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Abstract. Detecting tiny objects is one of the main obstacles hindering
the development of object detection. The performance of generic ob-
ject detectors tends to drastically deteriorate on tiny object detection
tasks. In this paper, we point out that either box prior in the anchor-
based detector or point prior in the anchor-free detector is sub-optimal
for tiny objects. Our key observation is that the current anchor-based or
anchor-free label assignment paradigms will incur many outlier tiny-sized
ground truth samples, leading to detectors imposing less focus on the
tiny objects. To this end, we propose a Gaussian Receptive Field based
Label Assignment (RFLA) strategy for tiny object detection. Specifi-
cally, RFLA first utilizes the prior information that the feature receptive
field follows Gaussian distribution. Then, instead of assigning samples
with IoU or center sampling strategy, a new Receptive Field Distance
(RFD) is proposed to directly measure the similarity between the Gaus-
sian receptive field and ground truth. Considering that the IoU-threshold
based and center sampling strategy are skewed to large objects, we fur-
ther design a Hierarchical Label Assignment (HLA) module based on
RFD to achieve balanced learning for tiny objects. Extensive experi-
ments on four datasets demonstrate the effectiveness of the proposed
methods. Especially, our approach outperforms the state-of-the-art com-
petitors with 4.0 AP points on the AI-TOD dataset. Codes are available
at https://github.com/Chasel-Tsui/mmdet-rfla.

Keywords: tiny object detection · Gaussian receptive field · label as-
signment

1 Introduction

Tiny object, featured by its extremely limited amount of pixels (less than 16 ×
16 pixels defined in AI-TOD [49]), is always a hard nut to crack in the computer
vision community. Tiny Object Detection (TOD) is one of the most challenging
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Fig. 1. Comparison between detection results of different label assignment schemes.
The detection results are listed in the first row. The green, blue and red boxes de-
note true positive (TP), false positive (FP) and false negative (FN) predictions. The
schematic diagram of different prior is in the second row, where the green region is gt,
grey, red and yellow regions denote box, point and Gaussian prior respectively.

tasks, and generic object detectors usually fail to provide satisfactory results on
TOD tasks [49,57], resulting from tiny object’s lack of discriminative features.
Considering the particularity of tiny objects, several customized TOD bench-
marks are proposed (e.g. AI-TOD [49], TinyPerson [57], and AI-TOD-v2 [51]),
facilitating a series of downstream tasks including driving assistance, traffic man-
agement, and maritime rescue. Recently, TOD has gradually become a popular
yet challenging direction independent of generic object detection [25,13].

Generic object detectors can be divided into two factions: the anchor-based
and the anchor-free paradigms. For anchor-based detectors, prior boxes of dis-
crete locations, scales, and aspect ratios are heuristically preset. Then, label
assignment strategies (e.g. Max IoU Strategy [39], ATSS [58]) are constructed
mainly based on IoU to find the appropriate matching relationship between an-
chors and ground truth (gt). Anchor-free detectors change the prior from boxes
to points. Usually the point prior covered by gt is regarded as a positive sample
(with the centerness in FCOS [46]), saving the effort of anchor box fine-tuning.

Despite the outstanding performance of the above two factions on generic
object detection tasks, their performance on TOD tasks commonly suffers a
drastic drop [49,57]. In this paper, we argue that the current prior box and point
along with their corresponding measurement strategies are sub-optimal for tiny
objects, which will further hinder the process of label assignment. Specifically,
we take the individual prior box and point as instances and rethink them from
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the perspective of distribution.

p(v|x, y) = ε(x− x1)ε(x2 − x)ε(y − y1)ε(y2 − y)

(x2 − x1)(y2 − y1)
(1)

where p(v|x, y) is the probability density function of prior information, (x, y) is
the location on the image, v is the weight of the corresponding location, ε(·)
is a step function that equals to 1 when the input is larger than 0, otherwise
equals to 0. [(x1, y1), (x2, y2)] is the region of prior information, for anchor-based
detectors x2 − x1 = width, y2 − y1 = height, while for anchor-free detectors
x2−x1 = 1, y2−y1 = 1. The schematic diagram of different prior is shown in the
second row of Fig. 1, existing prior information combing with its corresponding
measurement strategy has the following problems for tiny objects.

First, the individual box prior and point prior both have a limited prior
domain (where p(v|x, y) > 0), while existing label assignment metrics are highly
dependent on the overlap of domain. In other words, when a particular gt has
no overlap with a specific prior, their positional relationship cannot be solved
by IoU or centerness. For tiny objects, it is often the case that the gt box has
no overlap with almost all anchor boxes (i.e. IoU = 0) or does not contain any
anchor points [52], leading to tiny objects’ lack of positive samples [52]. To
this end, heuristics are usually deployed to guarantee more positive samples for
tiny objects [58,59]. However, the assigner often fails to compensate positive
samples for tiny objects based on the zero-valued IoU or centerness. Therefore,
the network will impose less attention on tiny object learning. Details about
this point are analyzed in Sec. 4.5. Second, current prior region mainly follows
a uniform distribution and treats each location inside the prior region equally
(v = constant). However, prior information is essentially leveraged to assist
the label assignment or feature point assignment process [58]. In this process,
one implicit rule is assigning feature points with appropriate receptive field to
gt [39,46]. As theoretically analyzed in previous work [29], when remapping the
receptive field of feature point back onto the input image, the effective receptive
field is actually Gaussian distributed. The gap between the uniformly distributed
prior and the Gaussian distributed receptive field will lead to the mismatch
between gt and the receptive field of the feature points assigned to it.

To mitigate the above problems, we introduce a novel prior based on Gaus-
sian distribution and build a Gaussian Receptive Field based Label Assignment
(RFLA) strategy that is more conducive to tiny objects. Specifically, we propose
to directly measure the similarity between the Gaussian receptive field and gt
region with a newly designed Receptive Field Distance (RFD). Leveraging the
Gaussian receptive field as prior information can elegantly address the issues
incurred by box and point prior. On the one hand, the Gaussian distribution is
not step changed. The domain of each individual prior is the entire image, where
the weight of each location gradually decays from the center to the periphery
with a value higher than 0. It is thus feasible to model the positional relationship
between any feature point and any gt on the whole image, making it possible to
obtain balanced positive samples for different sized objects. On the other hand,
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Gaussian prior can better fit the property of Gaussian effective receptive field,
thereby alleviating receptive field mismatch problem, especially for tiny objects.

Moreover, since IoU and RFD are not in the same dimension, directly apply-
ing the new metric to the existing threshold-based label assignment structure
is not rational. Instead, we introduce to rank the priority of each feature point
w.r.t. their RFD scores, based on which we further design a Hierarchical La-
bel Assigner (HLA) which progressively alleviates outlier gt samples and obtain
sufficient training for tiny objects.

The contributions of this paper are summarized as follows:

(1) We experimentally reveal that current anchor-based and anchor-free detec-
tors exist scale-sample imbalance problem in tiny object label assignment.

(2) To mitigate the above problem, we introduce a simple but effective Re-
ceptive Field-based Label Assignment (RFLA) strategy. The RFLA is easy
to replace the standard box and point-based label assignment strategies in
mainstream detectors, boosting their performance on TOD.

(3) Extensive experiments on four datasets validate the performance superiority
of our proposed method. The introduced method significantly outperforms
the state-of-the-art competitors on the challenging AI-TOD dataset without
additional costs in the inference stage.

2 Related Work

2.1 Object Detection

The mainstream object detection methods include anchor-based detectors and
anchor-free detectors. Classic anchor-based detectors include Faster R-CNN [39],
Cascade R-CNN [4], RetinaNet [24], YOLO series [37,38,3] etc. It is commonly
believed that one fundamental defect of the anchor-based paradigm is its require-
ment of tuning w.r.t the specific task [46]. Moreover, the IoU-based label assign-
ment strategy [39] that is built upon anchor boxes also introduces additional
hyper-parameters, showing a significant impact on the detection performance.

Anchor-free detectors get rid of the constraints of anchor-boxes, and seek to
directly predict objects from center points like FCOS [46] and FoveaBox [19], or
seek to predict objects from key-points such as CornerNet [20], Grid R-CNN [28]
and RepPoints [55]. The recently published anchor-free detectors mainly follow
the end-to-end paradigm, they merely preset a set of boxes without shape or
location prior information, and then directly reason about the final predictions,
such as DETR [5], Deformable DETR [64], and Sparse R-CNN [44]. Despite
the success of the end-to-end paradigm on generic object detection tasks, their
performance on TOD tasks require further investigation.

Unlike box and point prior-based detectors, we introduce another prior infor-
mation based on the receptive field. Combining the Gaussian receptive field and
its customized label assignment strategy can significantly alleviate the imbalance
problem raised by existing prior and measurement for tiny objects.
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2.2 Tiny Object Detection

Most of the existing tiny object detection methods can be roughly grouped into
the following four classes: Data augmentation, Multi-scale learning, Customized
training strategy for tiny objects, and Feature enhancement strategy.
Data augmentation. A simple yet effective way is to collect more tiny object
data. Another way is to use simple data augmentations include rotating, image
flipping, and up-sampling. Krisantal et al. [18] seek to enhance TOD perfor-
mance by oversampling images that contain tiny objects and copy-pasting them.
Multi-scale learning. The multi-resolution image pyramid is a basic way of
multi-scale learning. To reduce the computation cost, some works [27,23,61] pro-
pose to construct feature-level pyramid. After that, lots of methods attempt
to further improve FPN, some of them are PANet [26], BiFPN [45], Recursive-
FPN [35]. Besides, TridentNet [22] constructs multi-branch detection heads with
different receptive fields to generate scale-specific feature maps. Multi-scale learn-
ing strategies commonly boost TOD performance with additional computation.
Customized training strategy for tiny objects. Object detectors usually
cannot get satisfactory performance on tiny objects and large objects simultane-
ously. Inspired by this fact, SNIP [42] and SNIPER [43] are designed to selectively
train objects within a certain scale range. In addition, Kim et al. [17] introduces
a Scale-Aware Network (SAN) and maps the features of different spaces onto a
scale-invariant subspace, making detectors more robust to scale variation.
Feature enhancement strategy. Some works propose to enhance the feature
representation of small objects by super-solution or GAN. PGAN [21] makes
the first attempt to apply GAN to small object detection. Moreover, Bai et
al. [1] propose an MT-GAN which trains an image-level super-resolution model
for enhancing the small RoI features. Feature-level super-resolution [32] is pro-
posed to improve small object detection performance for proposal based detec-
tors. Also, there are some other super-solution based methods including [8,2,36].

Most of the methods dedicated to TOD will bring about additional annota-
tion or computation costs. In contrast, our proposed method attempts to push
forward TOD from the perspective of label assignment, and our proposed strat-
egy will not bring any additional cost in the inference stage.

2.3 Label Assignment in Object Detection

As revealed by ATSS [58], the essential difference between the anchor-free and
anchor-based detector is the way of defining training samples. The selection of
positive and negative (pos/neg) training samples will notably affect the detec-
tor’s performance. Recently, many works have been proposed for better label
assignment in generic object detection tasks. FreeAnchor [60] decides positive
anchors based on a detection-customized likelihood. PAA [16] proposes to use
GMM to model the distribution of anchors and divide pos/neg samples based on
the center of GMM. OTA [14] models the label assignment process as an optimal
transport problem and seeks to solve the optimal assignment strategy. ATSS [58]
adaptively adjusting the pos/neg samples w.r.t. their statistics characteristics.
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AutoAssign [62] and IQDet [30] reweight and sample high-quality regions based
on the predicted IoU and confidence.

Unlike the above-mentioned general object detection strategies, this paper
focuses on the design of prior information and its corresponding label assignment
strategy for TOD.

3 Method

3.1 Receptive Field Modelling

One basic principle that mainstream object detectors obey is dividing and con-
quering, namely detecting objects of different scales on the different layers of
FPN [7,23]. Specifically, anchor-based detectors tile prior boxes of different scales
on different layers of FPN to assist label assignment, and objects of different
scales are thus detected on the different layers of FPN. For anchor-free detec-
tors, they group objects in different scale ranges (e.g. [0, 64] for P3) onto different
levels of FPN for detection. Despite label assignment strategy varies, one com-
mon ground of anchor-based and anchor-free detectors is to assign feature points
of an appropriate receptive field to objects of different scales [39,46]. Thus, the
receptive field can directly serve as a founded and convincing prior for label as-
signment without the designing of heuristic anchor box preset or scale grouping.

In this paper, we propose to directly measure the matching degree between
the Effective Receptive Field (ERF) and the gt region for label assignment, get-
ting rid of the box or point prior that deteriorates TOD. Previous work has
pointed out that the ERF can be theoretically derived as Gaussian distribu-
tion [29]. In this work, we follow this paradigm and seek to model the ERF of
each feature point as Gaussian distribution, and we first derive the Theoreti-
cal Receptive Field (TRF) of the n-th layer on a standard convolution neural
network [15] by the following formula as trn:

trn = trn−1 + (kn − 1)

n−1∏
i=1

si (2)

where trn denotes the TRF of each point on the n-th convolution layer, kn and sn
denotes the kernel size and stride of the convolution operation on the n-th layer.

As studied in [29], the ERF and TRF have the same center points but the
ERF of each feature point only occupies part of the full TRF. Therefore, we use
the location of each feature point (xn, yn) as the mean vector of a standard 2-D
Gaussian distribution. As it is hard to get the precise ERF, we approximate the
ERF radius ern with half the radius of TRF. The square of ern serves as the
co-variance of 2-D Gaussian distribution for a standard square-like convolution
kernel. To sum up, we model the range of ERF into a 2-D Gaussian distribution
Ne(µe,Σe) with

µe =

[
xn

yn

]
,Σe =

[
er2n 0
0 er2n

]
. (3)
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Fig. 2. The process of RFLA. In RFLA, we directly calculate the RFD between Gaus-
sian ERF and gt, then assign labels with HLA.

3.2 Receptive Field Distance

Obtaining the Gaussian ERF, the following key step is to measure the matching
degree between the ERF of feature points and a certain gt. As discussed in
the introduction, the step-changed uniform distribution is not conducive to tiny
objects, it is also necessary to model gt into another distribution.

Observing that the main body of object is aggregated in the center of bound-
ing box [50,48], we also model the gt box (xg, yg, wg, hg) into a standard 2-D
Gaussian distribution Ng(µg,Σg), where the center point of each annotated box
serves as the mean vector of Gaussian and the square of half side length serves
as the co-variance matrix, namely,

µg =

[
xg

yg

]
,Σg =

[
w2

g

4 0

0
h2
g

4

]
. (4)

In this paper, we investigate three types of classic distances between Gaussian
distributions as Receptive Field Distance Candidates (RFDC). These distance
measurement include Wasserstein distance [34,53], K-L divergence [11,54] and
J-S divergence [12]. The J-S divergence between Gaussian distributions has no
closed-form solution [12,31], enormous computation will be introduced when
approximating its solution, thus, the J-S divergence is not used. Herein, we will
first analyze their closed form solutions in our task, then discuss their pros and
cons for the TOD task.

Wasserstein distance. TheWasserstein Distance comes from Optimal Trans-
port theory [34]. Given the Gaussian ERF ne = Ne(µe,Σe) and Gaussian gt
ng = Ng(µg,Σg), the 2nd Wasserstein distance can be simplized as Eq. 5 [53].

W 2
2 (ne, ng) =

∥∥∥∥∥
(
[xn, yn, ern, ern]

T
,

[
xg, yg,

wg

2
,
hg

2

]T)∥∥∥∥∥
2

2

. (5)

The main advantage of Wasserstein Distance is that it can measure two non-
overlapping distributions [34]. It is always the case that the gt box has no overlap
with most prior box and points, and the assigner fails to rank the priority of these
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candidates to a certain gt. Thus, it is easy to say the characteristic of Wasserstein
distance is conducive to TOD, which can consistently reflect the matching degree
between all feature points and a certain gt box, making the assigner feasible
to compensate more positive samples for tiny objects according to a rational
priority. However, the Wasserstein distance is not scale invariant and might be
sub-optimal when the dataset contains objects of large-scale variance [54].

Kullback-Leibler divergence. Kullback-Leibler Divergence (KLD) is a
classic statistical distance which measures how one probability distribution is dif-
ferent from another. KLD between two Gaussian distributions also has a closed
form solution, the KLD between ERF ne and gt region ng is as follows:

DKL (ne∥ng) =
1

2
(tr
(
Σ−1

g Σe

)
+
(
µg − µe

)⊤
Σ−1

g

(
µg − µe

)
+ln

|Σg|
|Σe|

−2), (6)

Eq. 6 can be further simplified as:

DKL (ne∥ng) =
er2n
8w2

g

+
er2n
8h2

g

+
2(xn − xg)

2

w2
g

+
2(yn − yg)

2

h2
g

+ln
2wg

ern
+ln

2hg

ern
−1. (7)

As demonstrated by the work [54], KLD has the property of scale invariance
between two 2-D Gaussian distributions, and the scale invariance is crucial for the
detection [56]. While the main disadvantage of KLD is that it cannot consistently
reflect the distance between two distributions when their overlap is negligible.
Hence, the KLD between ERF and gt is selected as another RFDC in this paper.

In summary, we investigate three classic ways of probability distribution mea-
surement, while Wasserstein distance and KLD are selected as RFDC. Then, we
apply a non-linear transformation into RFDC and get the RFD with a normal-
ized value range between (0, 1) as follows:

RFD =
1

1 + RFDC
(8)

3.3 Hierarchical Label Assignment

Some anchor-based detectors set a threshold based on IoU to decide pos/neg
samples [39,24,4], while anchor-free detectors mainly divide pos/neg samples by
the spatial location between point prior and gt region. Since tiny objects are
usually unwelcome in both threshold-based and gt region-based strategies, we
propose to hierarchically assign labels to tiny objects by score ranking.

To guarantee that the positional relationship between any feature point and
any gt can be solved, the proposed Hierarchical Label Assignment (HLA) strat-
egy is built on the proposed RFD. Before assigning, an RFD score matrix be-
tween feature points and gt is computed based on the above method. In the first
stage, we rank each feature point to its RFD score with a certain gt. Then, posi-
tive labels are assigned to feature points with top k RFD scores with a certain gt.
Finally, we get the assigning result r1 and the corresponding mask m of features
that have been assigned, where m is binary-valued (0/1). In the second stage,
to improve the overall recall and alleviate outliers, we slight decay the effective
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radius ern by multiplying a stage factor β, then repeat the above ranking strat-
egy and supplement one positive sample to each gt, getting the assigning result
r2. We obtain the final assigning result r by the following rule:

r = r1m+ r2(1−m), (9)

where the mask operation m is taken to avoid introducing too many low-quality
samples for those gt which have already been assigned with sufficient samples.
Not that the occluded sample will be assigned to the smaller gt. Combining the
RFD with the HLA strategy, we can get the complete Receptive Field based
Label Assignment (RFLA) strategy for TOD.

3.4 Application to Detectors

The proposed RFLA strategy can easily be applied to anchor-based and anchor-
free frameworks. Without losing generality, we take the classic Faster R-CNN [39]
and FCOS [46] as examples. Concretely, for Faster R-CNN, RFLA can be used
to replace the standard anchor tiling and MaxIoU anchor assigning process. For
FCOS, we remove the constraint of limiting feature points inside gt box because
the tiny box only covers an extremely limited region which commonly holds
much fewer feature points than the large object. Then, it is easy to replace the
point based assigning with RFLA for balanced learning. Note that we modify
the centerness [46] loss into the following formula to avoid gradient explosion:

centerness∗ =

√
ε[min (l∗, r∗)]min (l∗, r∗) + c

max (l∗, r∗)
× ε[min (t∗, b∗)]min (t∗, b∗) + c

max (t∗, b∗)
,

(10)
where l∗, t∗, r∗, b∗ are regression targets defined in FCOS, ε(·) is a step function
same as that in Eq. 1, c is a factor set to 0.01 to avoid gradient vanishing problem
when the center point of regression target is outside the gt box. In the following
part, extensive experiments will show RFLA’s outstanding robustness to TOD.

4 Experiment

4.1 Dataset

Experiments are conducted on four datasets. The main experiments are per-
formed on the challenging AI-TOD [49] dataset, which has the smallest average
absolute object size of 12.8 pixels and contains 28,036 images. Furthermore, we
test the proposed method on TinyPerson [57], VisDrone2019 [10] and DOTA-
v2.0 [9]. Note that the selected datasets all contain a great amount of tiny objects
(smaller than 16× 16 pixels).

4.2 Experiment settings

All the experiments are conducted on a computer with 1 NVIDIA RTX 3090
GPU, and the model training is based on PyTorch [33], the core codes are built
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Table 1. Comparison between differ-
ent ways of measuring receptive-field dis-
tance. Note that in this experiment, all
distances are built on HLA.

Distance AP AP0.5 APvt APt

GIoU 17.9 45.1 5.5 16.7
WD 21.1 52.2 6.6 21.5
KLD 21.1 51.6 9.5 21.2

Table 2. Influence of different designs.
Note that RFD denotes only using the
first stage of HLA, HLA means using all
stages of HLA.

RFD HLA AP AP0.5 APvt APt

11.1 26.3 0.0 7.2
✓ 20.7 50.6 7.6 20.5
✓ ✓ 21.1 51.6 9.5 21.2

Table 3. Influence of the stage factor β
in the Hierarchical Label Assigner (HLA).
The KLD is used as RFD.

β AP AP0.5 APvt APt

0.95 21.1 51.1 8.4 21.1
0.9 21.1 51.6 9.5 21.2
0.85 20.8 51.4 7.4 21.0
0.8 19.7 49.0 5.6 19.2

Table 4. Gaussian anchor and receptive
anchor. GA means Gaussian Anchor and
RA means Receptive Anchor.

Method AP AP0.5 APvt APt

GA 19.6 49.2 8.2 19.7
RA 18.9 47.5 6.1 19.1

baseline 11.1 26.3 0.0 7.2

upon MMdetection [6]. The ImageNet [41] pre-trained model is used as the
backbone. All models are trained using the Stochastic Gradient Descent (SGD)
optimizer for 12 epochs with 0.9 momenta, 0.0001 weight decay, and 2 batch
size. The initial learning rate is set to 0.005 and decays at the 8th and 11th

epochs. Besides, the number of RPN proposals is set to 3000. In the inference
stage, the confidence score is set to 0.05 to filter out background bounding boxes,
and the NMS IoU threshold is set to 0.5 with top 3000 bounding boxes. All the
other parameters are set the same as default in MMdetection. The evaluation
metric follows AI-TOD benchmark [49] except for experiments on TinyPerson.
The above parameters are used in all experiments unless specified otherwise.

4.3 Ablation study

Effectiveness of different RFD. In this part, we respectively apply Wasser-
stein distance (WD) and Kullback-Leibler divergence (KLD) to measure the
distance between Gaussian ERF and gt region as discussed in Sec. 3.2. We also
test the performance of GIoU [40] by setting the prior as ERF sized box. Note
that all experiments are conducted based on Faster R-CNN w/ HLA since RFD
and HLA are interdependent. As shown in Tab. 1, it can be seen that GIoU
is inferior to RFD since it fails to distinguish the locations of mutually inclu-
sive boxes, while the performance of WD and KLD are comparable. The KLD
surpasses WD in APvt, while slightly lower than WD under APt metric. As
mentioned in Sec. 3.2, the KLD is scale-invariant, thus it is better for very tiny
objects. Note that in the following experiments, we use KLD as the default RFD.
Effectiveness of individual component. The core designs in this paper are
interdependent, whilst they can be separated into two parts: the Hierarchical
Label Assignment (HLA) strategy and the Receptive Field Distance (RFD) built
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Table 5. Main results on AI-TOD. Note that models are trained on the trainval set

and validated on the test set. Note that FCOS* means using P2-P6 of FPN.

Method Backbone AP AP0.5 AP0.75 APvt APt APs APm

TridentNet [22] ResNet-50 7.5 20.9 3.6 1.0 5.8 12.6 14.0
Faster R-CNN [39] ResNet-50 11.1 26.3 7.6 0.0 7.2 23.3 33.6
Cascade RPN [47] ResNet-50 13.3 33.5 7.8 3.9 12.9 18.1 26.3
Cascade R-CNN [4] ResNet-50 13.8 30.8 10.5 0.0 10.6 25.5 26.6
DetectoRS [35] ResNet-50 14.8 32.8 11.4 0.0 10.8 28.3 28.0
DotD [52] ResNet-50 16.1 39.2 10.6 8.3 17.6 18.1 22.1
DetectoRS w/ NWD [48] ResNet-50 20.8 49.3 14.3 6.4 19.7 29.6 38.3

SSD-512 [27] ResNet-50 7.0 21.7 2.8 1.0 4.7 11.5 13.5
RetinaNet [24] ResNet-50 8.7 22.3 4.8 2.4 8.9 12.2 16.0
PAA [16] ResNet-50 10.0 26.5 6.7 3.5 10.5 13.1 22.1
ATSS [58] ResNet-50 12.8 30.6 8.5 1.9 11.6 19.5 29.2

RepPonits [55] ResNet-50 9.2 23.6 5.3 2.5 9.2 12.9 14.4
OTA [14] ResNet-50 10.4 24.3 7.2 2.5 11.9 15.7 20.9
AutoAssign [62] ResNet-50 12.2 32.0 6.8 3.4 13.7 16.0 19.1
FCOS [46] ResNet-50 12.6 30.4 8.1 2.3 12.2 17.2 25.0
M-CenterNet [49] DLA-34 14.5 40.7 6.4 6.1 15.0 19.4 20.4
FCOS* ResNet-50 15.4 36.3 10.9 6.0 17.6 18.5 20.7

RetinaNet w/ RFLA ResNet-50 9.1 23.1 5.2 4.1 10.5 10.5 12.3
AutoAssign w/ RFLA ResNet-50 14.2 37.8 6.9 6.4 14.9 17.4 21.8
FCOS* w/ RFLA ResNet-50 16.3 39.1 11.3 7.3 18.5 19.8 21.8
Faster R-CNN w/ RFLA ResNet-50 21.1 51.6 13.1 9.5 21.2 26.1 31.5
Cascade R-CNN w/ RFLA ResNet-50 22.1 51.6 15.6 8.2 22.0 27.3 35.2
DetectoRS w/ RFLA ResNet-50 24.8 55.2 18.5 9.3 24.8 30.3 38.2

upon the HLA. Note that the validation of RFD requires using the first stage of
HLA, we do not assign labels based on the threshold of RFD since the original
threshold in the baseline detector is designed for IoU, which is not in the same
dimension as RFD. We progressively apply RFD and HLA into the Faster R-
CNN. Results are listed in Tab. 2, AP improves progressively, the individual
effectiveness is thus verified. When switching the IoU-based assignment strategy
to the RFD-based one, a notable improvement of 9.6 AP points is obtained. This
can be explained that the limited domain of box prior leads to the remarkably
low IoU between anchors and gt, many gt fail to match with any anchor. With
Gaussian prior and RFD, the assigner is capable of measuring the priority (RFD
score) of all feature points to a particular gt. Thus, even though the gt has no
overlap with any box prior, some positive samples can be compensated for the gt
with a rational receptive field, leading to the sufficient training of tiny objects.

Performance of different decay factor β. As in Sec. 3.3, in the HLA, we
design a stage factor β to the ERF for mitigating the outlier effect. In Tab. 3,
we keep all other parameters fixed and experimentally show that 0.9 is the best
choice. Setting β to a lower value will introduce too many low-quality samples.

Performance of different k. In the HLA, the hyper-parameter k is designed to
adjust the number of positive samples assigned to each instance. Herein, we keep
all other parameters fixed and set k from 1 to 4. Their performance is 20.7, 21.1,
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Fig. 3. Comparison between top k in
Faster R-CNN w/ HLA and anchor fine-
tuning in Faster R-CNN baseline.

Fig. 4. Scale-sample imbalance problems
of different detectors. Base anchor scale
is set to 8 for Faster R-CNN.

21.1, and 20.9 AP, respectively. When setting k to 2 or 3, the best performance
can be attained. Thus 3 is recommended as the default setting. Moreover, the
AP only waves by a small margin under the tested k. Moreover, we compare the
AP under different k with the result of anchor size tuning, as shown in Fig. 3. It
is easy to find that the performance of box prior based detector is quite sensitive
to the box size on TOD tasks, while in our design, the performance is quite
robust to the chosen of k, which consistently keeps a high level over box prior.

Gaussian anchor and receptive anchor. We directly model the anchors into
Gaussian distributions, calculate the RFD score between gt, and then assign
labels with HLA. Results are shown in Tab. 4. The results show a great advantage
of Gaussian prior and its combination with HLA. The Gaussian prior has a
broader domain, making sample compensation possible. In addition, we change
the anchor scale to the ERF scale, then assign labels with the MaxIoU strategy.
The improvement over baseline further indicates the sensitivity of the box prior
to detection performance for TOD. It also reveals that the current anchor will
potentially introduce the receptive field mismatch problem for tiny objects.

4.4 Main result

We compare our method with other state-of-the-art detectors on AI-TOD bench-
mark [49]. As shown in Tab 5, DetectoRS w/ RFLA achieves 24.8 AP, which
has 4.0 AP above the state-of-the-art competitors. Notably, the improvement
of RFLA with multi-stage anchor-based detectors is particularly significant. We
think it mainly owes to the multi-stage detectors’ mechanism of looking and
thinking twice. In the first stage, the combination of the proposed RFLA with
RPN can improve the recall of tiny objects to a great extent. In the second
stage, proposals are refined for precise location and classification. Besides, im-
provements can also be expected on one-stage anchor-based or anchor-free de-
tectors, and the improvement in APvt is more obvious, 1.7 points for RetinaNet
and 1.3 points for FCOS*. The gap between one-stage and multi-stage detectors
is common for TOD [57,63,10]. It mainly results from the lack of multi-stage
regression, which is crucial for TOD.
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Table 6. Results on TinyPerson.

Method APtiny
50 APtiny1

50 APtiny2
50 APtiny3

50 APsmall
50 APtiny

25 APtiny
75

FCOS 23.4 9.8 22.7 34.7 39.2 43.8 1.7
Faster R-CNN 48.7 32.3 54.5 58.8 64.7 68.9 6.0

FCOS w/ RFLA 26.5+3.1 10.0+0.2 24.4+1.7 40.6+5.9 50.5+11.3 50.0+6.2 2.9+1.2

Faster R-CNN w/ RFLA 50.1+1.4 32.8+0.5 55.6+1.1 60.6+1.8 65.3+0.6 69.9+1.0 5.9−0.1

Table 7. Results on VisDrone2019. The
train, val sets are used for training and
validation. FR, DR denote Faster R-CNN,
DetectoRS, * means with RFLA.

Method AP AP0.5 APvt APt

FCOS 14.1 25.5 0.1 2.1
FR 22.3 38.0 0.1 6.2
DR 25.7 41.7 0.5 7.6

FCOS* 15.1+1.0 27.3+1.8 0.4+0.3 3.8+1.7

FR* 23.4+1.1 41.4+3.4 4.8+4.7 11.7+5.5

DR* 27.4+1.7 45.3+3.6 4.5+4.0 12.9+5.3

Table 8. Results on DOTA-v2.0. The
train, val sets are used for training and
validation. FR, DR denote Faster R-CNN,
DetectoRS, * means with RFLA.

Method AP AP0.5 APvt APt

FCOS 31.8 55.4 0.3 4.0
FR 35.6 59.5 0.0 7.1
DR 40.8 62.6 0.0 7.0

FCOS* 32.1+0.3 55.6+0.2 0.7+0.4 6.8+2.8

FR* 36.3+0.7 61.5+2.0 1.9+1.9 11.7+4.6

DR* 41.3+0.5 64.2+1.6 2.1+2.1 10.8+3.8

4.5 Analysis

We conduct a group of analysis experiments to delve into different prior designs
and assigners for tiny objects. In the first step, we respectively deploy the way of
prior tiling in Faster R-CNN [39], FCOS [46] and RFLA. In the second step, we
randomly generate different gt in different locations of the image and simulate the
process of label assignment for statistics. Concretely, the gt scales are randomly
picked from 0 to 64. After that, we divide the scale range into 16 intervals, as
shown in Fig. 4, and calculate the average number of positive samples assigned
to each gt in different scale ranges. Observations in Fig. 4 indicate severe scale-
sample imbalance problems for existing detectors. For anchor-based detectors,
objects in the tiny scale and the interval between box scales become outliers.
Anchor-free detectors somewhat alleviate this problem. However, tiny objects are
still outliers since tiny object covers an extremely limited region. The number of
prior points inside gt is much smaller than that of large objects. The scale-sample
imbalance problem will mislead the network towards unbalanced optimization,
where less focus is imposed on outlier samples. In contrast, the number of positive
samples assigned to gt in different scale ranges is greatly reconciled with RFLA,
achieving a balanced optimization for tiny objects.

4.6 Experiment on more datasets

We conduct experiments on another TOD dataset TinyPerson [57]. The dataset
setting and evaluation all follow TinyPerson benchmark [57]. The results are in

Tab. 6, 3.1 and 1.4 APtiny
50 improvement can be obtained when applying RFLA



14 C. Xu et al.

into FCOS and Faster R-CNN. We also tested the RFLA on AI-TOD-v2 [51],
whose performance is listed in GitHub. We further verify the effectiveness of
RFLA on datasets which simultaneously hold a large scale variance and contain
many tiny objects (i.e. VisDrone2019, DOTA-v2.0). The results are in Tab. 7 and
Tab. 8. The improvement of APvt and APt is quite obvious for both datasets.
The consistent improvement on various datasets indicates RFLA’s generality.
Finally, visualization results on the AI-TOD dataset are shown in Fig. 5. When
applying RFLA into Faster R-CNN, FN predictions can be greatly eliminated.

Fig. 5. Visualization results on AI-TOD. The first row is the result of Faster R-CNN
and the second row is the result of Faster R-CNN w/ RFLA.

5 Conclusion

In this paper, we point out that box and point prior do not work well for TOD,
leading to scale-sample imbalance problems when assigning labels. To this end,
we introduce a new Gaussian receptive field prior. Then, we further design a new
Receptive Field Distance (RFD), which measures the similarity between ERF
and gt to conquer the shortages of IoU and centerness on TOD. The RFD works
with the HLA strategy, obtaining balanced learning for tiny objects. Experiments
on four datasets show the superiority and robustness of the RFLA.
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