard SSD (non-robust), MTD, our
RobustDet and RobustDet*, on clean images and adversarial images under two
attacks (Ags and Ag,.), for each category.

Fig.I: Loss change validation with different steps (m).

Method

Clean

A

SSD MTD [5] RobustDet RobustDet* SSD MTD [5]

Acts
RobustDet RobustDet* SSD MTD [5]

Robu

1stDet RobustDet*

aeroplane  81.4
bicycle 85.7

bird 75.3
boat 69.4
bottle 50.2
bus 83.7
car 85.4
cat, 87.5
chair 61.6
cow 83.0
diningtable 79.4
dog 84.4
horse 86.1
motorbike  84.2
person 78.0
pottedplant 49.3
sheep 75.5
sofa 78.9
train 85.6

tvmonitor 75.3

75.3

49.1
34.8
23.6
14.8
10.6
51.3
47.6
36.0
16.8
11.9
38.8
29.1
37.9

64.2
48.9
25.5
38.7
14.1
58.6
60.6
44.7
24.2
21.8
52.9
43.7
49.8
47.9
50.7
12.8
15.7
56.6
49.4
46.4

49.4

59.3
63.4
37.8
314
21.0
58.0
61.9
57.0
27.9
44.6
61.7
54.0
65.8
61.1
56.1
18.7
42.7
51.7
59.3
50.8
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From the experimental results of each category, it indicates that the perfor-
mance of MTD [5] on clean images has a large deviation from the standard SSD
model [3], especially serious about the performance deficit of boat and bottle,
with a loss of 40.7% and 30.5% mAP, respectively. The performance of our Ro-
bustDet on clean images is comparable to the standard SSD, and even exceeds
the standard SSD for the category of bus. Under the A attack, the perfor-
mance of the standard SSD on adversarial images is inferior for all classes. The
performance of MTD under this attack is quite limited and is even only 4.0%
mAP on potted-plant. Instead, our RobustDet outperforms MTD for all classes
on both A., and A;,. adversarial images. With the aid of CFR, RobustDet*
further improves the detection performance for most object categories on both
Ags and Ay, adversarial images. The comparison results for each category with
CWAT [1] are not included because those results are not published and source
codes are not available.

D More Visualizations of Detection Results
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Fig. II: Visualization results of the non-robust SSD and robust models (i.e., MTD
and our RobustDet) on clean images and two different adversarial images.
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Fig.III: Visualization results of the non-robust SSD and robust models (i.e.,
MTD and our RobustDet) on clean images and two different adversarial images.
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Fig.IV: Visualization results of the non-robust SSD and robust models (i.e.,
MTD and our RobustDet) on clean images and two different adversarial images.
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Fig. V: Visualization results of the non-robust SSD and robust models (i.e., MTD
and our RobustDet) on clean images and two different adversarial images.
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Fig. VI: Visualization results of the non-robust SSD and robust models (i.e.,
MTD and our RobustDet) on clean images and two different adversarial images.
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Fig. VII: Visualization results of the non-robust SSD and robust models (i.e.,
MTD and our RobustDet) on clean images and two different adversarial images.
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E Evaluating our method on more detector architectures

Besides SSD as a basemodel in the paper, we further evaluate our method with
another two detectors, two-stage Faster RCNN [4] and anchor-free YOLOX [2] in
Tab.II. It is observed that our RobustDet (implemented based on these two de-
tectors) still significantly outperforms existing related method MTD and achieves
comparable performance on clean images as standard SSD.

Table II: The bold/bold indicates the highest performance, and the blue indi-
cates the highest performance among robust models.

Faster-RCNN YOLOX

Method clean Ags Apoe clean Ags Ajoe
SSD 69.9 1.9 1.12 83.6 2.8 5.5
MTD 53.7 88 16.1 64.2 18.1 25.2

RobustDet (ours) 67.9 26.5 38.0 79.5 32.3 39.7

F Running time and memory consumption

(1) Efficiency: Our method runs faster 2.5x to reach the model convergence with
the similar loss error (e.g., MTD costs 44h (hours) while our RobustDet costs
only 18h).

(2) Memory: Our method has a slight memory consumption increase due to
dynamic convolutions, compared with existing methods, MTD and CWAT. But
even so, our RobustDet runs efficiently as discussed above for efficiency.

G The effectiveness of CFR

From the experimental results in Tab.2 of the main paper, it can be seen that
RobusDet* performs not better than RobustDet on the MS-COCO dataset. Only
one difference between these two model is RobustDet* has the CFR module. To
figure out this issue on CFR, we have a further investigation by evaluating our
RobustDet with or without (w/o) CFR on an MS-COCO subset, which has
the same 20 object categories as PASCAL VOC. From results in Tab.III, the
mAP performance of adding CFR is better after reducing the categories. This
indicates that RobustDet with CFR perform better on adversarial images for
the task with fewer object categories. To a certain extend, reconstruction can be
treated as VAE in VGG-16 whose capacity is relatively limited to learn so many
categories, thus compromising the overall training of the model and leading to
the performance degradation.
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Table IIT: The evaluation results of MS-COCO with the same 20 object categories
as PASCAL VOC.

Method ‘clean Acts Aloe
RobustDet (w/o CFR)|13.3 6.4 6.3
RobustDet 11.7 7.2 6.9

H Inject CFR into other layers

In the main paper, we inject CFR into the conv4_3 layer, but we also tried to
insert it into other layers (conv5_3 and conv3_3). The experimental results in
Tab.IV show that inserting CFR into the conv4_3 performs better.

Table IV: The evaluation results of inject CFR into other layers on PASCAL
VOC.

Layer ‘clean Acs Aoe CWA

conv3_3|73.8 41.8 48.4 43.5
conv4_3|74.8 45.9 49.1 48.0
convb_3|74.8 42.6 47.9 43.1
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