
Supplementary:
DISP6D: Disentangled Implicit Shape and Pose

Learning for Scalable 6D Pose Estimation

A Overview

The supplementary document is divided into several sections, to provide more
details of our design and discussion of experiments mentioned in the main text:

Sec. B presents the detailed network structures, including our AdaIN mod-
ulation with ablation on the decoder design by switching the roles of shape and
pose codes, as well as the 4D HSH formula for rotational position encoding.

Sec. C includes additional details about the training procedure, including the
EMA update of CO and training data synthesis.

Sec. D illustrates how we conduct translation and scale estimation for novel
objects with unknown physical size (Settings I, III).

Sec. E supplements the discussion for Ours-per (Setting I), with more quali-
tative results, comparison with NOCS under the 3D IoU metric, and comparison
with RGBD fusion networks.

Sec. F supplements the discussion for Ours-all (Setting III), with qualitative
results, comparison with NOCS-all and PoseContrast, and the visualization of
pose codes for a wine bottle with texture resolving its axial symmetric ambiguity.

Sec. G supplements discussion for setting II on T-LESS, with the visualization
of 30 T-LESS models, more qualitative cases and our per-object recall rate for
“detection+pose estimation” pipeline (Tab. 1b of main text).

Sec. H reports our evaluation regarding the instance-level pose estimation.

B Detailed Network Structures

We provide the detailed network architectures of encoder E, decoder Drgb and
Ddepth, and conditioned block B in Fig. 1. Furthermore, we explain details of
the AdaIN modulation and 4D HSH formula for rotational position encoding in
the subsections below.

B.1 AdaIN Modulation (Sec. 3.1 of Main Text)

We use the AdaIN modulation[26] to condition the per-view reconstruction on
object code. Specifically, we transform the shape code by (gs

i , g
b
i ) = FCi(zo) ∈

R2Ci and modulate the intermediate feature map Fi ∈ RCi×Hi×Wi decoded from
the pose code by

F̃i = gs
i ⊙

Fi − µ(Fi)

σ(Fi)
+ gb

i ,
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Fig. 1: The detailed network structures. The layer parameters are in the formats:
Conv(filter height, filter width, stride, filter number), FC(output dimension) and
W(output dimension). For encoder, we use instance normalization (IN) and L2
normalization only when training on the NOCS CAMERA dataset.

where FCi is a fully connected layer, ⊙ is the element-wise product, and µ(·)
and σ(·) compute the mean and standard deviation vectors across the spatial
dimensions, respectively.

We note that an alternative is to swap the roles of shape zo and pose zp,
and decode from zo with zp as the condition in AdaIN modulation. We compare
these two configurations by following setting III (Sec. 5.3 of main text) to train
on the CAMERA by combining all 6 categories into one set, and report the
average precision on REAL275 in Tab. 1.

Tab. 1 verifies our design of using the zo-conditioned decoder: the swapping of
zo and zp for decoder notably degrades performance across different thresholds.

Qualitatively we observe that during training with the zp-modulated decoder,
the shape contrastive loss is hard to minimize and as a result, objects cannot
find their corresponding representations as nearest neighbors in the latent shape
space (see Fig. 2 for examples of training images not retrieving proper objects
based on cosine distance Eq. 2 of main text), which also lead to poor scaling
to novel objects at the test stage. This performance difference from the zo-
modulated decoder can be attributed to the fact that AdaIN modulation changes
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Table 1: Ablation study on the decoder design. Reported are mAP at different
thresholds of rotation error (in degrees) for mixed categories of REAL275 (setting
III)

AP5 AP10 AP15 AP20 AP30 AP60

zp-conditioned decoder 2.6 14.7 29.8 43.5 59.9 79.1
zo-conditioned decoder 9.1 30.9 50.7 64.4 75.3 84.3

Query image crops from the CAMERA training set

Retrieved 1NN object, w.r.t using a zp-conditioned decoder

Retrieved 1NN object, w.r.t using a zo-conditioned decoder

Fig. 2: Qualitative results on shape retrieval for image crops from the CAMERA
training set, with regard to different decoder designs. For each column, the top
row shows the training image, the middle row the retrieved 1-nearest neighbor
object by using the zp-conditioned decoder, and the bottom row the nearest
neighbor object by using the zo-conditioned decoder.

the overall structure of an image by the spatially uniform affine transformation,
which better matches the semantics of shape representation that controls drastic
shape variations, rather than the semantics of pose representation that controls
the gradual and local variation of viewpoints. By using zp for overall structural
AdaIN modulation, the zp-conditioned decoder effectively forces the shape code
to encode both different objects and their subtle view changes simultaneously,
which are conflicting aims and lead to many difficulties for learning both shape
space and its conditioned pose space.

B.2 4D HSH Formula (Sec. 3.3 of Main Text)

For a rotation p ∈ SO(3) with in-plane rotation β ∈ [0, 2π], zenith θ ∈ [0, π] and
azimuth ϕ ∈ [0, 2π], and l,m, n being the polynomial degrees, the corresponding
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4D HSH function is constructed as

Zm
nl(β, θ, ϕ) =2l+1/2

√
(n+ 1)Γ (n− l + 1)

πΓ (n+ l + 2)
Γ (l + 1)

sinl
β

2
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2
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with Cl+1
n−1 as the Gegenbauer polynomials, and the 3D spherical harmonics

Y m
l (θ, ϕ) ∈ C as

Y m
l (θ, ϕ) =

√
2l + 1

4π

(l −m)!

(l +m)!
eimϕPm

l (cos θ),

where Pm
l is the associated Legendre function. We then follow Alg. 1 to compute

each dimension of the rotational position encoding hp for pose p. We have shifted
β with a small delta of 0.05π, as we observe that having β = 0 among the sampled
rotations would lead to sinl β

2 = 0 for l ̸= 0 and thus the full 128 dimensions of
hp become sparse.

Algorithm 1 Generation of the rotational position encoding hp for rotation
p(β, θ, ϕ)

β := β + 0.05π
x := 0
for each n ∈ [0, ..., 6] do

for each l ∈ [0, ..., n] do
for each m ∈ [0, ..., l] do

while the dimension index x ≤ 128 do
hp[x] := Re(Zm

nl(β, θ, ϕ))
hp[x+ 1] := Im(Zm

nl(β, θ, ϕ))
x := x+ 2

end while
end for

end for
end for

C Training Procedure

C.1 EMA Update of CO (Sec. 3.2 of Main Text)

For each ci ∈ CO, we maintain for it two variables: ni ∈ R+ and mi ∈ Rd, d =
128, with ni initialized as 1, and each entry of mi randomly initialized by the
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normal distribution N (0, 1). During each SGD iteration, the variables are up-
dated as follows:

ni ← dsni + (1− ds)
∑
o

wo
i

mi ← dsmi + (1− ds)
∑
o

wo
izo

ci ←mi/ni

where o iterates over the training objects in a mini-batch, wo ∈ {0, 1}NO is the
target distribution used for the shape contrastive metric learning, and ds is the
exponential decay rate.

C.2 Training Data and Augmentation Strategy

To prepare the training images for T-LESS objects, we sample 92232 rotations
from the combination of 36 in-plane rotations and 2562 equidistant spheri-
cal views sampled via [20]. With these sampled rotations, we follow AAE[49]
and Multipath-AAE[48] to rotate and center the object with a fixed distance
along the camera axis (700mm), and render the groundtruth images under fixed
lighting with a plain background. Note that our rendering uses simple lighting
and rasterization, rather than the physically-based renderer (PBR) in [25,12].
We then augment the corresponding encoder input image following Multipath-
AAE[48], with random operations including: 1) changing lighting conditions, 2)
applying 2D translation and 2D scaling, 3) adding random background images,
and 4) tone mapping the color channels.

To train on the CAMERA dataset, we take the training images of the CAM-
ERA dataset. For each instance we use the image patch masked by its groundtruth
2D mask as the encoder input, and further augment the image by following
Multipath-AAE to: 1) apply random 2D scaling and 2) randomly adjust bright-
ness for the camera category and color channels for other categories. We sepa-
rately process camera and other categories, because for camera the color hue is
critical for distinguishing poses (e.g., the front side with lens and the back side
with display). To prepare the corresponding reconstruction target, we place the
3D model under the groundtruth rotation and a fixed distance along the cam-
era axis (1 unit), and render the target image under fixed lighting with a plain
background. Moreover, noticing the biased tendency of aligned training cameras
to have their handles on the left side, we augment the camera objects by flipping
the z-coordinate of camera meshes and putting them into the training set.

D Translation and Scale Estimation for Novel Objects
with Unknown Physical Size (Settings I, III)

For novel test objects whose physical sizes are unknown, the RGB-based trans-
lation estimation along the camera axis becomes ill-conditioned due to the scale
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ambiguity. Therefore, we refer to depth to remove the scale ambiguity and es-
timate the translation along the camera axis (i.e., Tz), by bounding box size
comparison and mean depth comparison between the query depth and the depth
reconstructed from Ddepth. The full 3D translation T = (Tx, Ty, Tz)

T could then
be recovered with the pinhole camera model, based on the estimated Tz and
the detected 2D bounding box center (tx, ty). We illustrate the detailed process
below.
Step 1. Transform the observed query depth map M to the point cloud O in
the query camera coordinate system with the query camera intrinsic K:

O =W(K,M)

where W(·, ·) is the inverse-projection operation to transform the depth map
into the 3D point cloud under the camera space. We note that the z-axis is the
camera axis and the z-coordinates of the 3D point cloud are equal to the depth
map values, while the x, y-coordinates are recovered accordingly by referring to
the pinhole camera model with the given camera intrinsic.

We further filter the query O with outlier removal, where we delete points in
O if they are distant from their k-th (e.g., k = 100) nearest neighbors searched
in O, with the distance threshold as 5cm.
Step 2. Transform the reconstructed depth Mr = Ddepth(E(I)) to a point
cloud Or in the object coordinate system, where I is the query image and Or

is recovered to be a representation of the visible part for the observed object
placed with the observed rotation in its object coordinate system.

To derive Or from Mr, we recall that Mr is supervised to reconstruct
a canonical depth map of the object under the observed orientation, whose
groundtruth signal is rendered by placing the rotated object at a fixed distance
tr,z along the camera axis (i.e., z-axis). Therefore with the training camera in-
trinsic Kr and Tr,z, Or could be recovered by an inverse process of rendering:

Or =W(Kr,Mr)− (0, 0, Tr,z)
T

Step 3. Estimate the relative scaling factor s from Or to O. We compute s as
the diagonal ratio of the bounding box along the x, y-axes between O and Or.
Note that for scale estimation we do not refer to the z-axis, in order to reduce
the influence from the noise of depth values.
Step 4. Estimate the translation along the z-axis (i.e., camera axis) Tz with
the mean depth comparison

Tz = avg(Oz)− s avg(Or,z)

where avg(Oz), avg(Or,z) respectively denote the average of z-value for O and
Or.
Step 5. Recover the full translation. We assume the 2D projected bounding
box of decoder output is centered, and derive the translation Tx, Ty along the
xy-plane with the pinhole camera model as

Tx = Tz(tx − px)/fx

Ty = Tz(ty − py)/fy
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where (tx, ty) is the 2D bounding box center obtained from detection, and
(fx, fy), (px, px) are the focal and principal point of the query camera intrin-
sic K.
Step 6. Outlier removal. We note that the mean depth and bounding box size
are sensitive to outliers. Therefore we align sOr + T with the observed O and
conduct a simple outlier removal for both Or and O, where from Or we remove
point pr ∈ Or if spr + T is distant from the observed depth O, and from O we
remove points that are distant from sOr + T .
Step 7. Update s,T with the filtered Or and O. We once again estimate the
translation T and scale s by following the procedure described from Step 3 to
Step 5 and comparing the filtered Or and O.

E Supplementary for Ours-per (Sec. 5.2 of Main Text,
Setting I)

Qualitative Results We provide in Fig. 7 more qualitative cases of our pose
estimation result for Ours-per on all 6 scenes of the REAL275 testing set.
3D IoU To supplement Sec. 5.2 of our main text, we report in Fig. 5c the
3D IoU for Ours-per and compare it with NOCS[56] (denoted as NOCS-per in
Fig. 5c). 3D IoU not only evaluates the 6D pose estimation but also takes scale
estimation into consideration. We note that our closest prior work [11] neither
reports 3D IoU nor discusses on scale estimation.

With a simple mean depth comparison for translation and bounding box size
comparison for scale estimation, we observe a comparable average performance
between Ours-per and NOCS [56] with the 3D IoU metric, while our contribution
to rotation estimation is clearly supported by the numerical results on rotation
error (Fig. 5a), as is also discussed in the main text.
Comparison with RGBD Fusion Networks To provide a more complete
view of different category-level pose estimation methods, we include for compar-
ison more methods that fuse RGBD input by networks [53,6,7,9,35], particularly
the state-of-the-art CASS[6], SPD [53], SGPA[7] and DualPoseNet [35] which
provide open-source codes. Note that all these methods train pose estimation
networks with real data from REAL275[56], which further helps bridge the do-
main gap between training and testing data. The settings and scopes of different
methods are listed in Tab. 2. Fig. 6 shows the mAP of rotation error, trans-
lation error and 3D IoU at different thresholds. As shown here, we note that
fusing RGB and depth map with a powerful 3D point cloud processing module
can significantly boost pose estimation performance, which can be an important
augmentation to our simple but scalable pose estimation framework.

F Supplementary for Ours-all(Sec. 5.3 of main text,
Setting III)

Qualitative Results We provide in Fig. 7 qualitative cases of our pose estima-
tion result for Ours-all on all 6 scenes of the REAL275 testing set.
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Table 2: Comparing the scopes of different methods on REAL275. All methods
follow setting I to assign each category a specific network branch, and use query
depth for translation estimation.

CASS[6] SPD[53] DualPoseNet[35] SGPA[7] NOCS[56] Chen et al.[11] Ours-per

RGB-only network input × × × × ✓ ✓ ✓
Synthetic training data only × × × × × ✓ ✓

RGB-only for rotation estimation × × × × × ✓ ✓

Table 3: Comparing the scopes between ours and NOCS regarding setting III
(i.e., Ours-all, NOCS-all) and setting I (i.e., Ours-per, NOCS-per). Note that
NOCS-per is the original NOCS [56] that trains respective NOCS map branches
for different categories. All methods refer to query depth for translation estima-
tion.

NOCS-per[56] Ours-per NOCS-all Ours-all

Synthetic training data only × ✓ × ✓
RGB-only for rotation estimation × ✓ × ✓

Uniform loss for categories with different object symmetry × ✓ × ✓
Extention to cross-category × × ✓ ✓

Comparison between Ours-all and NOCS-all To supplement the discus-
sion of Ours-all, we train NOCS-all for NOCS[56] by using a common NOCS
map head for all 6 categories, where we follow the training configuration of
NOCS[56] to train on both synthetic data and real data, and adopt the same
loss function from NOCS[56] by referring to the category label and processing dif-
ferent object symmetry among different categories. We note that with the design
of object-conditioned pose code generalization, Ours-all exempts the respective
loss designs for different categories and adaptively accommodates various ob-
ject symmetries. We recap the key differences between Ours-all, NOCS-all in
Tab. 3, where we include also the original NOCS[56](denoted as NOCS-per) and
Ours-per for comparison.

We report the mAP for rotation error, translation error and 3D IoU for pose
estimation in Fig. 5. By comparing the two cross-category variants, we observe
that Ours-all significantly outperforms NOCS-all on rotation estimation for all
6 categories, and reports better performance than NOCS-all regarding the mean
3D IoU. Since compared with NOCS-per, NOCS-all uses a shared NOCS map
prediction head for different categories, we hypothesize that the inter-categorical
shape variances pose significant challenges for the shared NOCS map branch
to exploit shape similarity and extract shape consistency across categories for
reliable NOCS map prediction. In contrast, Ours-all shows competitive perfor-
mance as discussed in Sec. 5.3 of the main text, which is enabled by the shape
space metric learning. Indeed, to address the scalability issue our shape-space
contrastive metric learns to model the shape similarity based on instance-level
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Table 4: Comparison of rotation estimation with PoseContrast[60] on REAL275
with GT 2D mask. We report rotation accuracy under the error threshold of
30◦.

Bottle Bowl Camera Can Laptop Mug Ave.

PoseContrast[60] 83.5 81.9 11.7 87.2 30.0 35.8 55.0
Ours-all 96.8 99.8 58.6 99.3 93.9 91.0 89.9

Fig. 3: Visualization of pose codes for a textured wine bottle viewed in 360◦ as
it rotates axially (upper). We show the top two PCA projection of pose codes
zp, zo,p produced by Ours-all network (bottom), with point color encoding the
viewpoints above. Texture has enabled distinguishing axial symmetries.

shape discrimination, which allows adaptive exploitation for both inter- and
intra-categorical shape features without referring to categorical labels.

Comparison between Ours-all and PoseContrast We compare with a
state-of-the-art PoseContrast[60] that works on the cross-category setting for
resolving only the 3D rotation estimation, where we retrain PoseContrast[60] on
our setting III of cross-category objects, and evaluate only the rotation accu-
racy on REAL275 images with GT 2D mask. Results in Table 4 demonstrate
our superiority in rotation learning for accommodating categories with different
object symmetry, where PoseContrast[60] does not handle objects with different
symmetries as well as we do.

Visualization of Pose Codes for the Textured Bottle For symmetric ob-
jects with textural features solving the pose ambiguity, we note that our network
can indeed tell the different poses by referring to the textures. Taking a textured
wine bottle from the CAMERA training objects as an example, we rotate it
around its symmetry axis and respectively inspect the top 2 PCA projections
for pose codes zp, zo,p. The visualization result is in Fig. 3, where the pose codes
well describe the different textural appearance.
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Table 5: Object recall rate with eV SD < 0.3 for our full 2D detection+pose
estimation pipeline, where we train on Obj. 1-18 and report on all 30 objects.
Instances with visible portion > 10% for all T-LESS Primesense images are
considered.

Obj-id 1 2 3 4 5 6 7 8 9 10

Recall rate 26.05 16.85 33.52 25.43 51.73 47.90 19.53 21.85 32.88 44.50

Obj-id 11 12 13 14 15 16 17 18 19 20

Recall rate 21.14 42.97 41.44 35.28 42.77 41.23 49.06 65.90 22.77 24.09

Obj-id 21 22 23 24 25 26 27 28 29 30

Recall rate 33.22 20.44 18.18 42.32 34.28 45.73 27.42 43.67 52.91 35.66

Fig. 4: 30 objects included in the T-LESS dataset [23].

G Results on T-LESS (Sec. 5.4 of main text, Setting II)

30 Objects Included in T-LESS In Fig. 4, we visualize the CAD models of
all 30 objects in T-LESS[23]. As we train on Obj. 1-18 while leaving Obj. 19-30
as novel objects in the testing stage, the drastic shape variance and different ro-
tational symmetry can be observed when comparing among the training objects,
and comparing between the training objects and the unseen test objects. Our
method accommodates these different shapes by a single network.

Per-Object Recall Rate for the Full “Detection+Pose Estimation”
Pipeline. For the pose estimation results with 2D bounding boxes detected by
MaskR-CNN [17] (Tab. 1b in the main text), we report the detailed recall rate
with eV SD < 0.3 for each of the 30 objects in Tab. 5. Here we have followed the
single object single instance protocol as described in [24].

Qualitative Results for the Full “Detection+Pose Estimation” Pipeline.
We provide in Fig. 8 more qualitative cases of our full “detection+pose estima-
tion” pipeline. We notice false negatives caused by failures of 2D detection.
However, for the detected instances, our pose estimation could well process both
trained and novel objects, even under the challenging conditions of cluttering
and partial occlusion.
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Table 6: Comparison of pose estimation on T-LESS dataset, following the ViVo
setting of BOP Challenge 2020[25]. All reported methods test with single RGB
image. † indicates having post-refinement. Bold statistics in black, red, and blue
respectively indicate the best, second best, and third best.

Method Training Image Type ARV SD ARMSSD ARMSPD AR Time(s)

AAE[50] Real+Syn 0.196 0.211 0.504 0.304 0.194
Pix2Pose[42] Real 0.261 0.296 0.476 0.344 1.084
CDPN[34] Syn 0.303 0.338 0.579 0.407 1.849
EPOS[22] Syn 0.380 0.403 0.619 0.467 1.992

CosyPose[32]† Syn 0.571 0.589 0.761 0.640 0.493
Ours Syn 0.316 0.326 0.650 0.431 0.118

H Instance-Level Pose Estimation

To explore the limiting case of instance level pose estimation where all objects are
used for training, we compare with the state-of-the-art instance-level methods
[49,50,42,34,32,22] on the T-LESS dataset, where we follow the setting of BOP
Challenge 2020[25] to evaluate our method on the ViVo task (varying number
of instances of a varying number of objects) for 6D localization.
Metrics Three pose-error metrics are measured in the BOP challenge[25]: Vis-
ible Surface Discrepancy (VSD), Maximum Symmetry-Aware Surface Distance
(MSSD), and Maximum Symmetry-Aware Projection Distance (MSPD). These
metrics are invariant under symmetry ambiguity.

For each metric, we follow the BOP Challenge[25] to calculate the average
recall rate under a list of thresholds of correctness (denoted ARV SD, ARMSSD,
ARMSPD), as well as the overall average recall AR = (ARV SD + ARMSSD +
ARMSPD)/3.
Training StrategyWe train our network on all 30 T-LESS models. Our training
set combines synthetic images with 92232 poses per object rendered by the
pipeline described in Sec.C.2, and the photorealistic training images from the
BOP challenge, which are generated by a physically-based renderer (PBR)[12].
This combination helps us to learn regular latent spaces and to better bridge
the synthetic-to-real domain gap. Our 2D detector is the MaskR-CNN adopted
from CosyPose [32].
Results and Comparison We test our method on a machine with i7-6700K
4GHz CPU and Nvidia GTX 1080 GPU, and report the performance and the
average running time per image in Tab. 6, where we compare with other single
RGB-based methods from the BOP leaderboard. Note that CDPN[34], EPOS[22]
and CosyPose[32] are trained with synthetic PBR images, while Pix2Pose[42] is
trained with real images.

Among the methods listed in Tab. 6, ours is capable of providing a fast yet re-
liable pose estimation, which could serve as initialization and be further refined if
applicable. Specifically, we rank third by the overall AR, and second by ARMSPD

which evaluates the 2D projections and thus exempts from the influence of inac-
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curate depth estimation. Meanwhile, building on an autoencoding pipeline (same
as AAE [50]) enables our approach to do fast pose estimation for detected in-
stances, with lower time cost compared with the other methods [42,34,22,32].
Cosypose [32] has the best performance among all error metrics; however, it
relies on post-refinement with a regression network after the initial pose esti-
mation. EPOS [22] also outperforms ours overall, as it uses PnP-RANSAC on
many-to-many 2D-3D correspondences for reliable rotation and translation with
a significant time cost. In comparison, our estimated depth from the pinhole
camera model is sensitive to the inaccurate size of the detected 2D bounding
box, and we show better performance on ARMSPD where the influence of depth
error is minimized.
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(a) Rotation: AP at different rotation error thresholds

(b) Translation:AP at different translation error thresholds

(c) 3D IoU:AP at different 3D IoU thresholds

Fig. 5: Comparison on REAL275 for ours and NOCS [56] regarding setting I
(i.e., Ours-per, NOCS-per) and setting III (i.e., Ours-all, NOCS-all). Note that
NOCS-per is the original NOCS [56] that trains respective NOCS map branches
for different categories. Scope of compared methods is listed in Tab. 3. Reported
are the average precision under different rotation or translation errors and 3D
IoU thresholds.
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(a) Rotation: AP at different rotation error thresholds

(b) Translation:AP at different translation error thresholds

(c) 3D IoU:AP at different 3D IoU thresholds

Fig. 6: Comparison on REAL275 regarding setting I. Scope of compared methods
is listed in Tab. 2. Reported are the average precision under different rotation
or translation error and 3D IoU thresholds. CASS [6], SPD [53], SGPA [7] and
DualPoseNet [35] fuse RGBD input by networks and train with real data.
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Fig. 7: Qualitative results on the 6 test scenes of REAL275 for Ours-per(Setting
I) and Ours-all(Setting III). Images of a column belong to a scene.
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Fig. 8: Qualitative cases on T-LESS of setting II. Blue and red boxes respectively
indicate our estimation on trained objects and unseen objects, with green box
indicating the groundtruth.
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