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Abstract. Integrating multispectral data in object detection, especially
visible and infrared images, has received great attention in recent years.
Since visible (RGB) and infrared (IR) images can provide complemen-
tary information to handle light variations, the paired images are used in
many fields, such as multispectral pedestrian detection, RGB-IR crowd
counting and RGB-IR salient object detection. Compared with natu-
ral RGB-IR images, we find detection in aerial RGB-IR images suffers
from cross-modal weakly misalignment problems, which are manifested
in the position, size and angle deviations of the same object. In this
paper, we mainly address the challenge of cross-modal weakly misalign-
ment in aerial RGB-IR images. Specifically, we firstly explain and ana-
lyze the cause of the weakly misalignment problem. Then, we propose
a Translation-Scale-Rotation Alignment (TSRA) module to address the
problem by calibrating the feature maps from these two modalities. The
module predicts the deviation between two modality objects through an
alignment process and utilizes Modality-Selection (MS) strategy to im-
prove the performance of alignment. Finally, a two-stream feature align-
ment detector (TSFADet) based on the TSRA module is constructed for
RGB-IR object detection in aerial images. With comprehensive experi-
ments on the public DroneVehicle datasets, we verify that our method
reduces the effect of the cross-modal misalignment and achieve robust
detection results.

Keywords: multispectral object detection, cross-modal alignment, ve-
hicle detection, aerial imagery

1 Introduction

Object detection in aerial images plays an important role in computer vision
field with various applications, such as urban planning, surveillance and disaster
rescue. Unlike natural images that are often taken from low-altitude perspectives,
aerial images are typically taken with bird views, which implies that objects in
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Fig. 1. Illustration of the modality weakly misalignment problem. (a) and (b) are the
visualization image patches (cropped on the same position of RGB-IR image pairs)
of groundtruth annotations in nature image datasets and aerial DroneVehicle dataset.
The yellow and the red boxes represent annotations of same objects in the infrared
images and the visible images, respectively. KAIST and CVC-14 are the pedestrian
detection dataset, and RGBT-CC is the crowd counting dataset.

aerial images are always distributed with arbitrary orientation. To solve these
problems, several oriented object detectors [5,25,28,41] have been proposed and
obtained state-of-the-art results on challenging aerial image datasets [18,27].
However, these detectors are only designed for the visible images alone, which
cannot cope with the challenges in limited illumination (nighttime).

For these reasons, infrared cameras have been invested to deal with com-
plex scenarios. Infrared cameras can present clear silhouettes of objects even in
low-light condition, due to the capability in capturing the radiated heat. This
makes visible (RGB) images and infrared (IR) images complement each other. In
natural images, RGB-IR images are utilized in many fields , such as multispec-
tral pedestrian detection, RGB-IR crowd counting and RGB-IR salient object
detection. However, there are few RGB-IR methods and paired image datasets
specifically for aerial imagery.

Image alignment is one of the issues that should be considered in cross-modal
image applications. Existing methods [11,16,40,29,6,38,39] usually assume that
visible-infrared image pairs are perfectly geometrically aligned, and they directly
perform the multi-modal fusion methods. Actually, after the image registration
algorithm, the paired images are just weakly aligned (shown in Fig. 1(a)). How-
ever, objects are always arbitrary oriented in aerial images, they differ not only
in position, but also in scale and angle. These three deviations (position, size and
angle) of the paired arbitrary oriented objects are closely coupled, changing one
will affect another one, which makes the alignment operation more complicated.
As shown in Fig. 1(b), the dashed boxes represent the position of the corre-
sponding bounding-boxes in the infrared images. We find that the same object
on image pairs differs in location, scale and angle. Therefore, weakly misalign-
ment in cross-modal aerial images is a common issue that needs to be addressed.
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To solve the above problem, in this paper, we propose and analyze the cause
of the weakly misalignment problem. The problem is mainly caused by two fac-
tors: hardware errors and annotation errors. To address these issues, we propose
a TSRA module to calibrate the feature maps from two modality proposals
through translation, scale and rotation operations. In the module, the feature
maps of RGB-IR modality proposals are first subjected to the alignment process
to acquire the deviation, and then we utilize a Modality-Selection strategy to
select the appropriate annotations as the reference bounding-boxes. The final
feature maps for classification and regression are obtained by fusing the aligned
proposal features. Finally, we construct a TSRA-based oriented object detector
to evaluate the effectiveness of the TSRA module.

In summary, the contributions of this paper are as follows:

- We present the cross-modal weakly misalignment problem specific to the
RGB-IR object detection in aerial images. To the best of our knowledge, it
is the first time to present and analyse the weakly misalignment problem in
rotated object detection of RGB-IR aerial images.

- We propose a TSRA module which consists of alignment process and MS
strategy to translation, scale and rotate the feature maps of two modality ob-
jects. Meanwhile, the Multi-task Jitter is designed to further improve model
performance. To evaluate the validity of the TSRA module, we construct a
two-stream feature alignment detector (TSFADet) for RGB-IR object detec-
tion in aerial images, which can be trained with an end-to-end manner.

- Extensive experiments on DroneVehicle dataset demonstrate that, our TS-
FADet outperforms previous state-of-the-art datectors and the TSRA mod-
ule is effective for solving the cross-modal weakly misalignment problem.

2 Related Work

2.1 Oriented Object Detection

Aerial images are the main application scenarios of the rotation detectors. Xia et
al. [27] construct a large-scale object detection benchmark with oriented anno-
tations, named DOTA. Since then, several existing works [17,19,5,12,30,28] are
mainly based on typical proposal-based frameworks to explore oriented object
detection. Naturally, some methods [17,19] set numerous rotated anchors with
different angles, scales and aspect ratios for better regression. These methods
lead to extensive computation complexity. To avoid a large number of anchors,
Ding et al. [5] designed an RoI transformer to learn the transformation from
Horizontal RoIs (HRoIs) to Rotated RoI (RRoIs), which boosts the detection
accuracy of oriented objects. Recently, Oriented R-CNN [28] is proposed to fur-
ther improve the detection performance by replacing RROI learning module with
a lighter and simpler oriented region proposal network (orientation RPN).

To improve real-time and availability of detectors, some works [7,31,21,26,34]
have explored one-stage or anchor-free oriented object detection frameworks. For
instance, R3Det [31] and S2A-Net [7] are one-stage object detector, which align
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Fig. 2. The illustration of Hardware Errors. (a) and (b) are the description of radiation
distortion and clock skew, respectively.

the feature between horizontal receptive fields and rotated anchors. Recently,
GWD [32] and KLD [33] are proposed to use the Gaussian Wasserstein distance
and KL divergence to optimize the localization of the bounding boxes, respec-
tively. Considering that many current mainstream rotation detectors are based
on the well-extended two-stage detection framework, we also build a two-stream
rotation detector based on the two-stage detection framework to verify the ef-
fectiveness of our proposed method.

2.2 Cross-Modal Image Alignment

Images from different modalities usually contain scale, rotation or radiance dif-
ferences so that cross-modal image alignment is required before using them si-
multaneously [1,42]. The aim of image alignment is to warp a sensed image into
the common spatial coordinate system of a reference image so that they are
matched in pixel. Existing methods are generally divided into area-based meth-
ods and feature-based methods. The area-based methods register the image pairs
using a similarity metric function, while the feature-based methods include four
processes: feature extraction, feature matching, transformation model estima-
tion and image re-sampling and warping. As deep learning has great potential
in feature extraction, numerous researchers have designed data-driven strategy
in the field of cross-modal image alignment [35,20,4]. Although image alignment
is a necessary step in many fields, it brings extra time consumption and cannot
completely address the weakly misalignment problem.

Recently, a few works have been proposed to address the image alignment is-
sue by end-to-end training network. [37] firstly addressed the alignment problem
by introducing region feature alignment (RFA) module. Zhou et al. [40] designed
a illumination aware feature alignment (IAFA) module to align two modality
features and then construct Modality Balance Network (MBNet) based on SSD.
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However, these methods only consider the translation way to solve the deviation,
and cannot solve complex misalignment problems in aerial images, such as angle
deviation and size deviation. Inspired by [37], in this paper, we propose TSRA
module to predict the offset of two objects in position, size and angle.

3 Methodology and Analysis

In this section, we first analyze the cause of modality weakly misalignment prob-
lem (Section 3.1). According to our analysis, we propose the TSRA module (Sec-
tion 3.2) which consists of alignment process, MS strategy and multi-task jitter
to solve the problem. For the same object in two modality images, we use MS
strategy to select the bounding-boxes with better annotation in the two modal-
ities as the reference modality, and then perform alignment process to calibrate
the feature maps from two modalities. Finally, we put everything together into
a description of the TSFADet (Section 3.3).

3.1 Analysis

Modality weakly misalignment is a common problem in aerial cross-modal im-
ages, since the data are collected by different sensors. Through observation and
research, we find the the problem usually occurs in the three situation: hardware
errors, annotation errors and both, which are explained as follows.

Hardware Errors: Hardware errors are mainly reflected in radiation distor-
tions and clock skews. The radiation distortions often occur in the process of the
sensor imaging [23]. The spectral emissivity of the ground objects is different
from the real spectral emissivity. These radiation differences will cause images
have different representations (e.g. color, intensity and texture) for the same
objects (shown in Fig. 2(a)). Therefore, the same object on two modality images
will have differences in scale and position caused by radiation distortion (shown
in Fig. 1(a)).

As shown in Fig. 2(b), due to the different sensors’ capturing time, the
clock skew between two sensors (e.g. visible and infrared) can lead to pixel-
misalignment of image pairs, especially for locally moving objects such as cars
on a highway [10]. As a result, clock skew causes the position and angle of the
same object to be inconsistent in different modalities, see Fig. 1(a).

Annotation Errors: Since different people have different standards for labeling
data, the annotation errors are inevitable. In the process of multispectral data
annotation, it is difficult to ensure that the objects are annotated accurately
in different modalities. The annotations can affect the training performance of
the model. Some examples of the annotation errors in DroneVehicle datasat are
shown in Fig. 3(a).
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Fig. 3. The visualization image patches (cropped on the same position of RGB-IR im-
age pairs) in the DroneVehicle dataset. (a) Examples of annotation errors. (b) Examples
of hardware errors and annotation errors occur simultaneously.

Hardware errors and annotation errors can occur simultaneously in the same
object, as shown in Fig. 3(b). That makes the deviation between two modalities
cannot be simply solved by affine transformation, therefore, we need to design
a module to handle the above situations and perform alignment process in a
region-wise way.

3.2 Translation-Scale-Rotation Alignment Module

The proposed TSRA module can be injected into the object detection frame-
work to solve the weakly misalignment problem. The module mainly consists
of two parts: alignment process and modality-selection strategy. To improve the
robustness of the TSRA module, we also present a multi-task jitter to augment
the alignment process.

Alignment Process. Our RGB-IR alignment task is the process of overlay-
ing two proposals of the same object. Refer to [1,42], we introduce the con-
cept of the reference and sensed modality into our task. The alignment pro-
cess is shown in Fig. 4. Given the two fixed region feature maps (ϕr and ϕs)
pooled by rotated RoIAlign operation, we acquire a new feature map ϕd by
direct subtraction of two modalities, ϕd = ϕs − ϕr. Through this operation,
the feature map ϕd can obtain the differential representation between the two
modalities. Then, three sets of consecutive fully connected layers Fi are uti-
lized to predict the position deviation p, angle deviation r and size deviation s
of the region, {t(tx, ty), s(sw, sh), r(rθ)} = Fi (ϕd). Moreover, we add the pre-
dicted deviation to the proposals p(x, y, w, h, θ) and obtain the sensed proposals
ps(x + tx, y + ty, w + sw, h + sh, θ + rθ). Finally, we re-pool the sensed feature
maps on the sensed proposals through rotated RoIAlign operation and acquire
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Fig. 4. The concrete structure of the alignment process uses three sets of fully con-
nected layers to predict the deviation of position, size and angle.

Fig. 5. Illustration of our proposed evaluation method, which can be summarized in
the following steps: (a) original bounding-boxes. (b) extend bounding-boxes. (c) crop
objects. (d) binarization process. (e) map original bounding-boxes to cropped images.
(f) calculate score.

aligned feature. The final fused feature can be formulated as:

ϕfused = ϕr +ROIAlign(ps) (1)

Modality-Selection Strategy. To alleviate the influence of annotation errors
during training, we design the MS strategy to select the bounding-box with bet-
ter annotation in the two modalities as the reference modality, rather than sim-
ply selecting the infrared image as the reference modality [37,40,9,16]. Through
this operation, we can determine which bounding-boxes should be used as the
reference modality, and then determine the reference feature and sensed feature.

Specifically, we design a evaluation method (shown in Fig. 5) and perform
it on the visible and infrared images separately to select reference bounding-
boxes. For each paired bounding-box Brgb and Bir, we first extend the bounding-
boxes to include the full object. The full objects Crgb and Cir are then cropped
from their original images and subjected to color binarization Fb. Finally, we
obtain the scores Srgb and Sir according to their corresponding binary images
Fb(Crgb) and Fb(Cir), and select the one with the higher score as the reference
bounding-box (e.g. if Srgb > Sir, choose Brgb). The score S of the bounding-box
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Fig. 6. Illustration of the Multi-task Jitter. Red boxes denote the sensed bounding-
boxes. Blue boxes and green boxes represent jitter proposal instances.

is calculated as follows:

S =
n

Nobject
× 0.5 +

n

Nbounding-box
× 0.5 (2)

In equation (2), n denotes the number of white pixels in the original bounding-
box.Nobject indicates the number of white pixels of the full object.Nbounding-box

is the total number of pixels of the original bounding-box. S is the final score,
and its value range is between 0 and 1. For the ideal bounding-box annotation,
S should be close to 1.

Multi-task Jitter. To improve the robustness of the TSRA module during
training, we refer to the ROI jitter strategy [37] and present a novel Multi-task
Jitter (MJ) to augment the deviation. Specifically, the MJ adds the translation,
scale and rotation jitter to the sensed proposals, and uses the same settings as
[37] to generate jitter randomly, as shown in Fig. 6.

jx, jy ∼ N
(
0, σ2

x; 0, σ
2
y; 0

)
,

jw, jh ∼ N
(
0, σ2

w; 0, σ
2
h; 0

)
,

jθ ∼ N
(
0, σ2

θ

)
,

(3)

where jx, jy, jw, jh and jθ represent location, width, height and angle of a sensed
jitter proposal, respectively.

3.3 TSRA-based Oriented Detector

To evaluate our proposed TSRA module, we construct a two-stage oriented ob-
ject detector incorporating into the TSRA module, called TSFADet. The TS-
FADet mainly consists of two-stream backbone network, oriented RPN, oriented
R-CNN head and our proposed TSRA module. The detailed architecture and
description of the loss function are as follows.
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Fig. 7. Overall structure of Two-Stream Feature Alignment Detector (TSFADet),
which is a two-stage detector. The first stage generates oriented proposals by oriented
RPN and the second stage uses Translation-Scale-Rotation Alignment module to align
the oriented features.

Overall Architecture The overall architecture of the proposed oriented detec-
tor is shown in Fig. 7. The TSFADet extends the framework of Oriented R-CNN
[28] and adopts the two-stream framework to deal with RGB-IR inputs. The
backbone is built on FPN follows [13], which produces five levels of features.
We aggregate feature maps from two modalities and utilize the Oriented Region
Proposal Network (Oriented RPN) to generate proposals. Then we perform MS
strategy and alignment process to predict the offset between two modalities.
Finally, we acquire the aligned ROI feature to perform the classification and
regression task.

Loss Function. The loss function used for measuring the accuracy of predicted
deviation is:

Ldeviation ({g∗i } , {ti} , {t∗i } , {si} , {s∗i } , {ri} , {r∗i }) =

1

Ndeviation

n∑
i=1

g∗i ( smooth 1 (ti − t∗i ) + smooth1 (si − s∗i ) + smoothL1 (ri − r∗i ))

(4)
where i is the index of proposal in a batch, ti, si, and ri are the predicted
position deviation, size deviation and angle deviation. gi ∈ {0, 1}, where gi = 1
if i-th proposal is positive, else negative. Ndeviation is the total number of positive
proposals. t∗i , s

∗
i , and r∗i are the associated ground-truth position deviation, size

deviation and angle deviation of the i-th sensed bounding-box, which calculated
as follows:

t∗x = ((xs − xr) cos θr + (ys − yr) sin θr) /wr,

t∗y = ((ys − yr) cos θr + (xs − xr) sin θr) /hr,

s∗w = logws/wr, s
∗
h = log hs/hr,

r∗θ = ((θs − θr) mod 2π) /2π,

(5)
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Fig. 8. The statistics of groundtruth bounding-boxes deviation within RGB-IR image
pairs in DroneVehicle dataset.

In equation (5), (xs, ys, ws, hs, θs) and (xr, yr, wr, hr, θr) are the stack vector for
representing location, width, height and angle of the sensed bounding-box and
reference bounding-box, respectively.

Finally, the final total loss function can be represented as follows:

L = Lcls + Lreg + Lrpn + λLdeviation (6)

where the formulations of Lrpn, Lcls and Lreg remain the same as Oriented R-
CNN [28]. In our implementation, we set λ = 1, and thus the average gradient
of each loss is at the same scale.

Implementation Details We implement the network in one unified code li-
brary modified from MMDetection [3]. During training, we use the same hyper-
parameter settings of the original Oriented R-CNN model [28] and use ResNet-50
[8] as the backbone network, which is pretrained on ImageNet. Horizontal and
vertical flipping are adopted as data augmentation during training. The whole
network is trained by SGD algorithm with the momentum of 0.9 and the weight
decay of 0.0001. We train TSFADet for a maximum of 20 epochs with a batch
size of 6 and input image size 512× 512. The initial learning rate is set to 0.005
and divided by 10 at epoch 16 and 19. The whole framework can be trained end-
to-end and the training requires about 14 hours on an NVIDIA GV100 GPU.

4 Experimental Results

In this section we show results of experiments we have made to evaluate the
effectiveness of TSFADet. In section 4.1, we first introduce the DroneVehicle
dataset [24], and in section 4.3 we carry out ablation studies for the proposed
method on the DroneVehicle dataset. In section 4.4 we compare it with other
detection approaches.
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Table 1. Ablation experiments of TSRA module on DroneVehicle dataset. The symbols
of ’P’, ’S’, and ’A’ represent Position, Size and Angle prediction branches respectively.

car freight-car truck bus van mAP
TSFADet (full) 89.88 67.87 63.74 89.81 53.99 73.06

TSFADet w/o MJ 89.34 66.53 62.65 89.62 53.67 72.36
TSFADet w/o MS 89.78 66.26 61.44 89.60 53.17 72.05

TSFADet
w/o MJ and MS

P S A
✓ ✓ ✓ 89.69 65.11 60.39 89.43 51.01 71.13
✓ ✓ 89.65 64.77 61.28 89.26 48.57 70.71
✓ ✓ 89.68 62.97 60.22 88.90 49.59 70.27
✓ 89.56 62.83 58.35 89.46 47.26 69.49

Baseline 89.45 62.14 57.00 89.09 45.43 68.62

4.1 Dataset and Evaluation Metrics

Our experiments were conducted on the DroneVehicle RGB-IR vehicle detection
dataset [24]. DroneVehicle is a large-scale drone-based dataset with well-aligned
visible/infrared pairs from day to night.

The DroneVehicle dataset collects 28,439 RGB-Infrared image pairs, covering
urban roads, residential areas, parking lots, and other scenarios. Besides, the au-
thors made rich annotations with oriented bounding boxes for the five categories
(car, bus, truck, van and freight car). To verify the effectiveness of our method,
we make the following improvements to the annotations of the original dataset:

• The objects that only annotated in one modality are added in same position
to the other modality.

• If the bounding-box in visible image is under extremely bad illumination, we
will discard this bounding-box in both modalities.

• Sort the bounding-box of the two modalities so that the same object is
assigned in the same index.

The final training set contains 17,990 image pairs and the validation set contains
1,469 images pairs. We evaluate the detection performance on the validation set
and adopt the mean average precision (mAP) as evaluation criteria. For mAP, an
Intersection over Union (IoU) threshold of 0.5 is used to calculate True Positives
(TP) and False Positives (FP).

4.2 Statistics of DroneVehicle

To demonstrate the generality of the weakly misalignment problem in aerial
imagery, we also obtain the statistics information of DroneVehicle dataset. we
separately count the number of bounding-boxes with deviations (position and
size offset by 3 pixels, angle offset by 3 degrees) in the DroneVehicle dataset.
As illustrated in Fig. 8, more than 20% of the bounding-boxes have the devia-
tion problem. The results show that the weakly misalignment problem in aerial
images is a common issue that needs to be considered.
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Table 2. Quantitative comparisons of using different methods to demonstrate the
contribution of the MS strategy.

Methods car truck freight-car bus van mAP
RGB Modality 89.47 65.56 60.36 89.63 52.82 71.57
IR Modality 89.78 66.26 61.44 89.60 53.17 72.05

Random strategy 89.53 66.71 62.38 89.74 53.74 72.42
MS strategy 89.88 67.87 63.74 89.81 53.99 73.06

4.3 Ablation Studies

Ablation experiments are performed on the DroneVehicle dataset for a detailed
analysis in this section. Throughout the experiments, the TSFADet has been
inspected by removing each key component from its full version. And the baseline
is a two-stream Oriented R-CNN, which only adopts simple additional operation
to fuse two modalities. Table 1 provides the performance of the different versions
with/without the Modality-Selection strategy (MS) and Multi-task Jitter (MJ).

Alignment Process. ’TSFADet w/o MJ and MS’ version is trained using the
alignment process only. As shown in Table 1, ’TSFADet w/o MJ and MS’ ver-
sion obtains 71.13% mAP, which is almost 3% higher than the baseline version.
Moreover, we also exclude different deviation prediction branches to train the
’TSFADet w/o MJ and MS’ version. As can be seen in Table 1, adding Size
and Angle prediction branches to the Position prediction branch can improve
the performance of the model respectively. Specifically, with the Position and
Size prediction branches, the mAP has increased by a significant 2.1% (from
68.2% to 70.71%) compared to the baseline. As a result, the performance im-
provement of the alignment process was noticeable in DroneVehicle dataset. We
conclude that reducing the effect of the weakly misalignment problem caused by
hardware errors through the alignment process can improve the multispectral
detection performance.

Modality-Selection Strategy. Based on alignment process, we further add
the Modality-Selection strategy and validate its contribution. As shown in Ta-
ble 1, the ’TSFADet w/o MJ’ version is trained with the MS strategy to further
improve the detection performance and achieves 72.36% mAP. To have a deep
insight of the effectiveness of Modality-Selection strategy, we investigate the
performance of different design choices in Table 2. We use different strategies to
select reference modality of bounding-boxes, including directly using the RGB
or IR images as the reference modality, randomly selecting bounding-boxes and
our MS strategy. From Table 2 we can see that our proposed MS strategy has
greater advantages. The quantitative comparisons demonstrate the importance
of addressing reference bounding-boxes accuracy in the weakly misalignment
problem. The experiments show that the MS strategy alleviates the weakly mis-
alignment problem and improves the performance of multispectral detection.



Cross-Modal Alignment Meets RGB-Infrared Vehicle Detection 13

Table 3. Evaluation results on the DroneVehicle dataset. The last column refers to
input modalities of the approach.

Detectors car truck freight-car bus van mAP Modality
Faster R-CNN(OBB) [22] 79.69 41.99 33.99 76.94 37.68 54.06

RGB
RetinaNet(OBB) [14] 78.45 34.39 24.14 69.75 28.82 47.11
ROI Transformer [5] 61.55 55.05 42.26 85.48 44.84 61.55

S2ANet [7] 79.86 50.02 36.21 82.77 37.52 57.28
Oriented R-CNN [28] 80.26 55.39 42.12 86.84 46.92 62.30

Faster-R-CNN(OBB) [22] 89.68 40.95 43.10 86.32 41.21 60.27

IR
RetinaNet(OBB) [14] 88.81 35.43 39.47 76.45 32.12 54.45
ROI Transformer [5] 89.64 50.98 53.42 88.86 44.47 65.47

S2ANet [7] 89.71 51.03 50.27 88.97 44.03 64.80
Oriented R-CNN [28] 89.63 53.92 53.86 89.15 40.95 65.50

Halfway Fusion(OBB) [15] 89.85 60.34 55.51 88.97 46.28 68.19

RGB
+IR

CIAN(OBB) [36] 89.98 62.47 60.22 88.9 49.59 70.23
AR-CNN(OBB) [37] 90.08 64.82 62.12 89.38 51.51 71.58
TSFADet(Ours) 89.88 67.87 63.74 89.81 53.99 73.06

Cascade-TSFADet (Ours) 90.01 69.15 65.45 89.70 55.19 73.90

Multi-task Jitter. To verify that the the Multi-task Jitter is effective, we also
made a comparison with/ without it (the ’TSFADet w/o MS’ version) in Table 1.
It is observed that performance gains can generally be achieved by the Multi-task
Jitter. By introducing the Multi-task Jitter which generates various deviations
to the sensed bounding-boxes, the alignment process achieves higher accuracy in
predicting the deviations between sensed and referenced bounding-boxes. This
demonstrates that the detection performance can be further improved by Multi-
task Jitter, since it makes the network more robust to solve weakly misalignment
problem.

4.4 Comparisons

Comparison Methods. We compare our proposed TSFADet with 5 state-of-
the-art single-modality detectors, including Faster R-CNN [22], RetinaNet [14],
ROI Transformer [5], S2ANet [7] and Oriented R-CNN [28]. Since the rotation
detectors are focus on detection in single-modality images at present, we re-
implement three methods (Halfway Fusion [15], CIAN [36] and AR-CNN [37])
for multispectral object detection on rotation detectors. The backbone of the de-
tectors is also ResNet-50 [8]. Other hyperparameters including training schedule
and data augmentations are also same to the TSFADet to ensure the fairness of
the comparisons.

Quantitative Comparison. We evaluate our method and the other eight state-
of-the-art methods by using mAP metric. The results are shown in the Table 3.
The multispectral methods using both RGB and IR images are superior to the
single-modality methods. In single-modality methods, Oriented R-CNN and ROI
Transformer both have comparable detection accuracy (65.5% mAP and 65.47%
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Table 4. Speed versus accuracy on the DroneVehicle dataset.

Method FPS mAP Input framework
Halfway Fusion(OBB) 20.4 68.19 RGB+IR two-stage

CIAN(OBB) 21.7 70.23 RGB+IR one-stage
AR-CNN(OBB) 18.2 71.58 RGB+IR two-stage
TSFADet(Ours) 18.6 73.06 RGB+IR two-stage

mAP) in IR images. We further exploit the advantages of Oriented R-CNN in
detection performance and propose TSFADet to perform multispectral detection
tasks. From Table 3 we can see that our proposed detector achieves 73.06% mAP,
better than other multispectral methods. We also combine Cascade R-CNN [2]
structure with our TSFADet and achieve the highest result of 73.90% mAP.

Speed versus Accuracy We compare the speed and accuracy of different
detectors on a single NVIDIA GV100 GPU. All detectors are tested with a
batch size of 1 under the same settings. During testing, the size of input images
is 512× 512. Table 4 reports the comparison results. Since CIAN is a one-stage
detector, its speed is faster than other detectors. In addition, our detector has
higher detection accuracy (73.06% mAP) than other multispectral detectors and
runs with comparable speed (18.6 FPS), only 1.8fps slower than the Halfway
Fusion method.

5 Conclusions

In this work, we propose and analysis the weakly misalignment problem in mul-
tispectral aerial detection. Then we explore a TSRA module based multispec-
tral detector named TSFADet to alleviate the weakly misalignment problems.
Specifically, we present a new alignment process, which predicts the deviations
of position, size and angle to solve the misalignment caused by device factors.
Meanwhile, the MS strategy is designed to address the problem caused by human
factors. Moreover, we adapt a Multi-task Jitter to further improve the robustness
of TSRA module. Our detector can be trained with an end-to-end manner and
achieves state-of-the-art accuracy on the DroneVehicle dataset. The proposed
method can be generalized to other multispectral detection task and facilitate
potential applications.
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