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Abstract. Establishment of point correspondence between camera and
object coordinate systems is a promising way to solve 6D object poses.
However, surrogate objectives of correspondence learning in 3D space are
a step away from the true ones of object pose estimation, making the
learning suboptimal for the end task. In this paper, we address this short-
coming by introducing a new method of Deep Correspondence Learning
Network for direct 6D object pose estimation, shortened as DCL-Net.
Specifically, DCL-Net employs dual newly proposed Feature Disengage-
ment and Alignment (FDA) modules to establish, in the feature space,
partial-to-partial correspondence and complete-to-complete one for par-
tial object observation and its complete CAD model, respectively, which
result in aggregated pose and match feature pairs from two coordinate
systems; these two FDA modules thus bring complementary advantages.
The match feature pairs are used to learn confidence scores for measur-
ing the qualities of deep correspondence, while the pose feature pairs
are weighted by confidence scores for direct object pose regression. A
confidence-based pose refinement network is also proposed to further
improve pose precision in an iterative manner. Extensive experiments
show that DCL-Net outperforms existing methods on three benchmark-
ing datasets, including YCB-Video, LineMOD, and Oclussion-LineMOD;
ablation studies also confirm the efficacy of our novel designs. Our code is
released publicly at https://github.com/Gorilla-Lab-SCUT/DCL-Net.
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1 Introduction

6D object pose estimation is a fundamental task of 3D semantic analysis with
many real-world applications, such as robotic grasping [7,44], augmented reality
[27], and autonomous driving [8,9,21,42]. Non-linearity of the rotation space of
SO(3) makes it hard to handle this nontrivial task through direct pose regression
from object observations [6,11,15,18,24–26,39,45,47]. Many of the data-driven
methods [3,14,20,23,28,31,33,34,38,41] thus achieve the estimation by learning
point correspondence between camera and object coordinate systems.
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Fig. 1. Illustrations of two kinds of point correspondence between camera coordinate
system (cam) and object coordinate system (obj). Best view in the electronic version.

Given a partial object observation in camera coordinate system along with
its CAD model in object coordinate one, we show in Fig. 1 two possible ways
to build point correspondence: i) inferring the observed points in object co-
ordinate system for partial-to-partial correspondence; ii) inferring the sampled
points of CAD model in camera coordinate system for complete-to-complete
correspondence. These two kinds of correspondence show different advantages.
The partial-to-partial correspondence is of higher qualities than the complete-to-
complete one due to the difficulty in shape completion, while the latter is more
robust to figure out poses for objects with severe occlusions, which the former
can hardly handle with.

While these methods are promising by solving 6D poses from point corre-
spondence (e.g ., via a PnP algorithm), their surrogate correspondence objec-
tives are a step away from the true ones of estimating 6D object poses, thus
making their learnings suboptimal for the end task [40]. To this end, we present
a novel method to realize the above two ways of correspondence establishment
in the feature space via dual newly proposed Feature Disengagement and Align-
ment (FDA) modules, and directly estimate object poses from feature pairs of
two coordinate systems, which are weighted by confidence scores measuring the
qualities of deep correspondence. We term our method as Deep Correspondence
Learning Network, shortened as DCL-Net. Fig. 2 gives the illustration.

For the partial object observation and its CAD model, DCL-Net firstly ex-
tracts their point-wise feature maps in parallel; then dual Feature Disengage-
ment and Alignment (FDA) modules are designed to establish, in feature space,
the partial-to-partial correspondence and the complete-to-complete one between
camera and object coordinate systems. Specifically, each FDA module takes as
inputs two point-wise feature maps, and disengages each feature map into indi-
vidual pose and match ones; the match feature maps of two systems are then
used to learn an attention map for building deep correspondence; finally, both
pose and match feature maps are aligned and paired across systems based on the
attention map, resulting in pose and match feature pairs, respectively. DCL-Net
aggregates two sets of correspondence together, since they bring complemen-
tary advantages, by fusing the respective pose and match feature pairs of two
FDA modules. The aggregated match feature pairs are used to learn confidence
scores for measuring the qualities of deep correspondence, while the pose ones
are weighted by the scores to directly regress object poses. A confidence-based
pose refinement network is also proposed to further improve the results of DCL-



DCL-Net: Deep Correspondence Learning Network for 6D Pose Estimation 3

Net in an iterative manner. Extensive experiments show that DCL-Net outper-
forms existing methods for 6D object pose estimation on three well-acknowledged
datasets, including YCB-Video [4], LineMOD [16], and Occlusion-LineMOD [3];
remarkably, on the more challenging Occlusion-LineMOD, our DCL-Net outper-
forms the state-of-the-art method [13] with an improvement of 4.4% on the met-
ric of ADD(S), revealing the strength of DCL-Net on handling with occlusion.
Ablation studies also confirm the efficacy of individual components of DCL-Net.
Our technical contributions are summarized as follows:

– We design a novel Feature Disengagement and Alignment (FDA) module to
establish deep correspondence between two point-wise feature maps from
different coordinate systems; more specifically, FDA module disengages each
feature map into individual pose and match ones, which are then aligned
across systems to generate pose and match feature pairs, respectively, such
that deep correspondence is established within the aligned feature pairs.

– We propose a new method of Deep Correspondence Learning Network for
direct regression of 6D object poses, termed as DCL-Net, which employs
dual FDA modules to establish, in feature space, partial-to-partial corre-
spondence and complete-to-complete one between camera and object coor-
dinate systems, respectively; these two FDA modules bring complementary
advantages.

– Match feature pairs of dual FDA modules are aggregated and used for learn-
ing of confidence scores to measure the qualities of correspondence, while
pose feature pairs are weighted by the scores for estimation of 6D pose;
a confidence-based pose refinement network is also proposed to iteratively
improve pose precision.

2 Related Work

6D Pose Estimation from RGB Data This body of works can be broadly
categorized into three types: i) holistic methods [11,15,18] for directly estimating
object poses; ii) keypoint-based methods [28,33,34], which establish 2D-3D cor-
respondence via 2D keypoint detection, followed by a PnP/RANSAC algorithm
to solve the poses; iii) dense correspondence methods [3, 20, 23, 31], which make
dense pixel-wise predictions and vote for the final results.

Due to loss of geometry information, these methods are sensitive to lighting
conditions and appearance textures, and thus inferior to the RGB-D methods.

6D Pose Estimation from RGB-D Data Depth maps provide rich geometry
information complementary to appearance one from RGB images. Traditional
methods [3, 16, 32, 37, 43] solve object poses by extracting features from RGB-
D data and performing correspondence grouping and hypothesis verification.
Earlier deep methods, such as PoseCNN [45] and SSD-6D [19], learn coarse poses
firstly from RGB images, and refine the poses on point clouds by using ICP [2] or
MCN [22]. Recently, learning deep features of point clouds becomes an efficient
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way to improve pose precision, especially for methods [39,47] of direct regression,
which make efforts to enhance pose embeddings from deep geometry features,
due to the difficulty in the learning of rotations from a nonlinear space. Wang et
al. present DenseFusion [39], which fuses local features of RGB images and point
clouds in a point-wise manner, and thus explicitly reasons about appearance
and geometry information to make the learning more discriminative; due to
the incomplete and noisy shape information, Zhou et al. propose PR-GCN [47]
to polish point clouds and enhance pose embeddings via Graph Convolutional
Network. On the other hand, dense correspondence methods show the advantages
of deep networks on building the point correspondence in Euclidean space; for
example, He et al. propose PVN3D [14] to regress dense keypoints, and achieve
remarkable results. While promising, these methods are usually trained with
surrogate objectives instead of the true ones of estimating 6D poses, making the
learning suboptimal for the end task.

Our proposed DCL-Net borrows the idea from dense correspondence meth-
ods by learning deep correspondence in feature space, and weights the feature
correspondence based on confidence scores for direct estimation of object poses.
Besides, the learned correspondence is also utilized by an iterative pose refine-
ment network for precision improvement.

3 Deep Correspondence Learning Network

Given the partial object observation Xc in the camera coordinate system, along
with the object CAD model Yo in the object coordinate one, our goal is to
estimate the 6D pose (R, t) between these two systems, where R ∈ SO(3) stands
for a rotation, and t ∈ R3 for a translation.

Fig. 2 gives the illustration of our proposed Deep Correspondence Learning
Network (dubbed DCL-Net). DCL-Net firstly extracts point-wise features of
Xc and Yo (cf. Sec. 3.1), then establishes correspondence in feature space via
dual Feature Disengagement and Alignment modules (cf. Sec. 3.2), and finally
regresses the object pose (R, t) with confidence scores based on the learned
deep correspondence (cf. Sec. 3.3). The training objectives of DCL-Net are given
in Sec. 3.4. A confidence-based pose refinement network is also introduced to
iteratively improve pose precision (cf. Sec. 3.5).

3.1 Point-wise Feature Extraction

We represent the inputs of the object observation Xc and its CAD model Yo as
(IXc ,PXc) and (IYo ,PYo) with NX and NY sampled points, respectively, where
P denotes a point set, and I denotes RGB values corresponding to points in P .
As shown in Fig. 2, we use two parallel backbones to extract their point-wise
features FXc and FYo , respectively. Following [12], both backbones are built
based on 3D Sparse Convolutions [10], of which the volumetric features are then
converted to point-level ones; more details about the architectures are given in
the supplementary material. Note that for each object instance, FYo can be
pre-computed during inference for efficiency.
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Fig. 2. An illustration of DCL-Net. Given object observation and its CAD model,
DCL-Net first extracts their point-wise features FXc and FYo , separately; then dual
Feature Disengagement and Alignment (FDA) modules are employed to establish, in
feature space, partial-to-partial correspondence and complete-to-complete one between
camera and object coordinate systems, respectively, which result in aggregated pose
and match feature pairs; the match feature pairs are used to learn confidence scores s
for measuring the qualities of deep correspondence, while the pose ones are weighted
by s for estimating 6D object pose (R, t). Best view in the electronic version.

3.2 Dual Feature Disengagement and Alignment

The key to figure out the pose between the object observation and its CAD
model lies in the establishment of correspondence. As pointed out in Sec. 1,
there exist at least two ways to achieve this goal: i) learning the partial point set

P̃Xo in object system from complete PYo to pair with PXc , e.g ., (PXc , P̃Xo),

for partial-to-partial correspondence; ii) inferring the complete point set P̃Yc in

camera coordinate system from partial PXc to pair with PYo , e.g ., (P̃Yc ,PYo),
for complete-to-complete correspondence.

In this paper, we propose to establish the correspondence in the deep feature
space, from which pose feature pairs along with match feature pairs can be
generated for the learning of object pose and confidence scores, respectively. Fig.
2 gives illustrations of the correspondence in both 3D space and feature space.
Specifically, we design a novel Feature Disengagement and Alignment (FDA)

module to learn the pose feature pairs, e.g ., (FXc
p , F̃Xo

p ) and (F̃Yc
p ,FYo

p ) w.r.t

the above (PXc , P̃Xo) and (P̃Yc ,PYo), respectively, and the match feature pairs,

e.g ., (FXc
m , F̃Xo

m ) and (F̃Yc
m ,FYo

m ), which can be formulated as follows:

FXc
p ,FXc

m , F̃Xo
p , F̃Xo

m , P̃Xo = FDA(FXc ,FYo), (1)

FYo
p ,FYo

m , F̃Yc
p , F̃Yc

m , P̃Yc = FDA(FYo ,FXc). (2)

We term the partial-to-partial (1) and complete-to-complete (2) FDA modules
as P2P-FDA and C2C-FDA modules, respectively.

Feature Disengagement and Alignment Module Feature Disengagement
and Alignment (FDA) module takes point-wise feature maps of different coordi-
nate systems as inputs, disengages each feature map into pose and match ones,
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Fig. 3. Illustrations of dual Feature Disengagement and Alignment modules. “T” de-
notes matrix transposition, and “×” denotes matrix multiplication.

which are then aligned across systems to establish deep correspondence. Fig.
3 gives illustrations of both P2P-FDA and C2C-FDA modules, where network
specifics are also given.

We take P2P-FDA module (1) as an example to illustrate the implementation
of FDA. Specifically, as shown in Fig. 3, we firstly disengage FXc into a pose
feature FXc

p1 and a match one FXc
m1:

FXc
p1 = MLP(FXc),FXc

m1 = MLP(FXc), (3)

where MLP(·) denotes a subnetwork of Multi-layer Perceptron (MLP). The same
applies to FYo , and we have FYo

p1 and FYo
m1. The match features FXc

m1 and FYo
m1 is

then used for the learning of an attention map A1 ∈ RNX×NY as follows:

A1 = Softmax(FXc
m1 × Transpose(FYo

m1)), (4)

where Transpose(·) denotes tensor transposition, and Softmax(·) denotes soft-
max operation along columns. Each element a1,ij in A1 indicates the match
degree between ith point in PXc and jth one in PYo . Then pose and match
features of the partial observation Xo in object system can be interpolated by
matrix multiplication of A1 and those of PYo , respectively, to be aligned with
features of Xc in camera coordinate system:{

FXc
p = FXc

p1

F̃Xo
p = A1 × FYo

p1

,

{
FXc
m = FXc

m1

F̃Xo
m = A1 × FYo

m1

. (5)

Through feature alignment, P̃Xo is expected to be decoded out from F̃Xo
p :

P̃Xo = MLP(F̃Xo
p ). (6)

Supervisions on the reconstruction of P̃Xo guide the learning of deep correspon-
dence in P2P-FDA module.
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P2P-FDA module (1) learns deep correspondence of the partial X in two co-
ordinate systems, while C2C-FDA module (2) infers that of the complete Y via
a same network structure, as shown in Fig. 3(b). We adopt dual FDA modules
in our design to enable robust correspondence establishment, since they bring
complementary functions: P2P-FDA module provides more accurate correspon-
dence than that of C2C-FDA module, due to the difficulty in shape completion
from partial observation for the latter module; however, C2C-FDA module plays
a vital role under the condition of severe occlusions, which P2P-FDA module
can hardly handle with.

3.3 Confidence-based Pose Estimation

After dual feature disengagement and alignment, we construct the pose and
match feature pairs as follows:

Fp =

[
FXc
p , F̃Xo

p

F̃Yc
p , FYo

p

]
,Fm =

[
FXc
m , F̃Xo

m

F̃Yc
m , FYo

m

]
. (7)

As shown in Fig. 2, the paired match feature Fm is fed into an MLP for the
learning of confidence scores s = {si}NX+NY

i=1 to reflect the qualities of deep
correspondence:

s = MLP(Fm). (8)

The paired pose feature Fp is also fed into an MLP and weighted by s for
precisely estimating the 6D pose (R, t):

R = MLP(f), t = MLP(f), (9)

s.t. f = SUM(SoftMax(s) · MLP(Fp)),

where SUM denotes summation along rows.
Rather than numerical calculation from two paired point sets, we directly

regress the 6D object pose from deep pair-wise features with confidence scores,
which effectively weakens the negative impact of correspondence of low quality
on pose estimation, and thus realizes more precise results.

3.4 Training of Deep Correspondence Learning Network

For dual FDA modules, we supervise the reconstruction of P̃Xo = {p̃Xo
i }NX

i=1 and

P̃Yc = {p̃Yc
i }NY

i=1 to guide the learning of deep correspondence via the following
objectives:

Lp2p =
1

NX

NX∑
i=1

||p̃Xo
i −R∗T (pXc

i − t∗)||, (10)

Lc2c =
1

NY

NY∑
i=1

||p̃Yc
i − (R∗pYo

i + t∗)||, (11)
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Fig. 4. An illustration of the iterative confidence-based pose estimation network.

where PXc = {pXc
i }NX

i=1 and PYo = {pYo
i }NY

i=1 are input point sets, and R∗ and
t∗ denote ground truth 6D pose. For the confidence-based pose estimation, we
use the following objectives on top of the learning of the predicted object pose
(R, t) and confidence scores s = {si}NX+NY

i=1 , respectively:

Lpose =
1

NY

NY∑
i=1

||RpYo
i + t− (R∗pYo

i + t∗)||. (12)

Lconf =
1

NX

NX∑
i=1

σ(||p̃Xo
i −RT (pXc

i − t)||, si)

+
1

NY

NY∑
j=1

σ(||p̃Yc
j − (RpYo

j + t)||, sNX+j), (13)

where σ(d, s) = ds − wlog(s), and w is a balancing hyperparameter. We note
that the objectives (10), (11) and (12) are designed for asymmetric objects, while
for symmetric ones, we modify them by replacing L2 distance with Chamfer
distance, as done in [39].

The overall training objective combines (10), (11), (12), and (13), resulting
in the following optimization problem:

minL = λ1Lp2p + λ2Lc2c + λ3Lpose + λ4Lconf , (14)

where λ1, λ2, λ3 and λ4 are penalty parameters.

3.5 Confidence-based Pose Refinement

To take full advantages of the learned correspondence, we propose a confidence-
based pose refinement network, as shown in Fig. 4, where the input point set
PXc is transformed with predicted pose, and paired with F̃Xo

p for residual pose
estimation in an iterative manner. Specifically, assuming after k − 1 iterations
of refinement, the current object pose is updated as (Rk−1, tk−1), and we use
it for transforming PXc = {pXc

i }NX
i=1 to PXc

k−1 = {RT
k−1(p

Xc
i − tk−1)}NX

i=1; for
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forming pair-wise pose features with the learned correspondence in dual FDA
modules, we reuse F̃Xo

p by concatenating it with PXc

k−1. Similarly to Sec. 3.3,
we feed the pose feature pairs into an MLP, and weight them by reusing the
confidence scores sNX (denoting the first NX elements of s) for estimating the
residual pose (∆Rk, ∆tk):

∆Rk = MLP(fk), ∆tk = MLP(fk), (15)

s.t. fk = SUM(SoftMax(sNX ) · MLP([P
Xc

k−1, F̃
Xo
p ])).

Finally, the pose (Rk, tk) of the kth iteration can be obtained as follows:

Rk = ∆RkRk−1, tk = Rk−1∆tk + tk−1. (16)

4 Experiments

Datasets We conduct experiments on three benchmarking datasets, including
YCB-Video [4], LineMOD [16], and Occlusion-LineMOD [3]. YCB-Video dataset
consists of 92 RGB-D videos with 21 different object instances, fully annotated
with object poses and masks. Following [39], we use 80 videos therein for training
along with additional 80, 000 synthetic images, and evaluate DCL-Net on 2, 949
keyframes sampled from the rest 12 videos. LineMOD is also a fully annotated
dataset for 6D pose estimation, containing 13 videos with 13 low-textured ob-
ject instances; we follow the prior work [39] to split training and testing sets.
Occlusion-LineMOD is an annotated subset of LineMOD with 8 different object
instances, which handpicks RGB-D images of scenes with heavy object occlu-
sions and self-occlusions from LineMOD, making the task of pose estimation
more challenging; following [35], we use the DCL-Net trained on the original
LineMOD to evaluate on Occlusion-LineMOD.

Implementation Details For both object observations and CAD models, we
sample point sets with 1, 024 points as inputs of DCL-Net; that is, NX = NY =
1, 024. For the training objectives, we set the penalty parameters λ1, λ2, λ3, λ4

in (14) as 5.0, 1.0, 1.0, and 1.0, respectively; w in (13) is set as 0.01. During
inference, we run twice the confidence-based pose refinement for improvement
of pose precision.

Evaluation Metrics We use the same evaluation metrics as those in [39]. For
YCB-Video dataset, the average closest point distance (ADD-S) [45] is employed
to measure the pose error; following [39], we report the Area Under the Curve
(AUC) of ADD-S with the maximum threshold at 0.1m, and the percentage of
ADD-S smaller than the minimum tolerance at 2cm (< 2cm). For both LineMOD
and Occlusion-LineMOD datasets, ADD-S is employed only for symmetric ob-
jects, while the Average Distance (ADD) for asymmetric objects; we report the
percentage of distance smaller than 10% of object diameter. Besides, we use
Chamfer Distance (CD) to measure the reconstruction results.
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Table 1. Ablation studies of the use of dual FDA modules on YCB-Video dataset [4].
Experiments are conducted without confidence-based weighting and pose refinement.

P2P-FDA C2C-FDA AUC < 2cm
CD (×10−3)
PXo PYc

× × 94.1 97.4 − −
✓ × 95.0 98.7 7.1 −
× ✓ 94.5 98.8 − 8.2
✓ ✓ 95.3 99.0 7.0 8.1

Table 2. Quantitative results obtained by least-squares optimization [1] and our pro-
posed direct regression on YCB-Video dataset [4]. Experiments are conducted without
pose refinement.

AUC < 2cm

w/o Conf.
Least-squares Optimization [1] 94.7 98.2

Direct Pose Regression 95.3 99.0

with Conf.
Least-squares Optimization [1] 95.4 98.3

Direct Pose Regression 95.8 99.0

4.1 Ablation Studies and Analyses

We firstly conduct ablation studies to evaluate the efficacy of novel designs
proposed in our DCL-Net. These experiments are conducted on YCB-Video
dataset [4].

Effects of Dual Feature Disengagement and Alignment We conduct four
experiments to evaluate the efficacy of the use of dual FDA modules: i) without
any FDA modules (baseline), ii) only with P2P-FDA, iii) only with C2C-FDA,
and iv) with dual modules. For simplicity, these experiments are conducted
without confidence-based weighting as well as pose refinement. The quantita-
tive results on ADD-S AUC and ADD-S< 2cm are shown in Table 1, where
the reconstruction results of asymmetric objects are also reported. From the
table, methods with (one or dual) FDA modules indeed outperforms the base-
line, which demonstrates the importance of deep correspondence learning on
pose estimation. Single P2P-FDA module achieves more accurate results than
single C2C-FDA module by making better reconstructions (7.1 × 10−3 versus
8.2× 10−3 on CD) and deep correspondence as well, and the mixed use of them
boosts the performance, indicating their complementary advantages. For the last
framework, we visualize the reconstruction results along with the learned corre-
spondence of both P2P-FDA and C2C-FDA modules in Fig. 5; shape completion
can be achieved for C2C-FDA module, even with severe occlusions, to build valid
deep correspondence of high quality, and thus make DCL-Net more robust and
reliable.
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Prediction Ground Truth Attention CorrespondenceInput 
(CAD model)

Input 
(Observation)

P2P-FDA

C2C-FDA

P2P-FDA

C2C-FDA

P2P-FDA
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Fig. 5. Visualizations of shape predictions, attentions, and correspondence of both
P2P-FDA and C2C-FDA modules on YCB-Video dataset [4]. Best view in electronic
version.

We also explore the attention maps of dual FDA modules in Fig. 5. Take
C2C-FDA module as an example, the predicted points are learned from the
features of the input observed ones via attention maps, i.e., each predicted point
corresponds to the observed ones with different attention weights, and we thus
colorize those corresponding points with large weights in Fig. 5; as shown in
the figure, for the predicted points (red) locate at the observed parts, most of
the input points with larger weights (red) could locate at the corresponding
local regions, showing the qualities of attention maps, while for those at the
occluded parts (blue), the corresponding points (blue) may locate scatteredly,
but thanks to the correspondence learning in feature space, these points could
still be completed in the C2C-FDA reconstruction results.

Effects of Confidence-based Pose Estimation Through learning deep cor-
respondence in feature space, DCL-Net achieves direct regression of object poses,
while the predictions of dual FDA modules can also establish point correspon-
dence w.r.t inputs to solve poses via least-squares optimization [1]. We compare
the quantitative results obtained by these two approaches (without pose refine-
ment) in Table 2, where results of direct regression from deep feature correspon-
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Table 3. Quantitative results of DCL-Net with or without pose refinement on YCB-
Video dataset [4].

AUC < 2cm

w/o Pose Refinement 95.8 99.0
with Pose Refinement 96.6 99.0

Initial Iteration1 Iteration2Input Ground Truth

Fig. 6. Qualitative results of DCL-Net with or without pose refinement on YCB-Video
dataset [4]. The sampled points of CAD models are transformed by the predicted poses
and projected to 2D images.

dence outperforms those from point correspondence consistently with or without
confidence scores, showing that pose estimation from feature space is less sen-
sitive to the correspondence of low qualities, thanks to the direct objectives for
the end task. Besides, we also observe that the learning of confidence scores not
only measures the qualities of correspondence and decreases the influence of bad
correspondence, but also helps improve the qualities themselves effectively.

Effects of Confidence-based Pose Refinement Table 4 demonstrates the
efficiency of our confidence-based pose refinement for boosting the performance,
e.g ., improvement by 0.8% on the metric of ADD-S AUC, which is also verified
by the qualitative results shown in Fig. 6.

4.2 Comparisons with Existing Methods

We compare our proposed DCL-Net with the existing methods for 6D object pose
estimation from RGB-D data, including those based on direct regression (e.g .,
DenseFusion [39] and PR-GCN [47]), and those based on dense correspondence
learning (e.g ., PVN3D [14] and FFB6D [13]).

Quantitative results on the three benchmarking datasets, including YCB-
Video [4], LineMOD [16], and Occlusion-LineMOD [3], are reported in Table 4,
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Table 4. Quantitative results of different methods on YCB-Video dataset [4]. The
evaluation metrics are ADD-S AUC and ADD-S< 2cm. Objects with bold name are
symmetric.

PoseCNN+ICP [45] DenseFusion [39] G2L [5] PVN3D [14] PR-GCN [47] FFB6D DCL-Net
AUC <2cm AUC <2cm AUC AUC <2cm AUC <2cm AUC <2cm AUC <2cm

002 master chef can 95.8 100.0 96.4 100.0 94.0 96.0 100.0 97.1 100.0 96.3 100.0 96.1 100.0
003 cracker box 92.7 91.6 95.5 99.5 88.7 96.1 100.0 97.6 100.0 96.3 100.0 96.4 99.4
004 sugar box 98.2 100.0 97.5 100.0 96.0 97.4 100.0 98.3 100.0 97.6 100.0 98.1 100.0
005 tomato soup can 94.5 96.9 94.96 96.9 86.4 96.2 98.1 95.3 97.6 95.6 98.2 95.8 97.7
006 mustard bottle 98.6 100.0 97.2 100.0 95.9 97.5 100.0 97.9 100.0 97.8 100.0 98.7 100.0
007 tuna fish can 97.1 100.0 96.6 100.0 84.1 96.0 100.0 97.6 100.0 96.8 100.0 97.4 100.0
008 pudding box 97.9 100.0 96.5 100.0 93.5 97.1 100.0 98.4 100.0 97.1 100.0 98.2 100.0
009 gelatin box 98.8 100.0 98.1 100.0 96.8 97.7 100.0 96.2 94.4 98.1 100.0 98.9 100.0
010 potted meat can 92.7 93.6 91.3 93.1 86.2 93.3 94.6 96.6 99.1 94.7 94.3 93.1 94.7
011 banana 97.1 99.7 96.6 100.0 96.3 96.6 100.0 98.5 100.0 97.2 100.0 98.1 100.0
019 pitcher base 97.8 100.0 97.1 100.0 91.8 97.4 100.0 98.1 100.0 97.6 100.0 98.0 99.8
021 bleach cleanser 96.9 99.4 95.8 100.0 92.0 96.0 100.0 97.9 100.0 96.8 100.0 97.0 100.0
024 bowl 81.0 54.9 88.2 98.8 86.7 90.2 80.5 90.3 96.6 96.3 100.0 97.3 100.0
025 mug 95.0 99.8 97.1 100.0 95.4 97.6 100.0 98.1 100.0 97.3 100.0 97.8 100.0
035 power drill 98.2 99.6 96.0 98.7 95.2 96.7 100.0 98.1 100.0 97.2 100.0 98.0 100.0
036 wood block 87.6 80.2 89.7 94.6 86.2 90.4 93.8 96.0 100.0 92.6 92.1 93.9 97.5
037 scissors 91.7 95.6 95.2 100.0 83.8 96.7 100.0 96.7 100.0 97.7 100.0 87.6 98.3
040 large marker 97.2 99.7 97.5 100.0 96.8 96.7 99.8 97.9 100.0 96.6 100.0 97.8 99.8
051 large clamp 75.2 74.9 72.9 79.2 94.4 93.6 93.6 87.5 93.3 96.8 100.0 95.7 98.6
052 extra large clamp 64.4 48.8 69.8 76.3 92.3 88.4 83.6 79.7 84.6 96.0 98.6 88.8 87.2
061 foam brick 97.2 100.0 92.5 100.0 94.7 96.8 100.0 97.8 100.0 97.3 100.0 97.5 100.0

MEAN 93.0 93.2 93.1 96.8 92.4 95.5 97.6 95.8 98.5 96.6 99.2 96.6 99.0

DenseFusion PVN3D Ours GTInput

Fig. 7. Qualitative results of different methods on YCB-Video dataset [4]. The sampled
points of CAD models are transformed by the predicted poses and projected to 2D
images.

Table 5, and Table 6, respectively, all of which show the superiority of our DCL-
Net consistently in the regime of pose precision; qualitative results on YCB-
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Table 5. Quantitative results of different methods on ADD(S) on LineMOD dataset
[16]. Objects with bold name are symmetric.

Implicit
+ICP [36]

SSD6D
+ICP [19]

PointFusion
[46]

DenseFusion
[39]

DenseFusion
(Iterative) [39]

G2L
[5]

PR-GCN
[47]

DCL-Net

ape 20.6 65 70.4 79.5 92.3 96.8 97.6 97.4
bench 64.3 80 80.7 84.2 93.2 96.1 99.2 99.4
camera 63.2 78 60.8 76.5 94.4 98.2 99.4 99.8
can 76.1 86 61.1 86.6 93.1 98.0 98.4 99.9
cat 72.0 70 79.1 88.8 96.5 99.2 98.7 100.0
driller 41.6 73 47.3 77.7 87.0 99.8 98.8 99.9
duck 32.4 66 63.0 76.3 92.3 97.7 98.9 98.4
egg 98.6 100 99.9 99.9 99.8 100.0 99.9 100.0
glue 96.4 100 99.3 99.4 100.0 100.0 100.0 99.9
hole 49.9 49 71.8 79.0 92.1 99.0 99.4 100.0
iron 63.1 78 83.2 92.1 97.0 99.3 98.5 100.0
lamp 91.7 73 62.3 92.3 95.3 99.5 99.2 99.5
phone 71.0 79 78.8 88.0 92.8 98.9 98.4 99.7

MEAN 64.7 79 73.7 86.2 94.3 98.7 98.9 99.5

Table 6. Quantitative results of different methods on ADD(S) on Occlusion-LineMOD
dataset [3]. Objects with bold name are symmetric.

PoseCNN
[45]

Deep-
Heat [29]

SS
[17]

Pix2pose
[30]

PVNet
[31]

Hybrid-
Pose [35]

PVN3D
[14]

PR-GCN
[47]

FFB6D
[13]

DCL-Net

ape 9.6 12.1 17.6 22.0 15.8 20.9 33.9 40.2 47.2 56.7
can 45.2 39.9 53.9 44.7 63.3 75.3 88.6 76.2 85.2 80.2
cat 0.9 8.2 3.3 22.7 16.7 24.9 39.1 57.0 45.7 48.1
driller 41.4 45.2 62.4 44.7 65.7 70.2 78.4 82.3 81.4 81.4
duck 19.6 17.2 19.2 15.0 25.2 27.9 41.9 30.0 53.9 44.6
egg 22.0 22.1 25.9 25.2 50.2 52.4 80.9 68.2 70.2 83.6
glue 38.5 35.8 39.6 32.4 49.6 53.8 68.1 67.0 60.1 79.1
hole 22.1 36.0 21.3 49.5 39.7 54.2 74.7 97.2 85.9 91.3

MEAN 24.9 27.0 27.0 32.0 40.8 47.5 63.2 65.0 66.2 70.6

Video dataset [4] are also provided in Fig. 7 to verify the advantages of our
DCL-Net. Remarkably, on the more challenging Occlusion-LineMOD dataset,
the improvements of our DCL-Net over the state-of-the-art methods of PR-
GCN [47] and FFB6D [13] reach 5.6% and 4.4% on the metric of ADD(S),
respectively, indicating the advantages of our DCL-Net on handling with object
occlusions or self-occlusions.
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