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Abstract. We consider the problem of category-level 6D pose estima-
tion from a single RGB image. Our approach represents an object cate-
gory as a cuboid mesh and learns a generative model of the neural feature
activations at each mesh vertex to perform pose estimation through dif-
ferentiable rendering. A common problem of rendering-based approaches
is that they rely on bounding box proposals, which do not convey infor-
mation about the 3D rotation of the object and are not reliable when
objects are partially occluded. Instead, we introduce a coarse-to-fine opti-
mization strategy that utilizes the rendering process to estimate a sparse
set of 6D object proposals, which are subsequently refined with gradient-
based optimization. The key to enabling the convergence of our approach
is a neural feature representation that is trained to be scale- and rotation-
invariant using contrastive learning. Our experiments demonstrate an
enhanced category-level 6D pose estimation performance compared to
prior work, particularly under strong partial occlusion.
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1 Introduction

Estimating the 3D position and 3D orientation of objects is an important re-
quirement for a comprehensive scene understanding in computer vision. Real-
world applications, such as augmented reality (AR) or robotics, require vision
systems to generalize in new environments that may contain previously unseen
and partially occluded object instances. However, most prior work on 6D pose
estimation focused on the “instance-level” task, where exact CAD models of the
object instances are available [35, 23, 19, 10, 12]. Moreover, the few prior methods
on “category-level” 6D pose estimation often either rely on a ground truth depth
map [31, 20], which are practically hard to obtain in many application areas, or
rely on 2D bounding box proposals [38, 28], which are not reliable in challenging
occlusion scenarios [30] (see also our experimental results).

Recent work introduced generative models of neural network features for im-
age classification [14] and 3D pose estimation [28], which have the ability to
learn category-level object models that are highly robust to partial occlusion.
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Fig. 1: Overview of our coarse-to-fine 6D pose estimation. We propose to train a
neural representation that is invariant to instance-specific details, 3D rotation,
and changes in the object scale. With the help of the scale-invariant contrastive
features, we can efficiently search generative 6D proposals in the coarse stage
and then refine the initial 6D poses with pose optimization in the fine stage.

Intuitively, these models are composed of a convolutional neural network [17]
and a Bayesian generative model of the neural feature activations. The invari-
ance properties of the neural features enable these models to generalize despite
variations in instance-specific details such as changes in the object shape and
texture. Moreover, the generative model can be augmented with an outlier model
[11] to avoid being distorted by local occlusion patterns.

In this work, we build on and significantly extend generative models of neu-
ral network features to perform category-level 6D pose estimation from a single
RGB image. In particular, we follow neural mesh models [28] and represent an
object category as a cuboid mesh and learn a generative model of the neural
feature activations at each mesh vertex to perform pose estimation through a
render-and-compare process. The core problem of such a rendering-based ap-
proach to pose estimation is to search efficiently through the combinatorially
large space of the 6D latent parameters, because the iterative rendering process
is rather costly compared to simple feed-forward regression approaches. Related
work addresses this problem by first estimating 2D object bounding boxes with
a proposal network [18, 31, 12], but these are not reliable under partial occlusion
and truncation [30]. Instead, we address this problem by extending neural mesh
models with scale-invariant features and a coarse-to-fine render-and-compare
optimization strategy, which retains the robustness to partial occlusion (Figure
1). In particular, we first use a coarse search strategy, in which we render the
model in a set of pre-defined initial poses that are evenly distributed over the
entire search space and select a sparse set of candidate initializations with low
reconstruction loss. This process generates 6D object proposals robustly under
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occlusion, as it relies on the generative object model. Subsequently, the 6D pro-
posals are refined with gradient-based render-and-compare optimization.

The key to making the coarse-to-fine optimization efficient and accurate (i.e.,
not missing out on small or partially occluded objects) is to learn a feature
representation that induces large convergence basins in the optimization process.
To this end, we introduce a contrastive learning framework [9, 32, 1] to learn
features that are invariant to instance-specific details (such as changes in the
shape and texture), as well as to changes in the 3D pose and scale of the object.

We evaluate our model on the PASCAL3D+ dataset [34] and the Object-
Net3D dataset [33], which are challenging real-world datasets of outdoor and
indoor scenes, respectively. Our experiments demonstrate that our model out-
performs strong object detection and pose estimation baseline models. Our model
further demonstrates exceptional robustness to partial occlusion compared to all
baseline methods on the Occluded PASCAL3D+ dataset [30].

The main contributions of our work are:

1. We introduce a render-and-compare approach for category-level 6D pose es-
timation and adopt a coarse-to-fine pose estimation strategy that is accurate
and highly robust to partial occlusion.

2. We use a contrastive learning framework to train a feature representation in-
variant to instance-specific details, 3D rotation, and changes in object scale.

3. The invariant features enable a coarse-to-fine render-and-compare optimiza-
tion, which involves novel generative 6D object proposals and a subsequent
gradient-based pose refinement.

4. Our method outperforms previous methods on the PASCAL3D+, Object-
Net3D dataset, and we demonstrate the robustness of our model to partial
occlusion on Occluded PASCAL3D+ dataset. We further show the efficacy
of our proposed modules in the ablation study.

2 Related Work

Category-level 3D pose estimation. Category-level 3D pose estimation as-
sumes the bounding box of the object is given and predicts the 3D object pose.
Previous methods can be categorized into two groups, keypoint-based methods
and render-and-compare methods. Keypoint-based methods [22, 38] first detect
semantic keypoints and then predict 3D object pose by solving a Perspective-n-
Point problem. Render-and-compare methods [28] predict the 3D pose by fitting
a rigid transformation of the mesh model that minimizes the reconstruction error
between a predicted feature map and a rendered feature map. 3D pose estima-
tion methods often exploit the inductive bias that the principal points of the
objects are close to the image center and the objects have a similar scale.

Category-level 6D pose estimation. Category-level 6D pose estimation
is a more challenging problem and involves object detection and pose estimation
without knowing the accurate 3D model or the textures of the testing objects.
Previous methods [31, 3, 20] often investigate this problem in the RGBD setting.
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Depth maps help these models to infer the 3D location of the objects and at
the same time resolve the scale ambiguities [3]. However, depth annotations are
often hard to obtain, which limits the practicality of these methods. In this work,
we investigate category-level 6D pose estimation from monocular RGB images
and show that our method can robustly estimate 6D object poses under partial
occlusion and truncation.

Feature-level render-and-compare. Render-and-compare methods min-
imize the reconstruction error between a predicted feature representation and
a representation rendered from a 3D scene (e.g., a 3D mesh model M and the
corresponding 3D pose m). Previous methods follow similar formulations but
differ in the feature representation and the optimization algorithms. Wang et
al. [31] proposed to hard-code the features as the normalized 3D coordinates
and predict the object pose by solving a rigid transformation between the 3D
model M and the predicted coordinate map with the Umeyama algorithm [27].
NeMo [28] learns contrastive features for the 3D model M and solves 3D object
pose with the objects centered and rescaled. Iwase et al. [12] found that features
with only 3 channels are sufficient for instance-level 6D pose estimation and
proposed to learn the features with a differentiable Levenberg-Marquardt (LM)
optimization.

In a broader context, the feature-level render-and-compare process can be
interpreted as an approximate analysis-by-synthesis [7, 8] approach to computer
vision. Analysis-by-synthesis has several advantages over purely discriminative
methods as it enables efficient learning [29] and largely enhances robustness in
out-of-distribution situations, particularly when objects are partially occluded in
image classification [15, 16, 37, 36], object detection [30], scene understanding [25,
21], face reconstruction [5] and human detection [6], as well as when objects are
viewed from unseen 3D poses [28]. Our work extends the approximate analysis-
by-synthesis approach to category-level 6D pose estimation.

3 Method

This section presents our main contributions. First, we review the render-and-
compare approach for pose estimation in Section 3.2. Then we introduce the
learning of scale-invariant contrastive features in Section 3.3. In Section 3.4, we
introduce a coarse-to-fine optimization strategy that uses a generative model to
generate 6D object proposals in the coarse stage and then refines the initial 6D
poses with a render-and-compare pose optimization. We discuss a multi-object
reasoning module in Section 3.5 that enables our model to accurately detect
occluded and truncated objects and as well as complicated multi-object scenes.

3.1 Notation

We denote a feature representation of an input image I as ζ(I) = F l ∈ RH×W×c.
Where l is the output of layer l of a deep convolutional neural network ζ, with
c being the number of channels in layer l. f l

i ∈ Rc is a feature vector in F l
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at position i on the 2D lattice P of the feature map. In the remainder of this
section, we omit the superscript l for notational simplicity because this is fixed
a-priori in our model.

3.2 Prior Work: Render-And-Compare for Pose Estimation

Our work builds on and significantly extends neural mesh models (NMMs) [12,
28], which are themselves 3D extensions of Compositional Generative Networks
[13]. Neural mesh models define a probabilistic generative models p(F | N) of
the real-valued feature activations F using a 3D neural mesh representation N.
The neural mesh N = {V, E , C} is represented by a set of vertices V = {Vi ∈
R3}Ni=1 and learnable features for each vertex C = {Ci ∈ Rc}Ni=1, where c is the
number of channels in layer l. Given the object pose (or camera viewpoint) m,
we can render the neural mesh model N into feature maps using rasteriation, i.e.,
F̄ (m) = R(N,m) ∈ RH×W×D. The neural mesh model defines the likelihood of
a target feature map F ∈ RH×W×D as

p(F | N,m,B) =
∏

i∈FG
p(fi | N,m)

∏
i′∈BG

p(fi′ | B) (1)

where the foreground FG is the set of all positions on the 2D lattice P of the
feature map F that are covered by the rendered neural mesh model and the
background BG contains those pixels that are not covered by the mesh. The
foreground likelihood is defined as a Gaussian distribution p(fi | N,m) = N (fi |
Cr, σ

2
rI). The correspondence between the image feature fi and the vertex fea-

ture Cr is determined through the rendering process. Background features are
modeled using a simple background model that is defined by a Gaussian distri-
bution p(fi′ | B) = N (fi′ | b, σ2I) with B = {b, σ}, which can be estimated with
maximum likelihood from the background features. The training of the gener-
ative model parameters {N, B} and the feature extractor is done by maximum
likelihood estimation (MLE) from the training data. At test time, we can infer
the object pose m by minimizing the negative log-likelihood of the model w.r.t.
the pose m with gradient descent

LNLL(F,N,m,B) =− ln p(F | N,m,B)

=−
∑
i∈FG

(
ln

(
1

σr

√
2π

)
− 1

2σ2
r

∥fi − Cr∥2
)

−
∑

i′∈BG

(
ln

(
1

σ
√
2π

)
− 1

2σ2
∥fi′ − b∥2

)
(2)

Assuming unit variance [28], i.e., σr = σ = 1, the loss function reduce to the
mean squared error (MSE) between vertex features and the target feature map

LNLL(F,N,m,B) = 1

2

∑
i∈FG

∥fi − Cr∥2 +
1

2

∑
i′∈BG

∥fi − b∥2 + const. (3)
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Fig. 2: Illustration of our object-centric data augmentation strategy, to generate
feature activations across several scales, which are essential for our contrastive
learning framework.

Previous works adopted this general framework for category-level 3D pose
estimation [28, 31] and instance-level 6D pose estimation [12], thereby using dif-
ferent types of learnable features C and optimization algorithms. In this work, we
extend this framework to category-level 6D pose estimation from a single RGB
image, which requires us to overcome additional challenges. Specifically, we need
to address the challenge that the learnable feature representation C needs to
account for the large variations in object scale, as well as the intra-category
variation in terms of the object shape and texture properties.

3.3 Learning Scale-Invariant Contrastive Features

In this work, we propose to account for the variations in the object scale, shape,
and appearance by learning contrastive features that are invariant to these vari-
ations. This will enable us to estimate the 6D object pose by optimizing the
maximum likelihood formulation in Equation 3 directly with gradient-based opti-
mization. We demonstrate the efficacy of our scale-invariant contrastive features
in Figure 3 and quantitatively in Section 4.2.

Contrastive Learning of Scale-Invariant Features. One of the major
challenges in 6D pose estimation is the variation in object scales. Due to the na-
ture of convolution layers in the feature extractor ζ, nearby and distant objects
could yield very different feature activations in F . Unfortunately, annotations of
6D poses for small objects are limited. Therefore, we use data augmentation to
learn scale-invariant features from object-centric samples.

Specifically, given an image I ∈ RH×W×3, we prepare the training sample as
follows. First, we resize the image with scale s and obtain a new image with size
H
s × W

s . Then texture images from the Describable Textures Dataset (DTD) [4]
are used to pad the image back toH×W . We update the distance annotation d of
the object assuming a pinhole camera model, such that the distance annotation
can be computed as d′ = d · s. The augmented data is depicted in Figure 2.

In order for the CNN backbone ζ to extract feature invariant to instance-
specific details and to avoid local optima in the loss landscapes of the recon-
struction loss, we train the feature extractor ζ using contrastive learning to
learn features that are distributed akin to the probabilistic generative model as
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defined in Equations 1-3. We achieve this by adopting a contrastive loss:

Lcontrastive = −
∑
i∈FG

∑
j∈FG\{i}

∥fi − fj∥2 −
∑
i∈FG

∑
j∈BG

∥fi − fj∥2 (4)

which encourages the features of different vertices to be discriminative from
each other and features of the object vertices distinct from the features in the
background. Our full model is trained by optimizing Lcontrastive in a contrastive
learning framework, where we update the parameters of the feature extractor ζ
and the vertices features C in the neural mesh model jointly.

MLE Learning of the Neural Mesh Model (NMM). We train the pa-
rameters C of the probabilistic generative model through maximum likelihood
estimation (MLE) by minimizing the negative log-likelihood of the feature repre-
sentations over the whole training set (Equation 3). The correspondence between
the feature vectors fi and vertices r is computed using the annotated 6D pose.
To reduce the computational cost of optimizing Equation 3, we follow [1] and
update C in a moving average manner.

Convergence properties. The benefits of the scale-invariant contrastive
features are two-fold. First, the ground truth 6D pose is very close to the global
minimum of the reconstruction loss in all six dimensions. We illustrate the 6D
loss landscapes in Figure 3. Each curve corresponds to one of the six dimensions
of the 6D pose and is centered at the ground truth pose. The large convergence
basins that can be observed allow us to search for object proposals from simply
sparse sampling and to evaluate a pre-defined set of 6D poses, without the need
of a first-stage model widely used by related works [18, 31, 12]. Second, the loss
landscapes are generally smooth around the global minimum. This contrasts with
the keypoint-based methods that fit a rigid transformation between two groups
of keypoints [18, 31] and the render-and-compare methods over RGB space [2,
26] with many local minima on the optimization surface.

3.4 Coarse-to-Fine 6D Pose Estimation

Previous methods for 3D object detection or 6D pose optimization are built
on top of a 2D region proposal network or refine predictions from a separate
pose estimation network. Although this approach was empirically effective, the
performance of the hybrid model is largely limited by the 2D region proposal
network or the initial pose estimation network. The first-stage networks are
unreliable for objects with out-of-distribution textures or shapes, or even miss
the object if the object is partially occluded or truncated.

Therefore, we propose a coarse-to-fine 6D pose estimation strategy that
searches generative 6D proposals in the coarse stage and then refines the ini-
tial 6D poses with pose optimization in the fine stage. The overview of our
coarse-to-fine strategy is depicted in Figure 4. Since the generative 6D proposals
are built on the generative neural mesh models and scale-invariant contrastive
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(a) (b) (c) (d)

Fig. 3: We visualize the loss landscapes of the pose optimization with scale-
invariant contrastive features. (a) shows the input image. (b) shows the recon-
struction loss maxr∥Cr−fi∥2 for each pixel. (c) visualizes the predicted 6D pose.
Each curve in (d) corresponds to one of the six dimensions of the 6D pose and is
centered at the ground truth pose. We can see with the help the scale-invariant
contrastive features, the pose optimization has a clear global minimum near the
ground truth pose and is easy to optimize. This further allows us to search for
generative 6D proposals, as described in Section 3.4.

Fig. 4: Overview of our proposed coarse-to-fine 6D pose estimation. We search for
generative 6D proposals in the coarse stage and then refine the initial 6D poses
with pose optimization in the fine stage. Since the generative 6D proposals are
built on the generative neural mesh models and the scale-invariant contrastive
features, they are robust to partial occlusion and truncation and are easy to
optimize. Note that the CAD models are for visualization only and are not used
in any part of our model.

features, they are robust to partial occlusion and truncation. Moreover, this
coarse-to-fine strategy can largely benefit subsequent pose optimization. The
generative 6D proposals are often located at regions near global optimum that
makes effective gradients toward the ground truth pose. We compare Faster R-
CNN 6D proposals and our generative 6D proposals quantitatively in Section
4.4. We further visualize loss landscapes of different 6D object proposals in the
supplementary material.

Coarse stage: generative 6D proposals. With the scale-invariant con-
trastive features, the pose optimization has a clear global minimum near the
ground truth location, and the loss landscapes are smooth with decent gradients
around the global minimum (see Figure 3). This nice property allows us to search
for generative 6D proposals from a sparse sampling over six dimensions. Given a
6D pose sample, we estimate the reconstruction loss in Equation 3 and predict
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generative 6D proposals with non-maximum suppression. Since the structure of
the 3D model M and the sampled 6D poses are consistent across all testing
samples, the 2D coordinates and visibility of the vertices can be pre-computed
and cached. We further adopt a strategy to speed up by searching over the 2D
locations first and then the other four dimensions, which is detailed in the sup-
plementary materials. This allows us to predict generative 6D proposals that
are robust to partial occlusion and truncation and are easy to optimize with a
negligible complexity overhead.

Fine stage: pose optimization. The goal of pose optimization is to refine
the initial 6D pose of an object, which can be either predicted by a stand-alone
pose estimation network or from our generative 6D proposals. We maximize the
feature correlation between the predicted features F from the feature extract ζ
and the rendered features F̄ with respect to the object pose. Since the ground
truth FG and BG is unknown, we approximate the maximum likelihood problem
in Equation 3 with a one-hot map Z to denote the foreground and background
regions in the feature map:

Zi =

{
1 if ∥fi − Cr∥2 ≥ ∥fi − b∥2

0 otherwise
(5)

Finally, we minimize LNLL with respect to object pose m with gradient descent

LNLL(F,N,m,B) = 1

2

∑
i

(
1Zi=1∥fi − Cr∥2 + 1Zi=0∥fi − b∥2

)
+ const. (6)

3.5 Multi-Object Reasoning

One challenge when extending 3D pose estimation to 6D pose estimation is the
existence of multiple objects in the image. Therefore, we propose a multi-object
reasoning module that can resolve mutual occlusion and can be applied on top of
any render-and-compare methods. The motivation is that we need to assign the
pixels in the feature maps to different instances, and our multi-object reasoning
module resembles related methods in instance segmentation [37].

Given multiple generative 6D proposals, we run the pose optimization gra-
dient descent for a small number of epochs. If the rendered feature maps of
two objects overlap, we recover the occlusion order by running pixel-level com-
petition, and for each overlapping region, only one object is considered as the
foreground object and the other objects are considered as background. We use
a one-hot map to record the multi-object reasoning results, where

Z ∈ ZH×W×k, Zi,j,k =

{
1 if the k-th object is the foreground object

0 otherwise
(7)

Then we run the pose optimization again given the occlusion ordering Z. We
visualize the results of the multi-object occlusion reasoning in Figure 5.
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4 Experiments

In this section, we investigate the performance of our approach in challenging
6D pose estimation datasets and compare its performance to related methods.
We first describe the experimental setup in Section 4.1. Then we study the
performance of our model in Section 4.2. We visualize some qualitative examples
in Section 4.3. Finally, we run ablation study experiments on the generative 6D
proposals and the multi-object reasoning module in Section 4.4.

4.1 Experimental Setup

Datasets. We evaluate our model on PASCAL3D+ dataset [34], Occluded PAS-
CAL3D+ dataset [30], and ObjectNet3D dataset [33]. PASCAL3D+ dataset
contains objects from 12 man-made categories, and each object is annotated
with 3D pose, 2D centroid, and object distance. The ImageNet subset of the
PASCAL3D+ dataset contains 11045 images for training and 10812 images for
evaluation, and the PASCAL VOC subset contains 4293 images for training
and 4212 images for validation. Occluded PASCAL3D+ is based on the Ima-
geNet subset of the PASCAL3D+ dataset, and partial occlusion is simulated
by superimposing occluders on top of the objects and the background. We also
experimented on ObjectNet3D dataset, which consists of 100 categories with
17101 training images and 19604 testing images. Following [38, 28], we compare
the 6D pose estimation performance on 18 categories.

Evaluation metrics. Category-level 6D pose estimation estimates both the
3D pose (azimuth, elevation, and in-plane rotation) and the 3D location of the
visible objects. In our experiments, we adopt the pose estimation error and the
average distance metric (ADD) for evaluation. Following [38], the pose estima-
tion error measures the angle between the predicted rotation matrix and the

ground truth rotation matrix ∆(Rpred, Rgt) =
∥logm(R⊤

predRgt)∥F√
2

. Average dis-

tance (ADD) is a widely used metric to measure the translation of the keypoints
between the ground truth pose and the predicted pose. For the PASCAL VOC
images, we also evaluate the mean average precision (mAP) at (π/3, 5.0).

Implementation details. Our model includes a contrastive feature back-
bone and a corresponding neural mesh model. The feature extractor is a ResNet50
model with two upsampling layers, so the output feature map is 1

8 of the input
resolution. The neural mesh model is a category-wise cuboid model with around
1100 vertices. The scale of the cuboid mesh model is the average of the scales
of the sub-category mesh models, and the vertices are sampled uniformly across
six faces. Our model is trained for 1200 epochs with random horizontal flip and
2D translation and takes around 20 hours on one NVIDIA RTX Titan GPU.
During inference, the pose optimization with multi-object reasoning takes 4.1
seconds on average per object.
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Table 1: Quantitative results of 6D pose estimation on PASCAL3D+ dataset.
Subset Model Pose Acc (π

6
) ↑ Pose Acc ( π

18
) ↑ Median Pose Error ↓ Median ADD ↓ mAP ↑

ImageNet FRCNN+Cls 78.90 37.35 0.22 0.74 -
ImageNet FRCNN+NeMo 66.06 28.44 0.33 1.84 -
ImageNet RTM3DExt 74.94 39.56 0.23 0.92 -
ImageNet Ours 81.45 47.68 0.19 0.53 -

PASCAL VOC FRCNN+Cls 38.98 15.05 1.38 2.04 0.11
PASCAL VOC FRCNN+NeMo 40.13 19.17 1.40 2.14 0.32
PASCAL VOC RTM3DExt 18.04 8.12 6.28 20.0 0.11
PASCAL VOC Ours 45.32 18.09 0.65 1.87 0.43

Table 2: Quantitative results of 6D pose estimation on ObjectNet3D dataset.

Model Pose Acc (π
6
) ↑ Pose Acc ( π

18
) ↑ Median Pose Error ↓ Median ADD ↓

RTM3DExt 38.44 16.61 2.50 4.87
Ours 52.47 16.65 0.49 1.95

Baseline models. Since we know of no other 6D pose estimation methods
for category-level 6D pose estimation from a single RGB image, we compare our
model with related works in 3D object detection and 3D pose estimation and
extend them to the 6D pose estimation setting.

RTM3D is one of the state-of-the-art models for monocular 3D object de-
tection. It predicts a 3D bounding box (i.e., location, rotation, and scale) by
minimizing the reprojection error between the regressed 2D keypoints and the
corners of the 3D cuboid. To extend RTM3D to 6D pose estimation, we fix the
cuboid dimensions and fit a rigid 6D transformation.

We further compare our approach with two-stage models that predict object
proposals in the first stage and then estimate object poses from the proposed
RoIs. We adopt Faster R-CNN [24] for object detection. Two methods are con-
sidered for pose estimation. Following previous works [38, 28], we formulate the
pose estimation as a classification problem and predict the object pose from the
RoI features from the Faster R-CNN backbone. Based on the reported results [38,
28], we also consider the state-of-the-art 3D pose estimation model, NeMo [28],
where we optimize the 3D object pose from the predicted 2D bounding box. The
two models are denoted as “FRCNN+Cls” and “FRCNN+NeMo” respectively.

4.2 Quantitative Results

6D pose estimation on PASCAL3D+ and ObjectNet3D dataset. Table
1 shows the 6D pose estimation results on the ImageNet and PASCAL VOC
subsets of the PASCAL3D+ dataset. Compared to the ImageNet images, the
PASCAL VOC subset is more challenging as there are multiple objects with
occlusion, truncation, as well as a larger variance in the object scale and location.



12 W. Ma et al.

Our model outperforms all baseline models in both the pose error and the average
distance metric. To show our model can be applied to different man-made in-door
and out-door categories, we also experiment on the ObjectNet3D dataset, and
the results are shown in Table 2. Despite the considerable number of occluded
and truncated images in ObjectNet3D dataset, our model achieves reasonable
accuracy and outperforms the competitive baseline by a wide margin.

Robust 6D pose estimation on the Occluded PASCAL3D+ dataset.
In order to investigate the robustness under occlusion, we further evaluate

each model on Occluded PASCAL3D+ dataset under different occlusion lev-
els. The quantitative results are reported in Table 3. As we can see, our model
achieves superior performance across all occlusion levels and shows a wider per-
formance gap compared to the performance on the un-occluded images.

Table 3: Quantitative results of 6D pose estimation on the Occluded PAS-
CAL3D+ dataset.

Subset Level Method Pose Acc (π
6
) ↑ Pose Acc ( π

18
) ↑ Median Pose Error ↓ Median ADD ↓

ImageNet 1 FRCNN+Cls 61.48 26.11 0.33 1.07
ImageNet 1 FRCNN+NeMo 48.34 17.46 0.55 1.90
ImageNet 1 RTM3DExt 43.55 17.68 0.82 3.29
ImageNet 1 Ours 66.63 30.84 0.31 0.77

ImageNet 2 FRCNN+Cls 41.95 14.75 0.75 1.47
ImageNet 2 FRCNN+NeMo 34.33 9.65 1.05 2.03
ImageNet 2 RTM3DExt 21.27 7.24 3.14 5.00
ImageNet 2 Ours 47.95 16.25 0.56 1.22

ImageNet 3 FRCNN+Cls 22.42 5.58 2.01 1.95
ImageNet 3 FRCNN+NeMo 18.19 3.32 2.40 2.35
ImageNet 3 RTM3DExt 10.17 3.11 3.14 19.92
ImageNet 3 Ours 27.43 5.30 1.07 1.94

4.3 Qualitative Examples

Figure 5 shows some qualitative examples of our proposed model on PAS-
CAL3D+ dataset. As we can see, our method can robustly estimate 6D poses
for objects varying in scales and textures and is robust to partial occlusion.

4.4 Ablation Study

Generative 6D proposals. Unlike previous works that are based on 2D region
proposal networks, we introduce generative 6D proposals that are robust to par-
tial occlusion and truncation and are easy to optimize. We run ablation study
experiments on the object proposal methods and compare the performance of
our model using (1) generative 6D proposals (“Ours w/ GP”), or (ii) Faster
R-CNN object proposals (“Ours w/ FRCNN”). The quantitative results on the
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Fig. 5: Qualitative examples of our proposed model.

Occluded PASCAL3D+ dataset are reported in Table 4. As we can see, we can
significantly improve the performance of our model in almost all tests with the
generative 6D proposals. Note that “Ours w/ FRCNN” naturally benefits from
model ensembling, and “Ours w/ FRCNN” can achieve a better pose estimation
only in occlusion level 1 when the Faster R-CNN model can predict highly ac-
curate poses without any refinement. In occlusion levels 2 and 3, “Ours w/ GP”
significantly outperforms “Ours w/ FRCNN” in terms of both object location
and pose estimation.

Table 4: Ablation study on the 6D proposal method. We compare the perfor-
mance of our proposed model using Faster R-CNN 6D proposals and generative
6D proposals (GP) on the PASCAL3D+ dataset.

Level Method Pose Acc (π
6
) ↑ Pose Acc ( π

18
) ↑ Median Pose Error ↓ Median ADD ↓

1 Ours w/ FRCNN 65.79 34.56 0.28 0.95
1 Ours w/ GP 66.63 30.84 0.31 0.77

2 Ours w/ FRCNN 45.43 17.46 0.64 1.30
2 Ours w/ GP 47.95 16.25 0.56 1.22

3 Ours w/ FRCNN 23.53 5.27 1.67 2.05
3 Ours w/ GP 27.43 5.30 1.07 1.94

Number of pre-defined initial poses. Far all categories, we uniformly
sample a sparse set of initial poses over the space of 6D poses. In Table 5, we
ablate on the number of initial poses used to search the generative 6D proposals.

Multi-object reasoning. In order to estimate 6D poses of multiple objects
with render-and-compare, we propose a multi-object reasoning module to cor-
rectly assign pixels in the feature map to each object proposal. We quantitatively
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Table 5: Ablation on the number of initial poses used to search the generative
6D proposals. The default setting in the paper is bold.

Init. 3D Pose Init. 3D Loc Acc (π
6
) Acc ( π

18
) Median Err Median ADD

12x3x3 3x3x3 69.77 35.82 0.28 0.65
6x2x2 9x9x9 71.64 38.75 0.26 0.63

12x3x3 9x9x9 81.45 47.68 0.19 0.53

18x6x6 9x9x9 83.46 49.28 0.18 0.51
12x3x3 12x12x12 84.54 51.39 0.17 0.49

Table 6: Ablation study on the multi-object reasoning. We compare the perfor-
mance of our proposed model with and without the multi-object reasoning on
the PASCAL VOC subset of PASCAL3D+ dataset.

Method Pose Acc (π
6
) ↑ Pose Acc ( π

18
) ↑ Median Pose Error ↓ Median ADD ↓ mAP ↑

Ours w/o reasoning 44.89 17.63 0.66 1.87 0.41
Ours 45.32 18.09 0.65 1.87 0.43

compare the performance of our model with and without an object reasoning
module on the PASCAL subset of the PASCAL3D+ dataset. As shown in Table
6, we can effectively improve the performance of our model with the multi-object
reasoning module.

5 Conclusions

In this work, we consider the problem of category-level 6D pose estimation from
a single RGB image. We find that previous methods built on 2D region proposal
networks are less robust to partial occlusion and truncation, and the predicted
initial poses are harder to optimize. Therefore, we propose a coarse-to-fine 6D
pose optimization strategy where we search generative 6D proposals in the coarse
stage and then refine them with pose optimization in the second stage. Both
stages of our coarse-to-fine 6D pose estimation are built on our scale-invariant
contrastive features and are hence robust to partial occlusion and truncation.
We demonstrate the superiority of our approach compared to related works on
several challenging datasets.
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