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Abstract. Perceiving 3D objects from monocular inputs is crucial for
robotic systems, given its economy compared to multi-sensor settings.
It is notably difficult as a single image can not provide any clues for
predicting absolute depth values. Motivated by binocular methods for
3D object detection, we take advantage of the strong geometry structure
provided by camera ego-motion for accurate object depth estimation
and detection. We first make a theoretical analysis on this general two-
view case and notice two challenges: 1) Cumulative errors from multiple
estimations that make the direct prediction intractable; 2) Inherent
dilemmas caused by static cameras and matching ambiguity. Accordingly,
we establish the stereo correspondence with a geometry-aware cost volume
as the alternative for depth estimation and further compensate it with
monocular understanding to address the second problem. Our framework,
named Depth from Motion (DfM), then uses the established geometry to
lift 2D image features to the 3D space and detects 3D objects thereon.
We also present a pose-free DfM to make it usable when the camera
pose is unavailable. Our framework outperforms state-of-the-art methods
by a large margin on the KITTI benchmark. Detailed quantitative and
qualitative analyses also validate our theoretical conclusions. The code is
released at https://github.com/Tai-Wang/Depth-from-Motion.
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1 Introduction

3D object detection is a fundamental task for practical applications such as au-
tonomous driving. In the past few years, LIDAR-based [16,42,45,28] and binocular-
based [7,9,17,5,12] approaches have made great progress and achieved promising
performance. In contrast, monocular methods [37,23,30,35] still yield unsatisfac-
tory results as their depth estimation is naturally ill-posed. Although several
works [23,30,35,44,29] made some attempts to tackle this problem, the current
solutions still focus on digging out more geometry structures from a single image.
It is still hard for them to estimate accurate absolute depth values.

This paper aims to use stereo geometry from a pair of images nearby in
temporal to facilitate the object depth estimation. The basic principle is similar
to depth estimation in binocular systems. Two cameras in binocular systems
are strictly constrained on the same plane and have a fixed distance, which


https://github.com/Tai-Wang/Depth-from-Motion

2 T. Wang, J. Pang, D. Lin

Depth Estimation & 3D Detection Performance on KITTI Benchmark

Frame t M"""Cular
ndersta,, '-‘ll'ng

3D Detection Performanc

Frame t - 6t Easy Moderate Hard

Fig. 1. In this paper, we present a framework for monocular 3D detection from videos.
In contrast to previous work only relying on monocular understanding from a single
image, our method integrates the stereo geometric clues from temporally adjacent
images. It significantly improves depth estimation accuracy, the most critical part for
camera-only 3D perception, and thus enhances the 3D detection performance.

is known as the system’s baseline. State-of-the-art stereo 3D object detection
methods take this baseline as a critical clue and transform depth estimation to
an easier disparity estimation problem. Similarly, two nearby images in temporal
also have stereo correspondence, but their baseline is dynamic and relies on the
ego-motion of the camera. This idea is intuitively promising, but few previous
works explored it. The only recent work for 3D detection from monocular videos,
Kinematic3D [3], uses a 3D Kalman Filter and an integrated ego-motion module
to build the connection between frames. It focuses on the robustness and stability
of detection results but still estimates depth from a single image. Our work,
instead, is the first to study how to improve object depth estimation and 3D
detection from the strong stereo geometry formed by ego-motion.

We first conduct a theoretical analysis on this problem to better understand
the geometry relationship. It reveals that direct derivation of depth in this
setting involves many estimations and thus has fundamental difficulty caused
by cumulative errors. The stereo estimation also has several intrinsic dilemmas,
such as no baseline formed by static cameras. We thus build our framework with
a depth-from-motion module addressing these problems to construct 3D features
and detect 3D objects thereon. Specifically, we first involve the complex geometry
relationship in a differential cost volume as the alternative for stereo estimation.
To guarantee its physical rationality for any arbitrarily augmented inputs, we
devise a pipeline to ensure the pose transformation takes place in the original
space, namely canonical space. Furthermore, we compensate it with another
monocular pathway and fuse them with learnable weights. The distribution of
these learned weights well demonstrates the theoretical discussion on the intrinsic
weaknesses of stereo estimation.

Considering camera poses are not always available, we also introduce a pose-
free method to make the framework more flexible. We first decouple the ego-pose
estimation as translation and rotation. Instead of using the straightforward Euler
angles, we formulate the rotation with quaternion, a more friendly representation
for optimization, to avoid periodic targets. In addition, we adopt a self-supervised
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loss to regularize the learning of pose to make the training get rid of pose
annotations and expensive loss weights tuning.

We evaluate our framework on the KITTI [8] benchmark. It achieves 1st
place out of monocular methods, surpassing previous methods by a large margin,
2.6%~5.6% and 4.2%~7.5% AP higher on the 3D and bird-eye-view vehicle
detection benchmark respectively. These impressive experimental results demon-
strate the potential of this stream of methods in this context, which is a more
interpretable and practical perception approach like that human beings rely on.

2 Related Work

Video-Based Depth Estimation Depth estimation from monocular videos
is an important problem for mobile devices and VR/AR applications. Learning-
based methods can be divided into MVS-based (Multi-View-Stereo) methods [19,34]
and monocular-stereo hybrid methods [43,22,15]. The former group can not han-
dle dynamic scenes due to the static assumption of MVS, and the latter addresses
this problem by integrating a pretrained single-view depth estimator. In addi-
tion, there is another line of work [10,11] using videos as supervision to achieve
self-supervised depth estimation. Although these works have made progress in
this problem, there is still a notable gap between this field and camera-only 3D
detection. Due to the disparity of scenarios and ultimate targets, previous work
hardly attempts to tackle the object depth estimation problem in our context.
Video-Based Object Detection Video-based object detection [48,47,39,1,20]
has been studied for several years in the 2D case. These works target a better
trade-off between accuracy and efficiency by aggregating features from multiple
frames. Unlike the 3D case, the main problems of 2D detection from videos
are the occlusion and blur of objects. The transformation between frames is
generally flow-based, without considering geometric consistency in the real world.
In comparison, the only previous work [3] for monocular 3D video object detection
improves the robustness of detection results with 3D Kinematic designs. This
paper is different from both. We instead focus on the specific problem in the
3D case: estimating object depth more accurately from the depth-from-motion
setting and further boosting the 3D detection performance.

Camera-Only 3D Object Detection Compared to LiDAR-based approaches
[16,12,15,28,16,36], camera-only methods take RGB images as the only input and
need to reason the depth information without accurate measurement provided by
depth sensors. Among them, monocular 3D detection is more challenging than
binocular because of its ill-posed property.

Earlier learning-based monocular methods [4,10,24] used sub-networks to
solve this problem. Afterward, due to the system complexity and dependence
on external data and pretrained models, recent work turns to end-to-end de-
signs [2,13,32,23,37] like 2D detection. As several works [35,30,23] point out the
crucial role of depth estimation in this setting, a stream of work [18,35,44,29]
attempted to address the problem with more geometric designs. Meanwhile,
another line incorporates depth information to study the feature transformation
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approaches. Pioneer work [38,27] in this line transforms the input image to 3D
representations with depth estimation and performs 3D object detection thereon.
Recent CaDDN [26] merges these two stages into an end-to-end framework and
achieves promising results. Our work follows this high-level pipeline while focusing
on improving the depth estimation from video input.

As for binocular methods, apart from the previously mentioned Pseudo-LiDAR
fashion, they can be grouped into two tracks: front-view 2D-based [17,33,41,25]
and bird-eye-view volume-based [5,12]. The volume-based methods are consistent
with the feature transformation ideas of CaDDN. Our framework is also motivated
by this stream. In contrast, we focus on studying a more difficult stereo setting:
general multi-view cases formed by ego-motion.

(a) Binocular Setting (b) Two Views in Parallel (c) General 2-View Case (d) Moving Objects

left camera right camera

Fig. 2. Multi-view geometry for object depth estimation in the (a) binocular, (b) parallel
two-view, (c) general two-view system and (d) that for moving objects.

3 Theoretical Analysis

In this section, we will first make a theoretical analysis for general stereo depth
estimation. Among different multi-view settings, the binocular case is the simplest
one and thus studied the most in the driving scenario [17,33,5]. We start with this
setting and further discuss the connection and difference when extending it to
general cases. Finally, we analyze the main challenges in the depth-from-motion
setting and introduce our framework design thereon.

3.1 Object Depth from Binocular Systems

Binocular systems strictly constrain two cameras on the same plane. As shown
in Fig. 2-(a), the focal length of cameras and the distance between the pair of
cameras (namely baseline of the system) are supposed to be constant. Following
the similar triangle rule under the pinhole camera model, they follow

d b

b
?:B:D:fé’ (1)
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where d is the horizontal disparity on the pair of images, f is the focal length of
cameras, D is the object depth, b is the baseline. Following Eq. 1, object depth
estimation can be transformed to a much easier disparity estimation problem.

3.2 Object Depth from General Two-View Systems

Binocular systems rely on two-view stereo geometry to estimate object depth.
Intuitively, two nearby images in a video also have similar stereo correspondence.
Can we use two-view geometry in this general case to predict object depth?

We step by step extend the geometry relationship in binocular systems to
general two-view cases. The analysis supposes the camera is in different positions
at time t; and to respectively, and we know the camera parameters at each
position. We assume all objects do not move at the beginning of this analysis
and discuss the object motion at the end.

As shown in Fig. 2-(b), suppose the camera’s movement only involves transla-
tion. We can obtain Az and AD from the transformation of camera poses. The
two-view geometry in this parallel case satisfies

Up — Cy T1 U2 — Cy x2

f Dy f Dy

Ax =x1 — 39, AD =Dy — D>, (2)

where (u1,v1) and (ug,v9) are a pair of corresponding points on the images, D;
and Dy are their depths, x; and x5 are their locations in 3D space along the
x-axis. From these relationships, we can derive D;:

f(Az — %AD) AD=0 [fAz

D, = .
Uy — U2 Uy — Uz

3)

The geometry relationship in binocular systems is its special case when AD = 0.

As Eq. 3 shows, in contrast to binocular system, the ”baseline” in this case
is no longer fixed but dynamic that relies on camera ego-motion Az, AD and
object absolute locations us. Accordingly, object depth estimation also relies on
them apart from the disparity u; — us.

To better understand this case, we quantitatively compare it with the binocular
system on KITTT as an example. It is well-known that a suitable baseline should
not be too large or small. A too-large baseline yields small shared regions of two
images, while a too-small baseline results in small disparities and large estimation
errors. So we take the binocular baseline (0.54 meters on KITTI) as our example
target to form with Ax—*2=%« AD in this case. Because the horizontal translation
Az is typically much smaller than 0.54 meters, we need a large translation along
the depth direction (AD) and a large horizontal distance from the 2D camera
center (ug — ¢,) to get a baseline large enough for stereo matching. For example,
to form the 0.54-meter baseline, when AD is 5.4 meters, f is 700 pixels, then
we need ug — ¢, = 70. Accordingly, when AD is only 2.7 meters, then we need
up — ¢, = 140 '. It means we can get more accurate estimations for objects far
from central lines and may encounter problems otherwise.

! For reference, the half-width of an image on KITTI is about 600 pixels.
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On this basis, involving ego-rotation (Fig. 2-(c¢)) will introduce rotation
coefficients entangled with object absolute positions to the disparity computation,
and involving object motion (Fig. 2-(d)) will introduce relative translation and
rotation factors. More introduction of absolute positions and motion estimation
errors makes direct depth estimation more difficult. See more derivation details
in the supplementary materials.

3.3 Achilles Heel of Depth from Motion

Based on the previous analysis, we can observe that direct derivation of depth in a
general two-view system involves many estimations like object absolute locations
and motions, thus having fundamental difficulties caused by cumulative errors. In
addition, the stereo-based solution has several cases that are intrinsically hard to
handle, such as no baseline formed by static cameras and the common ambiguity
problem of matching on less-textured regions.

Therefore, motivated by binocular approaches [5], we involve the complex
geometric relationship in a differential plane-sweep cost volume as the alternative
to establish the stereo correspondence: Considering we can not directly estimate
depth from disparity, we instead provide candidate depths for each pixel, reproject
these 2.5D points to another frame and learn which one is most likely according
to the pixel-wise feature similarity. Furthermore, to address the second challenge,
we introduce another path for monocular understanding to compensate the stereo
estimation. Next, we will elaborate on these designs with our framework in detail.

-
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Fig. 3. An overview of our framework.

4 Methodology

A general pipeline for camera-only 3D detection methods typically consists
of three stages: extracting features from input images, lifting the features to
3D space, and finally detecting 3D objects thereon. We build our framework
following this approach (Fig. 3). Next, we will introduce our overall framework
and present two key designs: geometry-aware cost volume construction and
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monocular compensation for stereo estimation. Finally, we propose a solution for
pose-free cases, making the framework more flexible.

4.1 Framework Overview

2D Feature Extraction Motivated by binocular approaches [5,12], given the
input image-pair (Iy, I;—s¢), we first use a shared 2D backbone to extract their
features (Fy, Fi—st). Afterward, we devise two different necks to generate F; as
geometric feature for stereo matching and Fi.,, as semantic feature following
[12]. To guarantee the semantic features can get correct supervision signals, they
are also used to perform the auxiliary 2D detection.

Stereo Matching and View Transformation After getting the features of
two frames, we construct the stereo cost volume F2f,, . with the pose transfor-
mation between them. In addition, we lift F; with pre-defined discrete depth
levels to get F5! in stereo space for subsequent monocular understanding. A
dual-path 3D aggregation network filters these two volumes to predict the depth
distribution volume Dp. Dp(u,v,:) represents the depth distribution of pixel
(u,v) over the depth levels. The depth prediction is supervised with projected
LiDAR points. Details of cost volume construction and the dual-path feature ag-
gregation will be presented in Sec. 4.2 and 4.3. Subsequently, we lift the semantic
feature Fgep with Dp, combine it with geometric stereo feature Pgiereo as the
final stereo feature, and sample voxel features thereon. As shown in Fig. 3, this
process transforms the feature in stereo space to voxel space, which has a regular
structure and is thus more convenient for us to perform object detection.
Voxel-Based 3D Detection Next, we merge the channel dimension and
height dimension to transform the 3D feature V32 to bird-eye-view (BEV) space,
and apply a 2D hourglass network to aggregate the BEV features. Finally, a
lightweight head is appended to predict 3D bounding boxes and their categories.
The training loss is composed of two parts as [12]: depth regression loss and
2D /3D detection loss. See more details in the supplemental materials.

4.2 Geometry-Aware Stereo Cost Volume Construction

The key component in the previously mentioned stereo matching is the construc-
tion of cost volume. In contrast to the binocular case, the pose transformation
between two frames is a rigid transformation composed of translation and rotation.
This difference affects the method to construct cost volume and makes it hard to
perform data augmentation on input images. Next, we will first formulate the
procedure of volume construction and then present how we make it compatible
with arbitrarily augmented input.

Formally, for each position x = (u,v,w) in the stereo volume, we can derive
the reprojection matrix W to warp F;_s: to the space of frame ¢ and concatenate
the corresponding feature together:

.Fffemo(ut, Ut,wt) = concat ]:t(uta Ut)yft—ét(ut—&a Ut—at)]7 (4)
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(Ut—étvvt—étvd(wt—ét))T = W(ut,vt,d(wt))T, W= KTK™!. (5)

Here (ut, vy, wy) and (ug—gt, Vi—st, wr—s¢) represent the queried pixel coordinates
in the stereo space of two frames. d(w) = w- Ad+ d,,y, is the function to calculate
the corresponding depth, where Ad is the divided depth interval and d,;, is
the minimum depth of detection range. WV is the reprojection matrix, which is
derived by multiplying intrinsic matrix K, ego-motion (rigid transformation) T
and K1, assuming the intrinsic matrix does not change across two frames. We
find that any data augmentation, such as image rescale or flip, can affect the
physical rationality of reprojection matrix WW. Constructing a geometry-aware cost
volume from augmented images here is not as trivial as in previous camera-only
detection methods. Therefore, we devise an approach to addressing this problem.

7, Gt G§t Pinono 1
lift flip 1
mE o
H H 1
Hifs e n Pluse
w/ flip, rescale, crop stereo grid w/ flip canonical space
warp
= G
Fest Ge-se o Pstereo

2 EEEEEE iection
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EEEEE  ampling

w/ flip, rescale, crop 2D grid w/o aug. canonical space

(a) Geometry-Aware Stereo Cost Volume Construction (b) Monocular Compensation

Fig. 4. Key components in our depth-from-motion module.

As shown in Fig. 4-(a), we need to find the corresponding features between a
pair of augmented image features (F;, F;—s5:). Our key idea is to guarantee the
warping transformation is conducted in the 3D real world, namely canonical
space. For example, if we perform flipping, rescaling, and cropping on the input
two images, we first need to append pre-defined depth levels to each 2D grid
coordinate of F; and lift each 2.5D coordinate to 3D. During transformation, the
effect of intrinsic augmentations like rescaling and cropping should be removed
through the manipulated? intrinsic matrix K. Afterward, we flip the stereo grid
G$ to get Gt in the canonical space. With the recovered grid, we can further
perform the pose transformation to get G5! ,, project it to the 2D plane and
obtain several G;_s; grid maps. Finally, we replay the image augmentations and
sample the corresponding features.

In this way, we can exploit any data augmentation to the input images without
influencing the intrinsic rationality of ego-motion transformation. Compared to
the tricky image swapping for flip augmentation in the binocular case and other
alternatives, our method is also generalizable for other multi-view cases.

2 Rescaling and cropping correspond to the manipulation of focal length and camera
centers proportionally.
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4.3 Monocular Compensation

The underlying philosophies of stereo and monocular depth estimation are dif-
ferent: stereo estimation relies on matching while monocular estimation relies
on the semantic and geometric understanding of a single image and data-driven
priors. As analyzed in Sec. 3.3, there are multiple cases that stereo estimation
approaches can not handle. Therefore, we incorporate the monocular contextual
prior to compensate stereo depth estimation.

Specifically, as shown in Fig. 4-(b), we use two 3D hourglass networks to
aggregate monocular and stereo features separately. The network for monocular
path shares the same architecture with the other, except for the input channel
is half given the F2! = is half of F5! ... Then we have two feature volumes
Priono and Psiereo in the stereo space with the same shape. To aggregate these
two features, we devise a simple yet effective and interpretable scheme. First,
Priono and Psiereo are concatenated and fed into a simple 2D convolutional
network composed of 1x1 kernel, and aggregated along the depth channel, e.g.,
compressed from 2D channels to D. Then the sigmoid response of this feature
serves as the weight wy,s. for guiding the fusion of Ppono and Psiereo. Formally,
denoting the convolutional network as ¢, this procedure is represented as follows:

Wfuse = U(¢(Pmon0a Pstereo))a Pfuse = wfuseOPsteTeo+(1_wfuse)opmono (6)

Here o denotes the sigmoid function, and o refers to element-wise multiplication.
The derived stereo feature Py, is directly used to predict the depth distribution
after a softmax and also fed into the subsequent networks for 3D detection.
This design is clean yet effective, as to be shown in the ablation studies of
Sec. 5.4. Furthermore, it is interpretable both intuitively and empirically. The
weight distribution of each position on the image is derived from monocular and
stereo depth distributions of the same position. It is location-aware for different
regions on the image, agnostic to specific reasons of inaccurate stereo estimation,
and self-adaptive to different input cases. We can also validate this expected
behavior by visualizing the weight wy,se and observe where stereo or monocular
estimation is more reliable. See more visualization analysis in Sec. 5.3.

4.4 Pose-Free Depth from Motion

Now we have an integrated framework for estimating depth and detecting 3D
objects from consecutive-frame images. In the framework, ego-pose serves as a
critical clue like the baseline in the binocular case. We essentially estimate the
metric-aware depth given the metric-aware pose transformation. Although it can
be easily obtained in practical applications, here we still propose a solution for
the pose-free case. It is useful for mobile devices in the wild and necessary for
evaluating our final models on the KITTI [8] test set.

The target formulation is critical for camera pose estimation. It is well
known that any rigid pose transformation can be decomposed as translation
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and rotation. Both have three Degrees of Freedom (DoF). Previous work [3,10]
typically regresses the 3D translation and three Euler angles. The regression of
translation t is straightforward. For rotation estimation, instead of estimating
the periodic Euler angles, we represent the rotation target with a unit quaternion
q. It is a more friendly formulation as the network output.

Therefore, the output of our pose network is a vector including translation
and unnormalized quaternion. We use the shared backbone as the encoder and

add a decoder following [10]. Our baseline supervises the output with L1 loss:
Lo=lle=tl £r=lla—qerll Lpose = Lot ALy (7)

However, this loss design has several problems: 1) Adjusting the weight \,. is
difficult and expensive; 2) There is a domain gap for two 2D images to directly
regress the 3D ego-motion; 3) We still need pose annotations during training.
Therefore, we use a self-supervised loss [10,11] to replace it, considering its
strength in these aspects. Specifically, the self-supervised loss is composed of an
appearance matching loss £,, and a depth smoothness loss L;:

ACpose(Ity Itftst) = ‘cp(Ita Itfﬁt%t) + )\s‘cs (8)

Here I;_s5;_,; represents the frame ¢ synthesized with the image and depth of
frame t — §t and the predicted pose. More details are in the supplemental.
Note that in contrast to [10,11], we use the LiDAR signal to supervise the
learning of depth directly and only use the self-supervised loss to learn pose. In
this way, because the learning of depth is supervised by absolute depth values,
we can also learn a metric-aware pose even without explicit pose annotations.

5 Experiments

5.1 Experimental Setup

Dataset We evaluate our method on the KITTI dataset [3]. It consists of
7481/7518 frames for training/testing and the training set is generally divided
into 3712/3769 samples as training/validation splits. In this paper, apart from
the multi-modality input data and annotations of the current frame, we also use
three temporarily preceding frames. Related pose information is extracted from
the raw data following Kinematic3D [3]. We use images and pose information of
these preceding frames and only use LiDAR as depth supervision during training.
Metrics KITTI uses Average Precision (AP) for 3D object detection evalu-
ation. It requires a 3D bounding box overlap of more than 70%/50%/50% for
car/pedestrian/cyclist. We report the APy results following [32], corresponding
to the AP of 40 recall points, which is more stable and fair for comparison.
Implementation Details We randomly select one of three temporarily preced-
ing images together with the current frame as training input while use the earliest
one during inference if not specified in experiments. Other hyper-parameter
settings, data augmentation methods and loss designs basically follow recent
binocular methods [5,12]. See more details in the supplemental materials.
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Table 1. AP, results on the KITTI validation benchmark.

AP3p IoU> 0.7 APpgrv IoU> 0.7

Methods Venue Easy Mod. Hard Easy Mod. Hard
MonoDIS [32] ICCV 2019 11.06 7.60 6.37 18.45 12.58 10.66
MonoPair [0] CVPR 2020 16.28 12.30 10.42 24.12 18.17 15.76
MoVi3D [31] ECCV 2020 14.28 11.13 9.68 22.36 17.87 15.73
MonoDLE [23] CVPR 2021 17.45 13.66 11.68 24.97 19.33 17.01
PGD [35] CoRL 2021 19.27 13.23 10.65 26.60 18.23 15.00

CaDDN [26] CVPR 2021 23.57 16.31 13.84 - - -

MonoFlex [41] CVPR 2021 23.64 17.51 14.83 - - -
MonoRCNN [29] ICCV 2021 16.61 13.19 10.65 25.29 19.22 15.30
GUPNet [21] ICCV 2021 22.76 16.46 13.72 31.07 22.94 19.75
DFR-Net [19] ICCV 2021 19.55 14.79 11.04 26.60 19.80 15.34
Kinematic3D [3] ECCV 2020 19.76 14.10 10.47 27.83 19.72 15.10
DIfM w/o pose ECCV 2022 26.65 18.49 15.94 34.97 25.00 22.00
DfM w/ pose ECCV 2022 29.27 20.22 17.46 38.60 27.13 24.05

5.2 Quantitative Analysis

Main Results First, we compare our framework with other state-of-the-art
methods on the KITTI validation benchmark (Tab. 1), considering the ego-pose
information is not available on the test set. We observe a significant improvement
in both 3D detection and bird-eye-view (BEV) performance, 2.6%~5.6% and
4.2%~7.5% higher than the previous best for all the difficulty levels respectively.
We conjecture that the better improvement on BEV performance is caused by
our paradigm of voxel-based 3D detector: it finally detects 3D objects from the
bird-eye-view following [42,16]. In addition, even without ego-pose information,
our framework still outperforms others by a notable margin. This further shows
the benefits brought by temporal information and stereo estimation. Please refer
to the supplemental for its performance on the test set and other categories.

Comparison with Video-Based Methods Compared to the only previous
methods using video information, Kinematic3D [3], our method also shows
significant superiority. The reason is that Kinematic3D focuses more on the
stability of detection and forecasting while our method pays more attention to
depth estimation. Considering that the evaluation metric on KITTI requires
particularly accurate localization for detected objects, our method naturally
shows better performance on the benchmark. Note that our method is also
compatible with some methods proposed in Kinematic3D. They can further
improve the detection stability and efficiency of our framework and provide a
natural integration with the downstream tasks such as tracking, prediction and
planning.

Comparison with Binocular Methods Although our approach has achieved
promising progress over previous monocular methods, we still observe a large
gap between ours and binocular state of the art (64.7% AP for moderate). It is
partly due to intrinsic weaknesses of the depth-from-motion setting. Nevertheless,

we can expect a large space for improvement as the advancement of binocular
methods, from RT3DStereo [141] (23.3% AP) to LIGA-Stereo [12] (64.7% AP).
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(a) Less-textured Regions (b) No Ego-Motion (c) Moving Objects & Large Baselines

Fig. 5. Qualitative Analysis of aggregation weights in different cases. The depth estima-
tion relies more on monocular priors for less textured regions in (a)(e), static cameras
in (b) and moving objects in (c¢)(d) while tends to use stereo matching on other cases,
especially on the background and the regions far away from camera centers in (f). Note
that our analysis is still valid when the car is turning a corner in (e) because the rotation
in the ego-motion is small in a short period.

5.3 Qualitative Analysis

For qualitative analysis, we show the visualization of aggregation weights (summed
along the depth axis) in Sec. 4.3 with some representative cases (Fig. 5). For
each sample plotted in the figure, we visualize the weight ranging from 0 to 1
above each image. Larger weights are marked with lighter regions in the weight
maps, which indicates that the depth estimation relies more on stereo matching.

Next, we will discuss the inherent problems of stereo methods in the depth-
from-motion setting analyzed in Sec. 3.3. In a general case, (a) shows that the
estimation relies more on monocular priors for less textured regions such as the
road. (b) shows a case that stereo matching will break down: no baseline is formed
by static cameras. (c) and (d) show that stereo methods can not handle moving
objects with the current pure design. In addition, on the right side of image (c),
when the richness of texture seems similar, the regions far away from camera
centers can form larger baselines. They can thus get more accurate estimations
from stereo matching. A similar phenomenon can be seen in sample (f). Finally,
even the driving car is turning a corner, all of our analysis is still valid because
the rotation in the ego-motion can not be quite large in a short period. This
weight is also learned adaptively for the crowded environment. These prove the
interpretability of our method and the necessity of monocular compensation. It
also points out possible directions for improving this group of the method, such
as handling moving objects with customized designs in the stereo estimation.

For the visualization of 3D detection and depth estimation results from the
perspective view and bird’s eye view, please refer to the demo video attached in
the supplementary material.
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5.4 Ablation Studies

Geometry-Aware Stereo Cost Volume First, we show the benefits of
geometry-aware stereo cost volume construction in Tab. 2. Both flip and rescale
augmentation can remarkably enhance the detector. We suspect that making the
cost volume more compatible with various augmented inputs can improve the
generalization ability of models for different scenes and camera intrinsic settings.

Table 2. From top to down: Ablation studies for (a) geometry-aware cost volume
construction, (b) detection performance of different depth estimation approaches, (c)
using different preceding frames during inference, and (d) different pose-free designs.

l AP3p IoU> 0.7 [ APprpyv IoU> 0.7
Methods | Fasy [ Mod. | Hard [ Easy | Mod. | Hard
Baseline 17.41 12.93 11.60 24.78 18.21 16.06
+Flip aug. 19.13 13.92 12.62 26.89 19.48 17.52
+Rescale aug. 21.47 15.32 13.83 29.22 21.22 19.51
Mono Only 20.06 15.30 14.05 27.84 21.78 19.96
Stereo Only 21.47 15.32 13.83 29.22 21.22 19.51
Mono+Stereo 26.61 18.82 16.47 36.16 26.09 23.17
Prev-1st 24.09 17.27 15.03 35.50 25.24 22.82
Prev-2nd 24.92 17.62 15.68 35.89 25.39 22.99
Prev-3rd 25.19 17.96 15.92 36.16 25.88 23.03
Euler for rotation 20.16 15.03 13.01 28.96 21.21 19.08
+ quaternion 23.88 16.93 14.47 33.23 23.75 20.72
+ reproj. supervision 26.65 18.49 15.94 34.97 25.00 22.00

Monocular Compensation We compare different approaches for depth esti-
mation in Tab. 2 and Fig. 6. We turn off one of two branches in Sec. 4.3 by setting
the corresponding weight to zero during training and compare their detection
(Tab. 2) and depth estimation accuracy (Fig. 6). We can see that with only
monocular context, models still achieve a decent detection performance while
failing on depth estimation of the entire scene. Stereo matching performs better
on both aspects, especially the latter. Because these modules compensate each
other fundamentally, our aggregation design brings an impressive gain thereon.

Different Preceding Frames As analyzed in Sec. 3.3, the distance of ego-
vehicle in two frames can affect the baseline in this depth-from-motion setting
and thus affect the accuracy of stereo matching. To compare the effect of using
different frames, we train the model with a randomly selected previous frame for
each sample and test it with a fixed one. Note that when the sample does not
have the corresponding preceding frame, for instance, the third preceding one, we
will use the earliest one that it has. As Tab. 2 shows, using the third preceding
frame performs better than others up to about 1% mAP, which validates our
analysis. This study has additional space for exploration: If given more previous
frames, which one would be the best choice? If we involve multiple frames into
stereo matching and depth estimation, what is a better frame selection design?
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Pose-Free Designs  Finally, we study the specific designs for pose-free depth
from motion. Our baseline uses the Euler angle as the rotation representation as
[3] and directly regresses the translation and rotation with the pose supervision.
We further try the quaternion representation and reprojected photometric loss
as the supervision, and both show superiority than before. More importantly,
we can avoid the pose annotation completely with the self-supervised paradigm,
which is especially important for the practice in the real world.

(a) Depth Error Analysis for Foreground Points (b) Depth Error Analysis for All the Points

100

90
B Mono Only
- Stereo Only
BN Mono+Sterco

EEE Mono Only
80 756 W Stereo Only
- W Mono+Stereo

80
704 66.6
60

50

Ratio of fg. depth error > threshold (%)

3
%
Ratio of all points w/ depth error > threshold (%)

0.2m 0.4m 0.8m 1.6m
Error thresholds Error thresholds

0.4m 0.8m

Fig. 6. We make error analysis for the depth predictions of foreground region and the
entire scene by different methods, respectively, by comparing the percentage of points
with depth errors greater than thresholds: 0.2m, 0.4m, 0.8m, 1.6m. The error medians
of monocular/stereo/hybrid methods on the foreground region/the entire scene are
5.86/3.33/2.60m and 1.15/0.58/0.48m.

6 Conclusion

In this paper, we propose a framework for monocular 3D detection from videos.
It lifts 2D image features to 3D space via an effective depth estimation mod-
ule and detects 3D objects on top. The depth-from-motion system leverages
an important ego-motion clue to estimate depth from stereo matching, which
is further compensated with monocular understanding for addressing several
intrinsic dilemmas. To make this framework more flexible, we further extend
it to pose-free case with an effective rotation formulation and a self-supervised
paradigm. Experimental results show the efficacy of our method and validate our
theoretical discussion. In the future, we will optimize our framework in terms
its simplicity and generalization ability. How to address the stereo estimation of
moving objects is also an important problem worthy of further exploration.
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