
Unifying Visual Perception by Dispersible
Points Learning

Jianming Liang1,2⋆, Guanglu Song2, Biao Leng1, and Yu Liu2�

1 School of Computer Science and Engineering, Beihang University
2 SenseTime Research

ljmmm1997@gmail.com, songguanglu@sensetime.com,
lengbiao@buaa.edu.cn, liuyuisanai@gmail.com

Abstract. We present a conceptually simple, flexible, and universal
visual perception head for variant visual tasks, e.g., classification, ob-
ject detection, instance segmentation and pose estimation, and different
frameworks, such as one-stage or two-stage pipelines. Our approach effec-
tively identifies an object in an image while simultaneously generating a
high-quality bounding box or contour-based segmentation mask or set of
keypoints. The method, called UniHead, views different visual perception
tasks as the dispersible points learning via the transformer encoder ar-
chitecture. Given a fixed spatial coordinate, UniHead adaptively scatters
it to different spatial points and reasons about their relations by trans-
former encoder. It directly outputs the final set of predictions in the
form of multiple points, allowing us to perform different visual tasks in
different frameworks with the same head design. We show extensive eval-
uations on ImageNet classification and all three tracks of the COCO suite
of challenges, including object detection, instance segmentation and pose
estimation. Without bells and whistles, UniHead can unify these visual
tasks via a single visual head design and achieve comparable performance
compared to expert models developed for each task. We hope our simple
and universal UniHead will serve as a solid baseline and help promote
universal visual perception research. Code and models are available at
https://github.com/Sense-X/UniHead.

Keywords: Dispersible points learning, transformer encoder, general
visual perception

1 Introduction

Image classification [12], object detection [16,24], instance segmentation [24,8]
and human pose estimation [24,1] are the vital visual perception tasks in com-
puter vision. The vision community has rapidly improved results by developing
robust feature representation. Regardless of the development of the powerful
backbone, in large part, these advances are inseparable from the task-aware vi-
sual head structure design, such as TSD [36], CondInst [40] and CPN [7], or

⋆ Work is done during the internship at SenseTime.

https://github.com/Sense-X/UniHead


2 J. Liang et al.

Detection

Segmentation

Classification

Pose Estimation

backbone

feature map

convs

MLP

Class
Person

Bird
Car
……

image feature

backbone

Class
Person

Bird
Car
……

anchor/proposal 
feature

backbone
MLP

MLP

backbone decode

feature map heatmap

convs

(a) Prediction targets in different visual tasks.

transformer
encoders

*
cls token

IoU token

MLP

Class
Person

Bird
Car
……

bbox

contour

keypoints

transformer
encoders

*

*
vis token

(b) Unifying visual perception by UniHead.

Fig. 1: (a). Illustration of the typical pipelines for different visual tasks. Different
sub-tasks require different prediction targets and different feature structures.
(b). Illustration of the UniHead design. Given a fixed spatial coordinate, UniHead
adaptively scatters it to different spatial points and reasons about their relations
by transformer encoders. It directly outputs a set of predictions in the form of
multiple points to perform different visual tasks.

the elaborate frameworks construction, e.g., one-stage detectors [23,26,41] and
two-stage detectors [34,4]. These methods are conceptually experienced and in-
troduce task exclusivity, e.g., TSD [36] developed in object detection cannot be
migrated to pose estimation. Our goal in this work is to develop a comparably
generalized feature representation learning with task-agnostic structure design
for unifying visual perception.

The main barriers behind this are: 1) As shown in Fig.1(a), the different
prediction targets force the visual perception into different sub-tasks, i.e., a class
label for image classification, a bounding box for object detection, a pixel-wised
mask for instance segmentation, and a group of landmarks for pose estimation.
2) How to conduct a task-agnostic head module which can generalize to all sub-
tasks and frameworks while achieving good results? Given this, one might expect
a complex head design is required to solve these barriers. However, we show that
a surprisingly simple, flexible, and universal head module can easily generalize
to different visual tasks or frameworks and surpass prior expert models in each
individual task.



Unifying Visual Perception by Dispersible Points Learning 3

Our method, called UniHead, can be directly migrated to variant visual
frameworks, e.g., Faster RCNN [34], FCOS [41] and ATSS [50], by formulating
the prediction targets as the dispersible points learning. As shown in Fig.1(b),
UniHead is built upon any network backbone and the prediction targets for dif-
ferent tasks can be achieved by a basic yet effective points estimation. Given a
fixed spatial coordinate, UniHead adaptively scatters it to different spatial points
and reasons about their relations by several stacked transformer encoders. It di-
rectly outputs the final set of predictions in the form of multiple points, which
is robust to geometric variations an object can exhibit, including scale, defor-
mation, and orientation. For image classification, the points directly predict the
object class. For object detection, the points are placed along the four edges of a
bounding box. For instance segmentation, the points are evenly distributed along
the instance mask contour. For pose estimation, the position of points conforms
to the pose distribution of the training data.

Furthermore, we found it essential to adapt the initial position of the points
according to different prediction targets. This can effectively alleviate the dif-
ficulty of optimization under the requirement of fitting objects with different
scales and orientations. Additionally, the UniHead only adds a small computa-
tional overhead, enabling a universal system and rapid experimentation.

Without bells and whistles, UniHead can be equipped with popular back-
bones on different visual tasks, such as ResNet [18], ResNeXt [46], Swin Trans-
former [27], etc. It excels on the ImageNet [12] classification and all three tracks
of the COCO [24] suite of challenges, including object detection, instance seg-
mentation, and human pose estimation. We conduct extensive experiments to
showcase the generality of our UniHead. By viewing each task as the dispersible
points learning via the transformer encoder architecture, UniHead can perform
comparably without any special design for specific tasks. UniHead, therefore, can
be seen more broadly as a universal head module for visual perception and easily
migrated to more complex tasks.

To summarize, our contributions are as follows:
1) We develop a comparably generalized dispersible points learning method

for unifying visual perception. We hope our work can inspire the vision commu-
nity to explore a unified vision framework.

2) We introduce the transformer encoder to reason about the relations of
dispersible points and the adaptively points initialization to handle the geometric
variations an object can exhibit, including scale, deformation, and orientation.

3) Detailed experiments on ImageNet [12] and MS-COCO [24] datasets show
that UniHead can easily generalize to different tasks while obtaining comparable
performance compared to the expert models developed in individual tasks.

2 Related Work

Image classification [12], object detection [16,24], instance segmentation [24,8]
and pose estimation [1,24] are four popular tasks in computer vision. They all
benefit a lot from the development of deep neural networks [18,37]. Among them,



4 J. Liang et al.

image classification [21] was the first to be applied with CNNs. The performance
was improved by a considerable margin. After that, researchers are devoted to
designing powerful backbones [18,46,19], which also give lift to other instance-
level tasks, such as object detection [34,23] and human pose estimation [37].

For object detection, it requires bounding box level location and category
information of interested instances in an image. The methods can be roughly
categorized into three types: Two-stage, One-stage and DETR detectors.
Two-stagemethods detect a series of region proposals at first and refine them in
the second stage. Faster RCNN [34] is a popular pipeline of the two-stage method,
which also includes R-FCN [9], Cascade RCNN [4], Grid RCNN [29], etc.. One-
stage methods predict locations and class scores on a large amount of pre-
defined spatial candidates. They can be further divided into two types: anchor-
based and anchor-free detectors. Anchor-based methods use anchor boxes as an
initial set, such as SSD [26] and RetinaNet [23]. For anchor-free methods, some
methods make dense predictions on spatial points, such as CenterNet (objects
as points) [51], FCOS [41] and RepPoints [47]. And some other works obtain
a keypoint heatmap first and get objects by grouping them. CornerNet [22],
ExtremeNet [52] and CenterNet (keypoint triplets) [14] fall into this category.
DETR methods, such as DETR [5], Deformable DETR [53] and Conditional
DETR [30], propose to detect objects by decoding a pre-defined set of object
queries with transformers. These queries are optimized one-to-one with ground
truths so there is no need for NMS as post-processing. Such a way of one-to-one
label assignment also inspires other works like Sparse RCNN [38].

For instance segmentation, it requires mask and class information for in-
stances. The methods can be categorized into two types: mask-based and
contour-based. Mask-based methods predict binary mask directly, which can
further be divided into local-mask and global-mask methods. Most local-mask
methods include two stages: the first one for instance detection and the sec-
ond one for instance mask generation, such as Mask RCNN [17], PANet [25]
and PointRend [20]. Global-mask methods usually predict the mask for the
whole image and leverage dynamic mask filters to decode masks for different
instances, such as YOLACT [3] and CondInst [40].Contour-basedmethods ob-
tain instance masks by predicting object boundaries. PolarMask [45] and Deep-
Snake [31] are two typical works using this idea.

For human pose estimation, it requires the keypoint locations (e.g. nose,
eyes, knees) for multiple humans in an image. There are mainly two kinds of ap-
proaches: heatmap-based and regression-based. Heatmap-based methods
use a multi-class classifier to generate keypoint heatmaps and compose them
with clustering and grouping procedures, such as CPN [7], HRNet [37] and
DARK [49]. Regression-based methods, including Integral [39] and Center-
Net [51], etc., predict coordinates of keypoints directly. It is more simple to plug
them into existing end-to-end learning frameworks.

Mask R-CNN [17], PointSetNet [44] and LSNet [15] achieved merging ob-
ject detection, instance segmentation and pose estimation into one network. Be-
sides these tasks, UniHead can be extended to image classification. Furthermore,



Unifying Visual Perception by Dispersible Points Learning 5

Dispersible Points Learning

Point Representation Generation

Point representations

transformer
encoders

Backbone+FPN

Anchor
Point

MLP 

* * *
Extra Tokens

Cls IoU Vis

Class
Person

Bird
Car
…

…
…

bbox

contour

keyps

Fig. 2: A typical pipeline of UniHead. At first, most methods of location-sensitive
tasks contain a backbone and the feature pyramid (not used in the image clas-
sification task) to extract feature maps. Then, for an anchor point, UniHead
obtains multiple points via dispersible points learning. To generate point repre-
sentations, bilinear interpolation is performed on the feature map according to
point coordinates, which is denoted in dotted line. The obtained features will be
concatenated with extra learnable tokens if necessary, and sent to corresponding
transformer encoders to complete variant visual tasks.

UniHead can also be simply embedded in variant types of architectures, e.g.,
anchor-free, anchor-based, and two-stage detectors, showing powerful ability on
task and framework generalization.

3 Method

In this paper, we introduce the UniHead, a generalized visual head. It can be
applied to different detection frameworks, such as Faster RCNN [34], FCOS [41]
and ATSS [50], as well as different tasks including classification, object detec-
tion, instance segmentation and pose estimation. In this section, we first describe
the design principle of UniHead and then detail the adaptation to different vi-
sual tasks and different visual frameworks. Finally, we delve into the inherent
advantage of UniHead over other methods.

3.1 UniHead

In UniHead, given a fixed spatial coordinate (Ax,Ay) (referred as anchor point),
i.e., center point of a proposal or a point in the feature map, it adaptively scat-
ters it to different spatial points and reasons about the relations of them by
several stacked transformer encoders. As shown in Fig.2, UniHead adopts the se-
quentially three-stage procedure to seek for the scattered point representations.
In the first stage, it will generate the anchor representation Fx,y according to
the anchor coordinate or region proposal. For one-stage or anchor-free detectors,
it is designated by the feature representation in the corresponding coordinate



6 J. Liang et al.

of the feature map. For the two-stage detectors, the feature generated by RoI
Pooling [34] is used. In the second stage, K scattered points are generated by:

Pxi
= Ax + sx ·∆xi

Pyi
= Ay + sy ·∆yi,

(1)

where (∆xi, ∆yi) = f(Fx,y;wi). f is a simple multi-layer perceptron and wi is the
learnable parameter. (sx, sy) is the computed scalar to modulate the magnitude
of the (∆xi, ∆yi). Specifically, (sx, sy) is the width and height of the region
proposal in a two-stage detector, the anchor scale in a one-stage detector, and the
model stride in an anchor-free detector. In the final stage, instead of quantizing
a floating-number of (Pxi , Pyi), we perform bilinear interpolation to generate the
point representations Fxi,yi , i ∈ [1,K].

To better reason about the relations of these scattered point representations
and generate more informative features, we introduce the transformer operator
to capture the correlative dependence between them. To improve the robustness
of different visual tasks, we insert a task-aware token embedding by:

z0 = [Ttask;Fx1,y1 ;Fx2,y2 ; . . . ;FxK ,yK
], (2)

where Ttask can be Tclass, TIoU, and Tvisibility for image classification, object
detection and pose estimation, respectively. The computation in transformer
encoders for point representations can be formulated as:

z
′

l = MHSA(LN(zl−1)) + zl−1, l = 1 . . . L,

zl = MLP(LN(z
′

l)) + z
′

l , l = 1 . . . L,

[T
′

task;F
′

x1,y1
;F

′

x2,y2
; . . . ;F

′

xK ,yK
] = zL,

(3)

where MHSA means multi-head self attention in [43], LN indicates layer nor-
malization [2], MLP is a multi-layer perceptron. Formally, during training, we
use L transformer encoders, and the final output zL will be adapted to different
visual tasks to perform the task-aware prediction.

3.2 Adaptation to Different Visual Tasks

Image Classification. For image classification, we directly use the final feature
map to perform dispersible points learning. The anchor point is set as the center
of the input image and the corresponding scales are the input scale. We choose to
align the classifier setting with standard vision transformers, i.e., only leveraging
classification token instead of all tokens in the classifier. The training can be
formulated as:

Lcls = CrossEntropy(softmax(MLP(T
′

cls)),y). (4)

In the above y specifies the ground-truth class and MLP is a single fully-
connected layer predicting the model’s probability for the class with label y.



Unifying Visual Perception by Dispersible Points Learning 7

Object Detection. UniHead can be applied to a variety of detectors, such
as Faster R-CNN [34], FCOS [41], etc., without changing the backbone network
structure, and the manner of label assignment. Specially, we concatenate a learn-
able token TIoU as a replacement for the IoU branch. After passing through all
transformer blocks, the T

′

IoU is used to predict IoU, which will be multiplied by

class prediction to get final scores at inference time. The F ′

xi,yi
is used to predict

the offset for point (Pxi
, Pyi

). There are:

(P
′

xi
, P

′

yi
) = (Pxi , Pyi) +MLP(F

′

xi,yi
)⊙ (sx, sy), (5)

where ⊙ denotes element-wise multiplication, and the MLP is a single fully-
connected layer shared between different points. The predicted bounding box can
be computed by B

′
= (min{P ′

xi
},min{P ′

yi
},max{P ′

xi
},max{P ′

yi
}), i ∈ [1,K].

For the classification branch, it performs the same computational manner as
UniHead in image classification. For regression, it shares z0 with the classification
branch to reduce the computational cost of point representation generation. Our
loss function for detection is defined as:

Lloc = − 1

n

n∑
j=1

L1(B
′

j , Bj), (6)

where j is the index of positive samples, B
′

j is the predicted box and Bj is the
ground truth. Other kinds of detection loss can also be used, e.g., GIoU loss [35].
Instance Segmentation. For instance segmentation, we view this task as the
contour-based regression. UniHead is placed at the output of the backbone to
generate the points P

′

xi,yi
by Eq.1, Eq.2, Eq.3 and Eq.5. To align the point

number between scattered points and the contour points in training data, we
uniformly add new points, or delete points with the shortest edge until the
target number is met, which is similar to Deep Snake [31]. All ground truth
points are clockwise arranged around the contour line. The scattered points
{P ′

xi,yi
, i ∈ [1,K]} are uniformly and clockwisely perform one-to-one matching

with them.
Besides, some objects are split into several components due to occlusions. To

overcome this problem, we simply follow PolarMask [45] and directly treat them
as multiple objects. During training, we use L1 loss to optimize each point:

Lseg =
1

n

n∑
i=1

L1(P
′

xi,yi
, Pxi,yi

), (7)

where P
′

xi,yi
is the predicted point and Pxi,yi

is the corresponding ground truth.
Pose Estimation The overall design of pose estimation is consistent with in-
stance segmentation, except that an extra token Tvisibility is introduced to pre-
dict the visibility of keypoints. The number K of predicted points is aligned
with keypoint number in the dataset. For pose estimation, each keypoint has a
clear definition, like nose, eyes, etc., which makes it possible to build one-to-one
connection with dispersible points. l1 loss is adopted to train the keypoint local-
ization branch, same as Eq.7. For the training of keypoint visibility prediction,
we use standard binary cross entropy loss.



8 J. Liang et al.

Fig. 3: Ways of point initialization for different tasks. From left to right: image
classification, object detection, instance segmentation, pose estimation.

3.3 Adaptation to Different Visual Frameworks

Two-stage Framework. UniHead is applied to region proposals in the two-
stage framework. Each proposal is represented as a combination of an anchor
point (Ax,Ay) and its scale (sx, sy). The offsets (∆xi, ∆yi) are generated from
the proposal feature extracted with RoI Pooling or RoI Align. Without other
modifications, UniHead now can be directly used on a two-stage framework.

One-stage Framework. UniHead is applied on dense spatial points in the one-
stage framework. For anchor-free methods, (Ax,Ay) and (sx, sy) are a point
and the stride of the feature map. For anchor-based methods, (Ax,Ay) and
(sx, sy) are the center point and the scale of an anchor. The offsets (∆xi, ∆yi)
are generated using a 1×1 convolutional layer.

3.4 UniHead Initialization

To effectively alleviate the difficulty of optimization under the requirement of
fitting objects with different scales and orientations, the result points are initial-
ized in a more appropriate way for different tasks, which is illustrated in Fig.3.
For image classification, points are casually scattered around the anchor point.
For object detection, points are divided into four groups placed at the bottom,
top, left, and right of the anchor point, respectively. For instance segmentation,
first we set a 2D reference vector that starts from the anchor point. Based on
the direction of this vector, the points are uniformly and clockwise initialized on
the edge of a pseudo box generated from the anchor point and its spatial scale.
For pose estimation, we calculate the average positions of different keypoints in
the training dataset and use them to initialize points.

The initial point position is controlled by tuning the bias of the last fully-
connected layer in MLP used for offsets generation. Taking object detection as
an example, the bias for points at left, right, top and bottom are set to [−0.5, 0],
[0.5, 0], [0,−0.5] and [0, 0.5], respectively.



Unifying Visual Perception by Dispersible Points Learning 9

Table 1: Ablation study on extra blocks for image classification task.
Method GFLOPs Top-1 acc.

ResNet-50 3.8 78.5
ResNet-50+extra blocks 4.2 79.0

ResNet-50+UniHead 4.1 79.5

Swin-T 4.5 81.2
Swin-T+extra blocks 5.2 81.7

Swin-T+UniHead 4.7 81.8

Swin-B 15.4 83.5
Swin-B+extra blocks 16.7 83.6

Swin-B+UniHead 15.7 83.9

Table 2: Ablation study on Ttask. ’Det.’ and ’Keyp.’ mean detection and pose
estimation, respectively.

Task w/ Ttask AP AP.5 AP.75 APs APm APl

Det.
x 41.6 61.2 44.8 23.4 45.1 56.2
✓ 41.8 60.6 44.7 23.8 45.1 56.7

Keyp.
x 50.4 78.8 53.9 - 44.9 58.5
✓ 50.7 78.9 54.6 - 45.5 58.5

4 Experiments

For image classification, experiments are conducted on the ILSVRC-2012 Ima-
geNet [12] dataset with 1K classes and 1.3M images. We use Top-1 accuracy as
the metric in classification experiments.

We also conduct experiments with different backbones on the MS-COCO
2017 [24] dataset, including object detection, instance segmentation, and human
pose estimation tasks. For these tasks, training is performed on the train set,
over 57K images for human pose estimation, and over 118K images for object
detection and instance segmentation. For experiments of ablation studies, evalu-
ation is conducted on the val set. We also report performance on the test-dev set
to compare with the state-of-art methods. The mean average precision (AP) is
used as the measurement in COCO experiments. But the definition of AP varies
with tasks. For object detection and instance segmentation, AP is calculated un-
der different IoU thresholds (bounding box IoU or mask IoU). For human pose
estimation, AP is calculated with object keypoint similarity (OKS).

4.1 Implementation Details

In the image classification task, all models are trained using AdamW opti-
mizer [28] with 1e-4 initial learning rate, 0.05 weight decay, β1 = 0.9, β2 = 0.999
and a batch size of 1024. We train classification models for 300 epochs and use
consine annealing scheduler to decrease learning rate. Data augmentations in
[42] are also used, e.g., mix up, label smoothing, etc..

For other three tasks, we use different backbones including ResNet [18],
ResNeXt [46] and Swin Transformer [27] with weights pretrained on ImageNet [12].
For object detection, we use our UniHead on different detection pipelines and



10 J. Liang et al.

Table 3: Ablation study on UniHead bias initialization strategy.
Task UniHead Initialization? AP AP.5 AP.75

Det.
x 40.9 60.7 43.7
✓ 41.6 61.2 44.8

Segm.
x 29.7 53.5 28.9
✓ 30.4 53.2 30.1

Keyp.
x 57.0 81.9 62.4
✓ 57.9 82.6 63.9

Table 4: Ablation study on point number. Point number 8, 16, 24, 32 are tried.
K AP AP.5 AP.75 APs APm APl

8 40.8 59.3 43.7 22.3 44.3 54.6
16 41.8 60.6 44.7 23.8 45.1 56.7
24 41.8 60.7 44.7 23.9 44.8 56.5
32 41.5 60.3 44.5 22.8 44.6 56.8

follow their original hyper-parameters. For instance segmentation and pose es-
timation, the same settings as Faster RCNN [34] are used. During training, we
adopt AdamW [28] as the optimizer, with 1e-4 initial learning rate, 0.05 weight
decay, β1 = 0.9 and β2 = 0.999. In our 1× setting, we train our model with
mini-batch size 16 for 13 epochs and decrease the learning rate by a factor of
10 at epoch 9 and 12. Unless specified, the input scale of images is [800, 1333]
and no data augmentations except horizontal flipping are used in training. The
hyper-parameter of newly-added transformers keeps the same as [13].

4.2 Ablation Studies

In this section, we conduct extensive ablation studies on ImageNet and COCO
val set to validate the effectiveness of UniHead on classification and localization
tasks, respectively. Specially, for localization task, we choose object detection and
all models are trained on Faster RCNN [34] baseline with AdamW optimizer [28]
and ResNet-50 backbone for fair comparison. We find that AdamW can stably
improve the performance by ∼ 1% AP compared to SGD.
Extra Blocks. We add extra blocks to the classification backbone networks
to align their FLOPs with UniHead. Specifically, we append two bottlenecks
to ResNet-50 ([3,4,6,5] for four stages) and two transformer blocks to Swin-T
([2,2,6,4] for four stages), whose results are shown in Table 1. Though additional
layers can boost the performance, UniHead can achieve better performance with
similar FLOPs. Also, we conduct the same experiment on Swin-B. We can see
that when the model becomes bigger with higher FLOPs, extra blocks can hardly
bring improvement. But UniHead achieves a continual performance boost. All
these results prove that improvement brought by UniHead does not only account
for its transformer blocks.
Task Token. We also explore the influence of TIoU and Tvisibility on object
detection and pose estimation, respectively. As is shown in Table 2, the introduc-
tion of Ttask brings a slight improvement on both tasks, proving the effectiveness



Unifying Visual Perception by Dispersible Points Learning 11

Table 5: Ablation study on block number. Lcls and Lloc denote transformer
encoder block number of classification and localization, respectively. #params
means parameters of the detection head. The training and inference time is
measured on a 16GB V100 GPU.

Lcls Lloc #params GFLOPs Training
(s/iter)

Inference
(ms/img)

AP AP.5 AP.75

baseline 14.3M 215 0.38 82 38.8 59.9 42.1

1 1 11.9M 227 0.39 85 41.6 60.3 44.3
2 2 12.7M 239 0.40 87 41.6 60.4 44.7
3 3 13.5M 251 0.40 90 41.7 60.5 44.7
4 4 14.3M 263 0.41 92 42.0 60.6 45.0

Table 6: Ablation study on different modules. IoU prediction is not used in
this table. ”HD”, ”MHSA” and ”DPL” mean head disentanglement, multi-head
self attention and dispersible points learning, respectively.

HD MHSA DPL AP AP.5 AP.75 APs APm APl

x x x 38.8 59.9 42.1 22.1 41.9 51.9
✓ x x 39.3 60.0 42.5 22.0 42.9 52.6
✓ ✓ x 39.9 60.5 43.4 22.4 43.2 53.4
✓ x ✓ 40.7 61.6 44.4 23.1 43.4 55.1
✓ ✓ ✓ 41.6 61.2 44.8 23.4 45.1 56.2

of task tokens. It is worth noting that though visibility prediction is not used in
pose estimation evaluation, Tvisibility still has a positive impact on training.

UniHead Initialization. We replace our task-specific bias initialization with
zero initialization on different tasks. Main results are shown in Table 3. It proves
that a proper initialization can help the unified architecture learn the knowledge
of different tasks more quickly.

Point Number. We evaluate the performance of different point numbers in
UniHead, which is shown in Table 4. It shows that our head can benefit from the
increasing number of points. But more points may bring overfitting and more
computational cost. So we choose to use K = 16 in our implementations.

Block Number. We also analyze the influence of the number of transformer
encoder blocks. As is shown in Table 5, we compare the performances, head pa-
rameters, FLOPs, training time, and inference time with baseline under different
block number settings. Our head can benefit slightly from the increase in block
numbers. Considering computational costs and the head capacity, we finally use
Lcls = 2 and Lloc = 3 in our implementations.

Head Disentanglement. To show that our method does not only benefit from
the separated task heads, a Faster RCNN with sibling heads is given in the
second row of Table 6. We simply remove the shared fully connected layers in
the RCNN head and replace them with separated ones. We can observe that the
improvement brought by head disentanglement (0.5 AP) is actually limited.

Dispersible Points Learning and Multi-head Self Attention. In order
to demonstrate the effectiveness of dispersible points learning and multi-head
self attention, we conduct experiments with different head designs and compare



12 J. Liang et al.

Table 7: Results of UniHead with variant detection pipelines.
Method AP AP.5 AP.75

Faster RCNN [34] 38.8 59.9 42.1
+UniHead 41.8 60.6 44.7

Cascade RCNN [4] 42.1 60.8 45.3
+UniHead 43.0 61.5 46.2

ATSS (anchor-based) [50] 39.5 58.1 42.2
+UniHead 40.6 58.3 44.2

FCOS (w/o imprv.) [41] 37.1 56.3 39.1
+UniHead 39.7 57.9 42.6

Mask RCNN [17] 35.2 56.8 37.5
+UniHead (mask) 37.0 57.9 39.9

Table 8: Results of UniHead with variant backbones. ”DCN” means deformable
convolution. * means multi-scale training.

Method Ours AP AP.5 AP.75

ResNet-50 38.8 59.9 42.1
ResNet-50 ✓ 41.8 60.6 44.7

ResNet-101 39.9 60.5 43.5
ResNet-101 ✓ 42.4 61.4 45.7

ResNeXt-101-64x4d 42.2 63.4 45.7
ResNeXt-101-64x4d ✓ 44.5 63.2 48.0

ResNeXt-101-64x4d-DCN 45.4 67.1 49.2
ResNeXt-101-64x4d-DCN ✓ 47.3 66.9 51.3

Swin-T* 43.7 66.4 47.7
Swin-T* ✓ 46.3 66.4 49.5

them with our head (without IoU prediction). First, we take the output of RoI
Align [17] as tokens directly (49 in total), and process them with disentangled
transformer encoders. The result is in the third row of Table 6. We can see that
though more points are used, it still performs worse than DPL with K = 16.

Then, we leverage deformable RoI Pooling [10] as another form of dispersible
points learning. Specifically, multiple offsets are generated in the same way and
applied to deformable RoI Pooling for feature extraction. The result is shown
in the fourth row of Table 6. It indicates that the combination of dispersible
points learning and multi-head attention is more effective to capture semantic
information within an instance.

4.3 Generalization Ability

Detection Pipeline Generalization. We evaluate the performance by trans-
ferring our UniHead to different detection pipelines. Specially, we simply replace
the detection head in Mask RCNN with UniHead to build a mask-based version.
As is shown in Table 7, the UniHead can boost the performance of all these types
of detectors, showing its generalization ability on different detection frameworks.
Backbone Generalization. We further conduct experiments with different
backbones under the setting of Faster RCNN. As is shown in Table 8, our head
can steadily boost the performance by 2 ∼ 3% AP. It demonstrates the general-
ization ability of our method on variant backbones.



Unifying Visual Perception by Dispersible Points Learning 13

Table 9: Results on different tasks. ”*” indicates multi-scale training, multi-stage
refinement and 11x scheduler. ”+” is multi-scale training and 2x scheduler.

Task Method backbone Top-1 acc. AP AP.5 AP.75

Cls.
baseline

R50
78.5 - - -

UniHead 79.5 - - -

Det.

Faster RCNN

R50

- 38.8 59.9 42.1
UniHead - 41.8 60.6 44.7

Mask RCNN - 39.0 59.8 42.4
UniHead (box) - 42.3 60.9 45.5

Segm.
DeepSnake [31] DLA34 - 30.3 - -

UniHead R50 - 30.4 53.2 30.1

Keyp.
PointSet* [44]

R50
- 58.0 80.8 62.4

UniHead+ - 57.9 82.6 63.9

Task Generalization. As mentioned before, our head is a unifying perception
head, which means that it can be applied to variant visual tasks. To be specific,
we use K = 16 for image classification and object detection, K = 36 for instance
segmentation and K = 17 points for human pose estimation. The baseline of
classification is trained with the same setting as UniHead for fair comparison.
The performance is evaluated on ImageNet val set for classification, and COCO
val set for other three tasks. The experimental results are shown in Table 9. We
can see that with a ResNet-50 backbone, the UniHead makes improvements on
classification and object detection, and get a close performance compared with
expert models for instance segmentation and pose estimation.

4.4 Comparison with State-of-the-Art

We evaluate object detection, instance segmentation and pose estimation on
COCO test-dev, whose results are shown in Table 10. The reported AP is related
to corresponding tasks, e.g., mask AP for instance segmentation. We only adopt
multi-scale training for data augmentation and no TTA is used. It should be
noted that we don’t introduce any task-aware algorithm design, e.g.,
multi-stage refinement for pose estimation.

For object detection, the experimental setting in multi-scale training is [480, 960]
for image minimum side and 1333 for image maximum side. We can see that with
stronger backbones, our UniHead can achieve competitive performance, although
it is not developed just for object detection. For instance segmentation, the same
augmentation strategy as object detection is used. Here we also use the mask
head of Mask RCNN [17] to build a mask-based UniHead. Without bells and
whistles, UniHead gets 46.7% AP with mask-based head and 39.4% AP with
contour-based head. Compared with expert models, UniHead achieves compa-
rable performance only using a simpler pipeline. For pose estimation, we use a
larger resolution of input image ([480, 1200] for image minimum side and 2000
for image maximum side). With a surprisingly simple way, i.e., direct keypoint
regression using l1 loss, UniHead gets a close performance compared with other
regression-based methods which utilize multi-stage refinement (like [44]) and
more iterations of training.



14 J. Liang et al.

Table 10: Comparisons of for different algorithms and different tasks evaluated
on the COCO test-dev set. ”FG” and ”TG” indicate that the method can be
generalized to different visual frameworks and visual tasks, respectively. ”*”
denotes multi-scale test.

Method FG TG backbone iteration AP AP.5 AP.75 APS APM APL

Object Detection
ATSS [50] x x X-101-64x4d-DCN 2x 47.7 65.5 51.9 29.7 50.8 59.4

BorderDet [33] x x X-101-64x4d-DCN 2x 48.0 67.1 52.1 29.4 50.7 60.5
Deformable DETR [53] x x X-101-64x4d-DCN ∼4x 50.1 69.7 54.6 30.6 52.8 64.7

DynamicHead [11] ✓ x X-101-64x4d-DCN 2x 52.3 70.7 57.2 35.1 56.2 63.4
PointSet [44] x ✓ X-101-64x4d-DCN 2x 45.1 66.1 48.9 - - -
LSNet [15] x ✓ X-101-64x4d-DCN 2x 49.6 69.0 54.1 30.3 52.8 62.8

UniHead ✓ ✓ X-101-64x4d-DCN 2x 50.5 70.0 54.4 31.2 53.4 64.7
UniHead ✓ ✓ Swin-L 2x 54.7 74.5 59.1 35.6 58.2 70.2

Instance Segmentation
Mask-based:

Mask RCNN [17] x ✓ X-101-32x4d 1x 37.1 60.0 39.4 16.9 39.9 53.5
HTC [6] x ✓ X-101-64x4d ∼2x 41.2 63.9 44.7 22.8 43.9 54.6

YOLACT [3] x x ResNet-101 4x 31.2 50.6 32.8 12.1 33.3 47.1
DetectoRS [32] x x X-101-32x4d 3x 45.8 69.2 50.1 27.4 48.7 59.6

UniHead (w/ mask head) ✓ ✓ X-101-64x4d-DCN 3x 43.6 67.1 47.0 25.1 46.5 58.1
UniHead (w/ mask head) ✓ ✓ Swin-L 3x 46.7 71.2 50.8 28.2 50.3 62.1

Contour-based:
ExtremeNet [52] x ✓ HG-2 stacked ∼8x 18.9 44.5 13.7 10.4 20.4 28.3
DeepSnake [31] x x DLA-34 [48] ∼11x 30.3 - - - - -
PolarMask [45] x x X-101-64x4d-DCN 2x 36.2 59.4 37.7 17.8 37.7 51.5
PointSet [44] x ✓ X-101-64x4d-DCN 2x 34.6 60.1 34.9 45.1 66.1 48.9
LSNet [15] x ✓ X-101-64x4d-DCN ∼2x 37.6 64.0 38.3 22.1 39.9 49.1

UniHead ✓ ✓ X-101-64x4d-DCN 2x 36.6 63.0 36.2 22.0 38.6 48.5
UniHead ✓ ✓ Swin-L 2x 39.4 67.0 39.3 24.7 41.7 52.0

Pose Estimation
Heatmap-based:

CPN [7] x x ResNet-Inception - 72.1 91.4 80.0 - 68.7 77.2
HRNet [37] x x HRNet-W48 ∼16x 75.5 92.5 83.3 - 71.9 81.5
DARK [49] x x HRNet-W48 ∼11x 76.2 92.5 83.6 - 72.5 82.4

Regression-based:
CenterNet* [51] x ✓ HG-2 stacked ∼11x 63.0 86.8 69.6 - 58.9 70.4

PointSet [44] x ✓ X-101-64x4d-DCN ∼8x 62.5 83.1 68.3 - - -
LSNet [15] x ✓ X-101-64x4d-DCN ∼6x 59.0 83.6 65.2 - 53.3 67.9

UniHead ✓ ✓ X-101-64x4d-DCN 2x 65.4 87.3 72.6 - 60.9 72.3
UniHead ✓ ✓ Swin-L 2x 66.1 88.7 73.7 - 62.0 72.3

5 Conclusion

In this paper, we proposed UniHead, a unifying visual perception head. It can not
only be embedded in variant detection frameworks, but also applied to different
visual tasks, including image classification, object detection, instance segmen-
tation and pose estimation. UniHead perceives instances by dispersible points
learning, which is also equipped with transformer encoders to capture semantic
relations of them. Though our UniHead is designed in a simple way, it achieves
comparable performance on each task compared with expert models. This work
shows the potential in general visual learning and we hope it can promote uni-
versal visual perception research.
Acknowledgement: The work was supported by the National Key R&D Pro-
gram of China under Grant 2019YFB2102400.



Unifying Visual Perception by Dispersible Points Learning 15

References

1. Andriluka, M., Pishchulin, L., Gehler, P., Schiele, B.: 2d human pose estimation:
New benchmark and state of the art analysis. In: CVPR. pp. 3686–3693 (2014)

2. Ba, J.L., Kiros, J.R., Hinton, G.E.: Layer normalization. arXiv:1607.06450 (2016)
3. Bolya, D., Zhou, C., Xiao, F., Lee, Y.J.: Yolact: Real-time instance segmentation.

In: ICCV. pp. 9157–9166 (2019)
4. Cai, Z., Vasconcelos, N.: Cascade r-cnn: Delving into high quality object detection.

In: CVPR. pp. 6154–6162 (2018)
5. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-

to-end object detection with transformers. In: ECCV. pp. 213–229 (2020)
6. Chen, K., Pang, J., Wang, J., Xiong, Y., Li, X., Sun, S., Feng, W., Liu, Z., Shi,

J., Ouyang, W., et al.: Hybrid task cascade for instance segmentation. In: CVPR.
pp. 4974–4983 (2019)

7. Chen, Y., Wang, Z., Peng, Y., Zhang, Z., Yu, G., Sun, J.: Cascaded pyramid
network for multi-person pose estimation. In: CVPR. pp. 7103–7112 (2018)

8. Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R.,
Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene
understanding. In: CVPR. pp. 3213–3223 (2016)

9. Dai, J., Li, Y., He, K., Sun, J.: R-fcn: Object detection via region-based fully
convolutional networks. NeurIPS 29 (2016)

10. Dai, J., Qi, H., Xiong, Y., Li, Y., Zhang, G., Hu, H., Wei, Y.: Deformable convo-
lutional networks. In: ICCV. pp. 764–773 (2017)

11. Dai, X., Chen, Y., Xiao, B., Chen, D., Liu, M., Yuan, L., Zhang, L.: Dynamic head:
Unifying object detection heads with attentions. In: CVPR. pp. 7373–7382 (2021)

12. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: A large-scale
hierarchical image database. In: CVPR. pp. 248–255 (2009)

13. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner,
T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., et al.: An image is worth
16x16 words: Transformers for image recognition at scale. arXiv:2010.11929 (2020)

14. Duan, K., Bai, S., Xie, L., Qi, H., Huang, Q., Tian, Q.: Centernet: Keypoint triplets
for object detection. In: ICCV. pp. 6569–6578 (2019)

15. Duan, K., Xie, L., Qi, H., Bai, S., Huang, Q., Tian, Q.: Location-sensitive visual
recognition with cross-iou loss. arXiv:2104.04899 (2021)

16. Everingham, M., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The pascal
visual object classes (voc) challenge. IJCV 88(2), 303–338 (2010)

17. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask r-cnn. In: ICCV. pp. 2961–2969
(2017)

18. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: CVPR. pp. 770–778 (2016)

19. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected
convolutional networks. In: CVPR. pp. 4700–4708 (2017)

20. Kirillov, A., Wu, Y., He, K., Girshick, R.: Pointrend: Image segmentation as ren-
dering. In: CVPR. pp. 9799–9808 (2020)

21. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. NeurIPS 25 (2012)

22. Law, H., Deng, J.: Cornernet: Detecting objects as paired keypoints. In: ECCV.
pp. 734–750 (2018)

23. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object
detection. In: ICCV. pp. 2980–2988 (2017)



16 J. Liang et al.

24. Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P.,
Zitnick, C.L.: Microsoft coco: Common objects in context. In: ECCV. pp. 740–755
(2014)

25. Liu, S., Qi, L., Qin, H., Shi, J., Jia, J.: Path aggregation network for instance
segmentation. In: CVPR. pp. 8759–8768 (2018)

26. Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.Y., Berg, A.C.: Ssd:
Single shot multibox detector. In: ECCV. pp. 21–37 (2016)

27. Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin trans-
former: Hierarchical vision transformer using shifted windows. arXiv:2103.14030
(2021)

28. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. arXiv:1711.05101
(2017)

29. Lu, X., Li, B., Yue, Y., Li, Q., Yan, J.: Grid r-cnn. In: CVPR. pp. 7363–7372 (2019)
30. Meng, D., Chen, X., Fan, Z., Zeng, G., Li, H., Yuan, Y., Sun, L., Wang, J.: Con-

ditional detr for fast training convergence. In: ICCV. pp. 3651–3660 (2021)
31. Peng, S., Jiang, W., Pi, H., Li, X., Bao, H., Zhou, X.: Deep snake for real-time

instance segmentation. In: CVPR. pp. 8533–8542 (2020)
32. Qiao, S., Chen, L.C., Yuille, A.: Detectors: Detecting objects with recursive feature

pyramid and switchable atrous convolution. In: CVPR. pp. 10213–10224 (2021)
33. Qiu, H., Ma, Y., Li, Z., Liu, S., Sun, J.: Borderdet: Border feature for dense object

detection. In: ECCV. pp. 549–564 (2020)
34. Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object de-

tection with region proposal networks. NeurIPS (2015)
35. Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: General-

ized intersection over union: A metric and a loss for bounding box regression. In:
CVPR. pp. 658–666 (2019)

36. Song, G., Liu, Y., Wang, X.: Revisiting the sibling head in object detector. In:
CVPR. pp. 11563–11572 (2020)

37. Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning
for human pose estimation. In: CVPR. pp. 5693–5703 (2019)

38. Sun, P., Zhang, R., Jiang, Y., Kong, T., Xu, C., Zhan, W., Tomizuka, M., Li, L.,
Yuan, Z., Wang, C., et al.: Sparse r-cnn: End-to-end object detection with learnable
proposals. In: CVPR. pp. 14454–14463 (2021)

39. Sun, X., Xiao, B., Wei, F., Liang, S., Wei, Y.: Integral human pose regression. In:
ECCV. pp. 529–545 (2018)

40. Tian, Z., Shen, C., Chen, H.: Conditional convolutions for instance segmentation.
In: ECCV. pp. 282–298 (2020)

41. Tian, Z., Shen, C., Chen, H., He, T.: Fcos: Fully convolutional one-stage object
detection. In: ICCV. pp. 9627–9636 (2019)

42. Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles, A., Jégou, H.: Training
data-efficient image transformers & distillation through attention. In: ICML. pp.
10347–10357 (2021)

43. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
 L., Polosukhin, I.: Attention is all you need. NeurIPS 30 (2017)

44. Wei, F., Sun, X., Li, H., Wang, J., Lin, S.: Point-set anchors for object detection,
instance segmentation and pose estimation. In: ECCV. pp. 527–544 (2020)

45. Xie, E., Sun, P., Song, X., Wang, W., Liu, X., Liang, D., Shen, C., Luo, P.: Polar-
mask: Single shot instance segmentation with polar representation. In: CVPR. pp.
12193–12202 (2020)

46. Xie, S., Girshick, R., Dollár, P., Tu, Z., He, K.: Aggregated residual transformations
for deep neural networks. In: CVPR. pp. 1492–1500 (2017)



Unifying Visual Perception by Dispersible Points Learning 17

47. Yang, Z., Liu, S., Hu, H., Wang, L., Lin, S.: Reppoints: Point set representation
for object detection. In: ICCV. pp. 9657–9666 (2019)

48. Yu, F., Wang, D., Shelhamer, E., Darrell, T.: Deep layer aggregation. In: CVPR.
pp. 2403–2412 (2018)

49. Zhang, F., Zhu, X., Dai, H., Ye, M., Zhu, C.: Distribution-aware coordinate repre-
sentation for human pose estimation. In: CVPR. pp. 7093–7102 (2020)

50. Zhang, S., Chi, C., Yao, Y., Lei, Z., Li, S.Z.: Bridging the gap between anchor-
based and anchor-free detection via adaptive training sample selection. In: CVPR.
pp. 9759–9768 (2020)

51. Zhou, X., Wang, D., Krähenbühl, P.: Objects as points. arXiv:1904.07850 (2019)
52. Zhou, X., Zhuo, J., Krahenbuhl, P.: Bottom-up object detection by grouping ex-

treme and center points. In: CVPR. pp. 850–859 (2019)
53. Zhu, X., Su, W., Lu, L., Li, B., Wang, X., Dai, J.: Deformable detr: Deformable

transformers for end-to-end object detection. arXiv:2010.04159 (2020)


	Unifying Visual Perception by Dispersible Points Learning

