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We give more experimental results and analysis on Spatial Calibration Mod-
ule (SCM) proposed in the main paper. Firstly, we conduct more ablation studies
on the activation diffusion module, especially on the Newton Schulz Approxima-
tion iteration. Next, we study various strategies of combing Sl and F l and
testify its influence on localization. To test SCM on more challenging measures,
we validate it on MaxboxAcc. Furthermore, we provide the complete proof of the
semantics-coupled Laplacian matrix Ll at Eqn.(4) in the main paper, followed
by a theoretical analysis of the semantic flow redistribution.

1 Additional ablation study

In this section, we conduct experiments on the influence of the iteration number
in Newton Schulz Iteration. We also test the methodology to build up the final
prediction score map using maps from various layers.

1.1 Selecting different iteration numbers

As shown in Fig.1, we observe that the approximation of L−1 by Newton Schulz
can be accelerated with the increasing number of iterations. It raises the question
of what its impact on the localization performance is. To answer this question,
we train several models with four ADB layers following the same setting as the
main paper, except that the number of iterations varies.

As depicted in Fig.3, we plot GT-Known and the hyperparameter threshold
γ above which we generate the binary map. It turns out that iteration p = 4
is still the optimal choice that exceeds other settings over 5% in GT-Known.
To explore the reason, we plot γ and observe that the iteration p = 4 yields
a much larger region of interest than others. It indicates that SCM may need
a relatively small number of iterations in each block, or semantic information
would be over-diffused, resulting in degraded performance.

1.2 Strategies on combining maps

We design SCM as an external module that calibrates Transformer trained on
the classification to weakly supervised localization scenarios. During inference,
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Fig. 1: Illustration of approximation by Newton Schulz Iteration. Each map de-
notes the redistributed F with corresponding number of iterations p below. In
the main paper, we use iteration number p = 4.

SCM will be dropped out, so we only use S0 and F 0 for prediction. We further
explore whether combing maps from other blocks would yield a different result.
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Fig. 2: Illustration of coupling semantic maps and attention maps across layers.
Sources of each image are indicated at corresponding row and column.

As shown in Fig.2, we produce the activation by combining Sl and F l and
depict it in a pair-wise way. We find out that Sl tends to concentrate more on
semantic-rich regions as the number of layers increases. On the other hand, F l

shows a similar pattern as the layer goes deeper. The reason is that the semantic
token maps Sl are supervised by the label loss that drives the model to focus
on discriminative parts. However, different from the naive transformer imple-
mentation (TS-CAM), the Transformer with SCM learns to calibrate semantic
and attention maps through backpropagation, as we can observe that it revises
the coupled activation with more spatial details and clear boundaries in upper
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layers. At last, the refined coupled score map S0 and F 0 becomes a promising
candidate for localization.

Fig. 3: Illustration of the GT-Known performance and the optimal filtering
threshold γ with various number of Newton Schulz Iterations p in validation.
γ determines the threshold above which the bounding box is predicted from the
score maps, which means γ is proportional to the activated region.

Fig. 4: Architecture of (l + 1)
th

Activation Diffusion Block (ADB).

1.3 Evaluation result on other metrics

MaxboxAcc is reformulated to further GT-Known (the same fixed δ 50%) with
the optimal threshold γ in generating the binary map. Compared with GT-
Known, MaxboxAcc precludes misleading hyperparameter γ that depends heav-
ily on the data and model architecture. MaxboxAccV2 with optimal γ, is a more
strict measure than the former MaxboxAccV1. (1) It averages the performance
across δ ∈ {0.3, 0.5, 0.7} to address diverse demand for localization fitness. (2)
It considers the best match between the set of all estimated boxes and the set
of all ground-truth boxes as prediction, instead of only one box prediction from
the largest connected component of the score map in prior methods.

Towards a well-posed setup on WSOL, which is trained without any localiza-
tion supervision, we shift the evaluation on a held-out set CUBV2 [1] not overlap-
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Table 1: Comparison of SCM by MaxboxAcc [1] on CUB [8]. Values in bracket
shows improvement of our method compared with TS-CAM [4].

Model Backbone MaxboxAccV1 MaxboxAccV2

CAM[12] VGG16 71.1 63.7
ACoL[10] VGG16 72.3 57.4
ADL[2] VGG16 75.7 66.3

CutMix[9] VGG16 71.9 62.3
SPG[11] InceptionV3 62.7 55.9
ADL[2] InceptionV3 63.4 58.8
PDM[6] Resnet50 - 70.7
BGC[5] Resnet50 - 80.1

TS-CAM[4] Deit-S 88.9 79.6
SCM(ours) Deit-S 96.6 (7.7↑) 89.9 (10.3↑)

* The experiment is iteratively trained one epoch on CUB train set and evaluated one
epoch on CUBV2 [1]. The annotation mapping in the counterpart ISLVRCV2 [1] is
currently not available, so we evaluate TS-CAM and SCM only on CUB-200-2011.

ping with the available validation set (now the test set). Then we evaluate both
SCM and TS-CAM on it with the metrics MaxboxAccV1 and MaxboxAccV2 in
the experiment shown in Table.1 for the reason that selecting hyperparameter γ
with full supervision in the test set violates the principle of WSOL. To make a
fair comparison with the evaluation results given in [1], we keep the same train-
ing budget with fixed training epochs to 50 and a fixed batch size of 32 and
save the models, including SCM and TS-CAM with the best MaxboxAccV1 or
MaxboxAccV2 on CUBV2.

In Table.1, we compare TS-CAM and SCM on CUBV2 [1] on the same com-
putational budget as previous methods. It turns out that both TS-CAM and
SCM have achieved satisfactory performance, but SCM surpasses TS-CAM by
7.7% and 10.3% on MaxboxAccV1 and MaxboxAccV2, respectively. Further-
more, a higher MaxboxAccV2 score proves that SCM has great adaptability and
attends to various levels of localization fitness demands.

2 More details on activation diffusion

Over the past decades, Transformer has had tremendous success, largely at-
tributed to its efficient attention mechanism to capture the long-range depen-
dency. However, its limitations cannot be ignored. Studies have found that the
transformer has a natural limitation on local context modeling [3, 7], which is
critical for the object localization task. We further extend its ability by intro-
ducing SCM that calibrates the Transformer to embrace spatial and semantic
coherence to solve this issue.

As shown in Fig.4, we apply Activation Diffusion Block in SCM to reallocate
the activation region F . Here, we give the detailed steps to get the Laplacian
matrix L which denotes ”equilibrium status” at Eqn.(4) in our main paper.
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Fig. 5: Illustration of diffusion for vi and its first-order neighbors, where (H,W )
is the reshaped 2D graph resolution, where H denotes the number of nodes per
column, and W denotes the number of nodes per row. Each circle represents a
patch in this graph, and we denote the patch sequence indexes on top of them.
The arrows represent flow change with the horizontal direction that denotes
exchange with neighbor vertexes, and the vertical represents input and output
for G. We further specify types of exchange by different colors, where (Green)
F iu(t) is the initial input rate; (Blue) The communication rate with neighbors;
(Red) The rate of semantic flow which is related to the embedding similarity
and the amount of flow.

This section will describe the activation diffusion behind a physic evolution
model on a network structure in detail. We start with an introduction to the
diffusion process that enables the exchange of information among vertexes. Next,
we further analyze diffusion behavior with semantics on a global scale. At last,
we show how to get the re-allocated attention map. Firstly, we build a graph
G ⟨V,E⟩, where V and E represent the set of vertexes and edges, respectively.
Also, vi denotes a vertex in V , and ei,j in E denotes an edge between vi and
vj , and we define the information flow as I ∈ RN , where N is the number of
patches. G is shown in Fig.5, where we display the flow exchange between vi

and its first-order neighbors vi−1, vi+1, vi−W , vi+W , where (H,W ) is the 2D
patch resolution and we use the token sequence indexes to denote the spatially
connected four neighbors.

To make diffusion semantic-aware in G, as shown in Fig.5, we design a model
to describe both the flow influx and the outflux on vi. Firstly, the flow input is
based on the initial activation maps, where the activation score is proportional
to the input rate; another source is the neighbor nodes as vi will share flow with
them. On the other hand, the flow will go outwards to nearby ones simultane-
ously, and to make it semantics-aware, we introduce the ’semantic flow’ that
escapes from the nodes. Thus, The rate of fluid change in vi at time t could be
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described as,

ˆIi(t) =

(F iu(t) +
∑
j

Ai,jIi(t)︸ ︷︷ ︸)
influx

−
(
∑
j

Aj,iIj(t) + λ
∑
j

Ai,j(Ii(t)− Ij(t))Ei,j)︸ ︷︷ ︸
outflux

(1)

where λ is a learnable parameter for flexible control over the scale of diffusion.
Specifically, for each vi, the input for G exists if vi is one of the source nodes,
then the input rate is F iu(t), i.e. the score maps F i > 0 then vi can be treated
as the source. Next the input from the direct neighbors should also be considered,
given

∑
j Ai,jIi(t). On the other hand, for output, when propagating from vi

to vj , there exists the semantic flow which penalizes the flow exchange with
low semantic similarity, i.e. the cosine distance Ei,j . Thus, λ

∑
j Ai,j(Ii(t) −

Ij(t))Ei,j) describes the escaped semantic flows for the propagation from vi to
its neighbor, denoted as red arrows in Fig.5. λ is a hyperparameters to adjust the
overall contribution of semantic flow. Next, the outflux into the direct neighbors
is

∑
j Aj,iIj(t).

Then we can study the dynamic change of flow regarding G ⟨V,E⟩ and de-
scribe the graph’s response to the flow dynamics. Eqn.(1) could be further ex-
tended to the global scale,

ˆI(t) = LI(t) + u(t)Γ (F ) (2)

where

L = (D −A) ∗ (1− λE) (3)

Eqn.(3) is the shifted Laplacian matrix and Γ is a flatten operator used to
reshape F into a sequence.

Eqn.(1) tells the flow at vi that changes with time. Next, we could further
take the integral to accumulate the total changes within a certain amount of time,
which could be used to describe the trend of flow at G. Thus, from Eqn.(2), we
obtain the expression of the amount of flow in G by,

I(t) =

∫ t

t′=0

e−L(t−t′)Γ (F )u(t′)dt′ (4)

Eqn.(4) tells us that the graph is dynamically adjusted by semantic em-
bedding similarity E with spatial relationship. Denote a special time t0 when
ˆI(t0) = 0, we consider the ’equilibrium’ status is reached as the influx rate equals

the outflux rate for vi. As t0 ∈ [0,∞], when t → ∞, the total amount of flow in
G will not change and we obtain,

lim
t→∞

I(t) = L−1Γ (F ) (5)

Eqn.(5) implies the fully-diffused activation, however, as discussed in our
main paper, L is not guaranteed to be positive-definite, and its inverse may
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not exist. Meanwhile, as observed in our initial experiments in Fig.1, directly
applying the inverse has produced unwanted artifacts that may downgrade lo-
calization quality. Thanks to the Newton Schulz method, we exploit its great
convergence ability that approximates L−1 with a few numbers of iterations.
As shown in Fig.4, we couple the approximated L−1 to incorporate spatial and
semantic correlation into F in the end, which is shown in Eqn.(5).
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