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Abstract. Multi-instance point cloud registration is the problem of es-
timating multiple poses of source point cloud instances within a target
point cloud. Solving this problem is challenging since inlier correspon-
dences of one instance constitute outliers of all the other instances. Ex-
isting methods often rely on time-consuming hypothesis sampling or fea-
tures leveraging spatial consistency, resulting in limited performance. In
this paper, we propose PointCLM, a contrastive learning-based frame-
work for mutli-instance point cloud registration. We first utilize con-
trastive learning to learn well-distributed deep representations for the
input putative correspondences. Then based on these representations,
we propose a outlier pruning strategy and a clustering strategy to ef-
ficiently remove outliers and assign the remaining correspondences to
correct instances. Our method outperforms the state-of-the-art methods
on both synthetic and real datasets by a large margin. The code will be
made publicly available at http://github.com/phdymz/PointCLM.

Keywords: Multi-instance point cloud registration, Multi-model fit-
ting, Contrastive learning

1 Introduction

3D point cloud registration is a fundamental task in computer vision [21,9,50],
and most studies mainly focus on pairwise registration. However, in real appli-
cations, target scene may contain multiple repeated instances, and we need to
estimate multiple rigid transformations between a source point cloud and these
repeated instances in the target point cloud. An example is illustrated in Figure
1. This problem is named as multi-instance point cloud registration and it is
more challenging than pairwise point cloud registration.

There exist two solutions to the multi-instance point cloud registration prob-
lem. One solution is to use an instance detector [32,37] to detect instances in the
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(a) Pairwise point cloud registration (b) Multi-instance point cloud registration
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Fig. 1. Given a source point cloud of a 3d object, pairwise point cloud registration (left)
focuses on estimating a single rigid transformation between the source point cloud and
the target point cloud, while multi-instance point cloud registration (right) aims to
estimate the 6d poses of the same objects within the target point cloud.

target point cloud, and turn this problem into multiple pairwise registrations.
However, this approach can only detect known classes in the training set, and
the registration performance is limited by the instance detector. Another solu-
tion is via multi-model fitting [42,29,23,31]. This approach starts from building
putative correspondences based on local features, followed by estimating mul-
tiple transformations from noisy correspondences using multi-model fitting al-
gorithms. Multi-model fitting problem has been studied for decades. The basic
idea of most multi-model fitting methods is to sample a series of hypotheses and
then perform preference analysis [15,16,54,48] or consensus analysis [43,29,30,35].
Most of these multi-model fitting algorithms are traditional methods, which
rely on a large number of sampling for generating hypotheses and sophisticated
strategies for selecting real models, resulting in large computational cost.

Recently, a series of deep learning-based methods have achieved excellent
performance in pairwise point cloud registration, including feature matching
[13,4,20,46], outlier correspondences rejection [52,12,3,24], etc. Multi-instance
point cloud registration also faces the interference of outliers, which inspires
researchers to extend deep learning-based methods to the multi-instance case.
However, in the multi-instance case, the inliers of one instance constitute out-
liers of all the other instances, so we need not only to identify outliers, but also
to predict which instance the inliers belong to. To the best of our knowledge,
the only existing deep learning-based method [23] that can be used in multi-
instance point cloud registration is by sequential binary classification. However,
this method has limited performance because it does not fully explore the inter-
action between correspondences. There is also a traditional method [42] which
clusters the correspondences based on spatial consistency [25]. However, due to
the ambiguity of spatial consistency, this method cannot assign the correspon-
dences very efficiently when outliers are located close to inliers. Therefore, an
intuitive idea is to learn a more discriminative representation for correspondence
so that not only the outliers can be easily pruned but also the inliers of different
instances are separable in the feature space.

In this paper, we propose a contrastive learning-based method to learn deep
representations for correspondences, based on which, we can not only remove
outliers in the putative correspondences, but also correctly assign inliers to each
instance. Specifically, we first select inlier correspondences belonging to the same
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instance to build positive pairs and select one correspondence from an instance
and another correspondence not belonging to that instance to build negative
pairs. Then we train a feature extractor with contrastive loss to make the corre-
spondences in positive pairs near each other and the correspondences in negative
pairs fall apart from each other in the feature space. This makes the inliers of
each instance form a certain scale of clusters in the feature space, while the
outliers are scattered. Based on this distribution, we prune the input putative
correspondences according to the density over the feature space and obtain a
correspondence set that has little outliers. After that, we perform a spectral
clustering based on feature similarity and spatial consistency [25,3], in which
the number of instances can be automatically determined and the remaining
correspondences can be correctly assigned to each instance. Finally, we calculate
the transformation for each instance using the correspondences assigned to it.
Our main contributions are as follows:

– We propose a contrastive learning-based strategy that makes inlier corre-
spondences and outlier correspondences well distributed in the feature space;

– We propose a pruning strategy based on feature similarity and spatial con-
sistency to remove outliers and then utilize spectral clustering to assign the
remaining correspondences to correct instances;

– Our method outperforms existing state-of-the-art methods in multi-instance
point cloud registration on both synthetic and real datasets.

2 Related Work

Point cloud registration has long been a fundamental task in computer vision
and robotic, which can be roughly divided into direct methods [9,39,36,1] and
feature-based methods [4,20,46,17]. In recent years, thanks to the development
of deep learning, many feature-based methods achieved state-of-the-art perfor-
mance. These methods commonly produce correspondences by feature matching
and then remove outliers to estimate transformations robustly. Despite the rapid
development of deep features [13,4,20,46], the correspondences generated by fea-
ture matching still contain outliers. Therefore, removing outliers is of great sig-
nificance in point cloud registration. In the past, many traditional methods have
been proposed to remove outliers, including RANSAC-based methods [15,5,26],
branch and bound-based methods [10], and many others [40,49]. A comprehen-
sive review of these methods can be found in [21,50,51]. Recently, a series of
learning-based methods [3,24,52,12] have been proposed and achieved remark-
able results in outlier removal. For example, Yi et al. used a PointNet-style [38]
network with instance normalization to predict outliers [52], which has been
widely used as a backbone network for predicting outliers [53,41]. Choy et al.
used a sparse convolution-based network to classify putative correspondences
into inliers and outliers [12]. Based on the assumption of spatial compatibility
between inliers, Bai et al. incorporated geometric prior into deep neural network
and designed a non-local layer [3] to better aggregate features, which achieved
outstanding results. The above methods are all designed for pairwise registration.
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However, unlike pairwise registration, inliers of one instance constitute outliers
of all the other instances in multi-instance point cloud registration. Such pseudo
outliers make it difficult to directly generalize the above binary classification
models to the case of multi-instance point cloud registration. Inspired by suc-
cess of previous works in pairwise registration, we introduce deep learning into
multi-instance point cloud registration and propose a method that can not only
remove outliers but also assign inlier correspondences to each instance.
Multi-model fitting aims to fit multiple models from noisy data, such as fit-
ting multiple planes [6] in a point cloud, estimating fundamental matrices in mo-
tion segmentation [18], calculating rigid transformations in multi-instance point
cloud registration [42], etc. Since inliers of one instance constitute outliers of all
the other instances, multi-model fitting is more challenging than single-model
fitting. Existing multi-model fitting methods can be roughly divided into two
categories. The first category fits models sequentially [22,7,8,23], which relies on
repeatedly sampling and selecting models. For example, sequential RANSAC [22]
detects instances in a sequential manner by repeatedly running RANSAC to re-
cover a single instance and then removing its inliers from the input. Progressive-
X and Progressive-X+ [7,8] use a better performing Graph-cut RANSAC [5]
as a sampler to generate hypotheses. CONSAC [23] introduced deep models
into multi-model fitting for the first time, using a network similar to PointNet
[38] to guide sampling. The second category fits multiple models simultaneously
[42,43,29,30,31]. For example, many preference analysis-based methods [43,29,30]
initially sample a series of hypotheses and then cluster input points according
to the residuals of the hypotheses. RansaCov [31] formulates the multi-model
fitting as a maximum coverage problem and provides two strategies to solve it
approximately. ECC [42] utilizes the spatial consistency [25] of point cloud rigid
transformation and clusters correspondences in a bottom-up manner based on
a distance-invariant matrix. Although spatial consistency performs efficiently in
[42], the lack of orientation constraints makes the distance-invariant matrix still
ambiguous in some cases, especially when outliers are close to inliers. In this
paper, a novel deep representation is integrated with the spatial consistency to
achieve better results.

3 Problem Formulation

We use X and Y to denote the source and target point clouds, respectively. The
source point cloud consists of an instance of a 3D model, and the target point
cloud contains M instances of the same model, where these instances may be
sampled from a part of the 3D model. By matching local features [13,4,20,46],
we can generate putative correspondences between the two point clouds. A cor-
respondence is denoted ci = (xi, yi) ∈ R6, where xi ∈ X, yi ∈ Y are the
coordinates of a pair of 3D keypoints from the two point clouds. Our objective
is to divide the putative correspondence set C = {ci}Ni=1 into M + 1 subsets
Co, C1, . . . , CM satisfying C = Co ∪ C1 ∪ . . . ∪ CM , where Co denotes the pre-
dicted outlier set and Cm denotes the inlier set for the m-th predicted instance.
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When we know the true instance number is M , recovering M rigid transfor-
mations {Rm, tm}Mm=1 from the two point clouds is to minimize the objective
function:

min
{Rm,tm}M

m=1

1

M

M∑
m=1

∑
(xmi,ymi)∈Cgt

m

1∣∣Cgt
m

∣∣ ∥ymi −Rmxmi − tm∥2 (1)

where Cgt
m denotes the ground truth inlier set of the m-th instance, and |Cgt

m |
denotes the number of inliers in Cgt

m . The above problem is very challenging,
because the inliers in Cgt

i constitute outliers in Cgt
j for i ̸= j. In practice, the

problem becomes even more difficult because the true instance number in the
target point cloud is often unknown in prior, which is the case that we deal with
in this paper.
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Fig. 2. The pipeline of the proposed multi-instance point cloud registration framework
PointCLM. It takes putative correspondence as input, and output M rigid transfor-
mations. The green lines and red lines represent inliers and outliers, respectively. After
clustering, the correspondences in different clusters are visualized in different colors.
The green bounding boxes in output transformations represent the ground truth poses
of instances in the target point cloud and the red bounding boxes represent our pre-
dictions. The transformed point clouds in the target point cloud are visualized in blue.

4 Method

In this section, we present our framework for multi-instance point cloud regis-
tration, which is illustrated in Figure 2. Our framework takes the putative corre-
spondences generated by feature matching as input, and it first uses the Feature
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Extractor trained by contrastive learning to extract deep representations for the
input correspondences (section 4.1). Then, we prune the correspondences accord-
ing to both spatial consistency and the similarity of their deep representations
(section 4.2). Finally, we cluster the remaining correspondences and estimate the
transformations for multiple instances using the clustering results (section 4.3).

4.1 Feature Extractor

The first stage of our framework embeds the N input putative correspondences
C = {ci}Ni=1 into a feature space to obtain well-distributed d-dimension rep-

resentations F =
{
fi ∈ Rd

}N
i=1

for the following pruning and clustering. Here,
we adopt the SCNonlocal module in [3] as our feature extractor, which con-
sists of 12 repetitive blocks. As shown in Figure 2(b), each block consists of a
shared Perceptron layer, a BatchNorm layer with ReLU and a nonlocal layer.
The nonlocal layer integrates the spatial consistency [25] of rigid transformation.
Before calculating the features of each layer, a spatial consistency matrix β is
first calculated:

βij =

[
1−

d2ij
σ2
d

]
+

, dij = |∥xi − xj∥ − ∥yi − yj∥| (2)

where σd is a distance parameter to control the sensitivity to length difference,
[.]+ denotes a clamp function max(x, 0) to make βij ≥ 0. The nonlocal layers
aggregate the intermediate features using β:

fk+1
i = fk

i +MLP

 |C|∑
j=1

softmax
j

(αβ)g
(
fk
j

) (3)

where α denotes the embed dot-product similarity between the intermediate
feature representations fk

i and fk
j in the k-th blocks, and g(·) denotes a linear

projection function. More details about the network can be found in [3].
We utilize contrastive learning to train our feature extractor to obtain well-

distributed deep representations F =
{
fi ∈ Rd

}N
i=1

. Concretely, for an anchor
correspondence cmi ∈ Cgt

m , we define the other correspondences in Cgt
m as its pos-

itive samples, and define the correspondences in C\Cgt
m as its negative samples.

We define the negative sample with the smallest Euclidean distance to the an-
chor correspondence in the feature space as the hardest negative sample. During
each iteration, we exhaust all inliers as anchors and select their hardest nega-
tive samples to build hardest negative pair set N and randomly select positive
samples to build positive pair set P. Our contrastive loss is formulated as:

L =
∑

(i,j)∈P

[D (fi, fj)−mp]
2
+ /|P|+

∑
(i,j)∈N

[mn −D (fi, fj)]
2
+ /|N | (4)

where mp and mn are margins for positive and negative pairs, which prevent
the network from overfitting [28]. Since the inlier rate of input correspondences
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is commonly not high and we can downsample the input correspondences to
a suitable scale, our exhaustion over all negative samples to find the hardest
one for each minibatch is feasible. Our ablation experiments show that utilizing
hardest negative pairs plays an important role in the high performance of the
proposed method.

By optimizing the loss in equation 4, the representations of correspondences
belonging to different instances are easily separable in the feature space, while the
representations of correspondences belonging to the same instance are clustered
together. We then use these well-distributed representations for both pruning
and clustering. Our experiments show that the deep representations provide
information that spatial consistency does not have, which makes pruning and
clustering more effective.

4.2 Pruning

The input correspondences tend to contain a large proportion of outliers, which
severely devastates the following inlier correspondence clustering and transfor-
mation estimation. Therefore, an intuitive idea is to first prune the input corre-
spondences to remove outliers. A series of pruning strategies have been proposed
in the past. For example, the input can be pruned based on similarity threshold
[19] or confidence [53]. In this paper, we propose a density-based pruning strat-
egy which prunes the input correspondences according to the deep representation
learned in Section 4.1 along with spatial consistency constraints.

As introduced in Section 4.1, through contrastive learning, correspondences
satisfying the same rigid transformation have similar representations in the fea-
ture space and they are far away from other correspondences. This means that
the feature density around inliers are higher than that around outliers [44]. Based
on this idea, we design a density-based pruning strategy as shown in Figure 2(c).
We treat the isolated points in red as outliers and remove it, while the clustered
points in other colors are reserved. The detail of our pruning method is as follows.

We first calculate the feature similarity matrix SF between correspondences

using the extracted deep representations F =
{
fi ∈ Rd

}N
i=1

:

SF
ij =< fi, fj > (5)

where < · > represents dot product. After that, we use the feature similarity
matrix SF and the spatial consistency matrix β to calculate the similarity matrix
S:

S = SF ⊗ β (6)

where ⊗ represents element-wise product, and the spatial consistency matrix β
has been calculated before.

Second, we set a threshold τS and use it to binarize the similarity matrix
S to a binary similarity matrix Ŝ. When the i-th correspondence and the j-th
correspondence satisfy sufficient spatial consistency and similarity in the feature
space at the same time, Ŝij = 1, otherwise Ŝij = 0. Now, we can treat the input
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correspondences as the nodes of a graph, and Ŝ as the graph’s adjacency matrix.
The inlier sets can be regarded as subgraphs with a certain scale while outliers
appear as isolated points or small-scale subgraphs.

Finally, we sum the rows of the binary similarity matrix Ŝ, and select the
correspondences with row-sum values larger than a threshold τN . As illustrated
in Figure 2(a), our pruning method can effectively remove most or even all
outliers. Our experiments also demonstrate that the pruning step is crucial for
our method. We also provide details about how to select the thresholds τS and
τN and ablation experiments in Supplementary Material.

4.3 Clustering and Transformations Estimation

After pruning, we obtain a clean set of correspondences, which is almost free of
outliers. The next step is to divide these correspondences into multiple subsets
belonging to different instances and estimate the final rigid transformations for
all the instances. The correspondence division can be considered as a clustering
problem, and the number of instances should be equal to the number of clusters.
Here, we use a spectral clustering algorithm [45,27], which can determine the
number of clusters automatically. The algorithm consists of the following steps:

Step 1: Recompute the binary similarity matrix Ŝn using the feature similar-
ity and spatial consistency of the remaining correspondences, where n represents
the number of correspondences after pruning;

Step 2: Calculate the normalized Laplacian matrix L̂n of the matrix Ŝn, and

calculate the eigenvalues λ1

(
L̂n

)
≤ λ2

(
L̂n

)
≤ . . . ≤ λn

(
L̂n

)
of the normalized

Laplacian matrix;
Step 3: Determine the number of clusters M by the following formula:

M = argmax
k

{
λk+1

(
L̂n

)
− λk

(
L̂n

)}
(7)

Step 4: Apply spectral clustering [45] with M clusters.
Since the deep representations have a good distribution in the feature space,

the binary similarity matrix Ŝn conforms to the ideal matrix defined in [27].
Therefore, the number of clusters determined by equation 7 is reliable, which is
proved in [27].

After the above steps, the remaining correspondences are assigned to different
clusters as shown in Figure 2(a), and then we can use a solver such as RANSAC
[15] to estimate the rigid transformation of each instance. Because our pruning
and clustering strategy are very efficient, the inlier rate of each instance is high,
and only a few dozen RANSAC iterations are enough to achieve outstanding
performance.

5 Experiment

We conduct experiments on both synthetic and real datasets and compare our
PointCLM to state-of-the-art methods [42,29,23,31]. The following sections are



PointCLM 9

organized as follows. First, we illustrate our experimental settings including our
implementation, datasets, competitors and evaluation metrics in section 5.1.
Next, we conduct experiments on the synthetic and the real datasets in section
5.2 and 5.3, respectively. We further conduct comprehensive ablation studies
in section 5.4 to illustrate the efficiency of our PointCLM and the importance
of each component. More details are provided in the supplementary material,
including the construction of the datasets, more qualitative evaluation and some
experiments for hyperparameter choices.

5.1 Experimental Settings

Implementation: We implement our network in Pytorch [33] and implement
spectral clustering with sklearn [34]. We randomly downsample the input corre-
spondences to 1000. The distance parameter σd is set to 0.05 for the synthetic
dataset and 0.1 for the real dataset. We set the dimension d of the deep rep-
resentation to 128. Threshold τS is set to 0.85. Threshold τN is set to 10 for
the synthetic dataset and 20 for the real dataset. The margins mp and mn are
set to 0.1 and 1.4, respectively. Our batchsize is set to 16. We optimize the net-
work using the ADAM optimizer with an initial learning rate of 0.01 and train
the network for 15K iterations. All the experiments are conducted on a single
RTX1080Ti graphic card with Intel Core i7-7800X CPU.

Datasets: We conduct experiments on both synthetic and real datasets. Our
synthetic dataset is constructed from ModelNet40 [47], which consists of 12311
meshed CAD models from 40 categories. To construct our synthetic dataset, for
each model, we uniformly downsample 1024 points from it to form the source
point cloud, and then rotate and translate it 5-10 times repeatedly to generate
multiple instances. The instances are mixed with noise points to form the tar-
get point cloud as shown in Figure 3. The rotation along each axis is uniformly
sampled in [0,180◦] and the translation is in [0,5]. Our input correspondences for
synthetic dataset are randomly generated by mixing the ground truth correspon-
dences with outliers. We control the inlier ratio per instance at approximate 2%.
We generate 12311 such synthetic source-target point cloud pairs using 12311
models. We use 9843 pairs for training and 2468 pairs for testing. We randomly
set aside 10% pairs in the training set for validation.

Our real dataset is Scan2CAD [2], which is constructed using ShapeNet [11]
and ScanNet [14]. This dataset uses the CAD models in ShapeNet to replace the
point clouds in the real scanned scene and provides accurate annotations, in-
cluding models’ categories, rotations and translations, etc. The dataset provides
1506 annotated scenes, and each scene contains at least one class of instances.
Therefore, we make full use of these annotations and split the scenes contain-
ing multiple kinds of instances into multiple source-target point cloud pairs for
multi-instance registration. In this way, we get 2184 pairs of point clouds, most
of which contain 2-5 instances of the same class in the target point clouds. We
divide the samples into training set, validation set and test set according to
the ratio of 7:1:2. We use fine-tuned FCGF [13] to produce local features and
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generate putative correspondences by feature matching. More details about our
dataset construction are provided in the supplementary material.
Competitors: We compare our PointCLM with four state-of-the-art methods,
including T-linkage [29], RansaCov [31], CONSAC [23] and ECC [42]. T-linkage
is a typical algorithm based on preference analysis, which samples a series of
hypotheses and clusters the inputs based on the residuals of the hypotheses.
RansaCov regards multi-model fitting as a maximum coverage problem, which
can be approximately solved in greedy strategy or using relaxed linear program-
ming. Here we use the former strategy due to its effectiveness. CONSAC uses a
deep network to guide the sampling process, and we train this network using the
same training set as our network. ECC clusters the input correspondences based
on spatial consistency and doesn’t need hypothesis sampling as above meth-
ods. For a fair comparison, we not only use the same input, but also fine-tune
the above methods both on GPU and CPU, and choose the ones with the best
performance for comparison.
Evaluation metrics: We first define rotation error RE and translation error
TE as follow:

RE(R) = arccos

(
Tr
(
RTR∗)− 1

2

)
, TE(t) = ∥t− t∗∥2 (8)

where R∗ and t∗ are the ground truth rotation and translation. We consider the
instances with both rotation error and translation error below the thresholds to
be successfully registered and our thresholds for RE and TE are 15◦ and 0.1,
respectively. Since both our method and the above comparing methods predict
multiple rigid transformations, we use mean recall (MR), mean precision (MP)
and mean F1 Score (MF) as evaluation metric. For a pair of source point cloud

and target point cloud, we define instance recall as
npred
success

Mgt and instance precision

as
npred
success

Mpred , where npred
success denotes the number of successfully registered instances

in prediction, Mgt denotes the ground truth number of instances, and Mpred

denotes the number of predicted transformations. The instance F1 Score is the
harmonic mean of the instance precision and instance recall. We calculate the
instance precision, instance recall, and instance F1 Score of each sample in test
set and average them to obtain our final evaluation metrics, the mean recall
(MR), the mean precision (MP), and the mean F1 Score (MF).

5.2 Experiment on Synthetic Dataset

We first compare our method with other competitors on the synthetic dataset
and the results are show in Table 1. The sampling-based methods such as T-
Linkage, RansaCov, and CONSAC do not achieve good performance due to
extremely low inlier ratio. Benefiting from spatial consistency, ECC performs
effectively. Nevertheless, our PointCLM surpasses the second best method ECC
by a large margin in all evaluation metrics.

We provide a set of visualizations to qualitatively evaluate our PointCLM
and compare it with other competitors in Figure 3. The first row of Figure 3
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Table 1. Registration results on synthetic dataset (left) and real dataset (right).

ModelNet40 (synthetic dataset) Scan2CAD (real dataset)
MR(%) MP(%) MF(%) Time(s) MR(%) MP(%) MF(%) Time(s)

T-linkage [29] 0.61 1.48 0.87 3.89 34.99 46.86 40.07 6.64
RansaCov [31] 0.73 5.33 1.29 0.14 60.50 33.28 42.94 0.07
CONSAC [23] 1.00 7.45 1.77 0.61 55.48 53.34 54.39 0.39

ECC [42] 82.90 92.92 87.63 3.56 64.66 69.73 67.10 1.84
PointCLM 92.60 99.69 96.01 0.06 78.10 70.64 74.18 0.10

shows the input correspondences, and our pruning and clustering results. Fig-
ure 3(b) shows that our PointCLM surprisingly removes all outliers, and the
remaining correspondences are well clustered as shown in Fig. 3 (c). The second
row of Figure 3 shows the registration results of our proposed method and the
competitors. It can be seen that both T-Linkage and RansaCov fail to register
any instances. For the six instances in the target point cloud, CONSAC only
registers one instance successfully. It is worth noting that although ECC register
four instances successfully, but it fails to register the two tables in the lower right
corner. This is because the two tables are mixed together and spatial consistency
is not enough to distinguish them. However, our method successfully registers
all instances.

(d) Ours (e) ECC (f) CONSAC (g) RansaCov (h) T-Linkage

(a) Input  putative       
 correspondences

(b) Correspondences 
after pruning

Source Source Source

(c) Correspondences
 after clustering

Fig. 3. Results on synthetic dataset. In (a) and (b), the green lines and red lines
represent inlier correspondences and outlier correspondences, respectively. In (c), the
correspondences in each clusters after clustering are visualized in different colors. In
(d-f), the green bounding boxes represent the ground truth poses of instances in the
target point cloud and the red bounding boxes represent predictions. The transformed
point clouds in the target point cloud are visualized in blue.
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5.3 Experiment on Real Dataset

We then compare our PointCLM with other competitors on Scan2CAD [2]. As
shown in Table 1, our PointCLM outperforms all the competitors on all three
evaluation metrics, MR, MP, and MF and it is also competitive in speed. The
performance of ECC and PointCLM is lower than that on the synthetic dataset
while the performance of the other methods is higher than that on the synthetic
dataset. This is due to the change of the distribution of the instances’ inlier
ratio.

We also provide a set of visualizations to qualitatively evaluate our Point-
CLM and compare it with the other competitors. The first row of Figure 4 shows
the input correspondences, and our pruning and clustering results. Figure 4(b)
shows that our method removes almost all outliers, ensuring that the following
clustering performs efficiently as shown in Figure 4(c). For the five instances
contained in the target point cloud, T-Linkage and CONSAC successfully reg-
ister two instances, but one prediction of T-Linkage has large errors. RansaCov
successfully registers three instances. Since three chairs in the target point cloud
are close to each other, ECC does not successfully register all these instances.
Our method successfully accomplishes the registration of all instances.

(d) Ours (e) ECC (f) CONSAC (g) RansaCov (h) T-Linkage

(c) Correspondences
 after clustering

Source

(b) Correspondences 
after pruning

Source

(a) Input  putative       
 correspondences

Source

Fig. 4. Results on real dataset. In (a) and (b), the green lines and red lines represent
inlier correspondences and outlier correspondences, respectively. In (c), the correspon-
dences in each clusters after clustering are visualized in different colors. In (d-f), the
green bounding boxes represent the ground truth poses of instances in the target point
cloud and the red bounding boxes represent predictions. The transformed point clouds
in the target point cloud are visualized in blue.

5.4 Ablation Studies

In this section we provide comprehensive ablation studies to illustrate the effec-
tiveness of each component. All our ablation studies are performed on Scan2CAD.
Ablation on deep representation: To study the effectiveness of our adopted
deep representations, we compare the performance of our framework with and
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Table 2. Ablation study results on deep representation and pruning.

Deep representatoin Pruning MR(%) MP(%) MF(%) Time(s)

✓ 76.61 65.05 70.36 0.17
✓ 62.23 32.77 42.93 1.24
✓ ✓ 78.10 70.64 74.18 0.10

without deep representation. The version without deep representation deletes
Feature Extractor and set S = β, which relies only on spatial consistency for
pruning and clustering. The comparison results are shown in Table 2. It can be
seen that both the accuracy and the speed metrics are improved by using the deep
representations. Without deep representations, less correspondences are pruned
and more correspondences need to be clustered, which increase the runtime of
our method. Although the framework without deep representations has lower
performance in MR, MP and MF, it is still a competitive baseline, which is
suitable for the case without training data. This indicates the effectiveness of
the pruning and clustering strategies proposed in this paper.
Ablation on pruning: To quantitatively study the effectiveness of our prun-
ing strategy, we simply remove the pruning strategy in our method, and then
compare the performance before and after removal. Table. 2 shows that the per-
formance of our method drops sharply if the pruning step is removed, which
is due to the fact that the noisy binary similarity matrix does not conform to
the ideal matrix defined in [27] and spectral clustering cannot group the corre-
spondences correctly. This result reveals that pruning is crucial for subsequent
clustering.
Ablation on RANSAC iterations: In addition, we also test the performance
of our model with different numbers of RANSAC iterations and the results are
shown in Table 3. It can be seen that fairly good results can be achieved with only
five iterations, and the performances with 50 and 500 iterations are very close.
These results indicate that the pruning and clustering steps greatly improve the
inlier ratio of each instance, so reliable results can be estimated using only a
small number of iterations.

Table 3. Influence of the number of RANSAC iterations.

RANSAC iterations MR(%) MP(%) MF(%)

5 77.39 67.76 72.26
50 78.10 70.64 74.18
500 79.33 70.64 74.73

Ablation on hardest negative pairs: Exhausting the negative pairs to find
the hardest ones for each minibatch incurs larger computational overhead, but
our ablation shows it worthwhile. We compare it with the same model trained



14 M. Yuan al.

using randomly selected negative pairs. The results of using the hardest negative
pairs as in the proposed method and using randomly selected negative pairs are
shown in Table 4. All accuracy metrics are improved by using hardest negative
pairs in contrastive learning. By comparing Table 4 and Table 2, we can find
that using random negative pairs in contrastive representative learning achieves
better results than not using the deep representation, but the margin is small.
In addition, we collect the average cosine similarity within positive pairs and
top-K hardest negative pairs in the feature space in Table 4. The result shows
the representation trained using hardest negative pairs are better separated in
the feature space, which is more discriminative.

Table 4. Ablation experiment results on training with hardest negative pairs.

MR(%) MP(%) MF(%) Positive(%) Top-1(%) Top-10(%)

Random 76.85 67.50 71.87 95.43 96.91 91.37
Hardest 78.10 70.64 74.18 83.96 61.32 49.65

6 Conclusion

In this paper, we propose a novel framework to address the multi-instance point
cloud registration problem. We use contrastive learning to learn well-distributed
deep representations for input correspondences, based on which we develop a
pruning and a clustering strategy to remove outlier correspondences efficiently
and assign the remaining inlier correspondences to correct instances. Then, the
transformation from the source point cloud to each instance can be easily esti-
mated. Extensive experiments on both synthetic and real datasets demonstrate
the effectiveness of our framework and its superiority over existing solutions. We
think the proposed representation learning and the outlier pruning strategy has
the potential to be used in pairwise point cloud registration.
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