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DEVIANT: Depth EquiVarIAnt NeTwork for
Monocular 3D Object Detection

Supplementary Material

A1 Supportive Explanations

We now add some explanations which we could not put in the main paper because
of the space constraints.

A1.1 Equivariance vs Augmentation

Equivariance adds suitable inductive bias to the backbone [17, 19] and is not
learnt. Augmentation adds transformations to the input data during training or
inference.

Equivariance and data augmentation have their own pros and cons. Equivari-
ance models the physics better, is mathematically principled and is so more ag-
nostic to data distribution shift compared to the data augmentation. A downside
of equivariance compared to the augmentation is equivariance requires mathe-
matical modelling, may not always exist [8], is not so intuitive and generally
requires more flops for inference. On the other hand, data augmentation is sim-
ple, intuitive and fast, but is not mathematically principled. The choice between
equivariance and data augmentation is a withstanding question in machine learn-
ing [25].

A1.2 Why do 2D CNN detectors generalize?

We now try to understand why 2D CNN detectors generalize well. Consider an
image h(u, v) and Φ be the CNN. Let Tt denote the translation in the (u, v)
space. The 2D translation equivariance [6, 7, 61] of the CNN means that

Φ(Tth(u, v)) = TtΦ(h(u, v))
=⇒ Φ(h(u+ tu, v + tv)) = Φ(h(u, v)) + (tu, tv) (5)

where (tu, tv) is the translation in the (u, v) space.
Assume the CNN predicts the object position in the image as (u′, v′). Then,

we write

Φ(h(u, v)) = (û, v̂) (6)

Now, we want the CNN to predict the output the position of the same object
translated by (tu, tv). The new image is thus h(u+ tu, v + tv). The CNN easily
predicts the translated position of the object because all CNN is to do is to invoke
its 2D translation equivariance of Eq. (5), and translate the previous prediction
by the same amount. In other words,

Φ(h(u+ tu, v + tv)) = Φ(h(u, v)) + (tu, tv)
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Fig. 5: Equivariance exists for the patch plane when there is depth translation of the
ego camera. Downscaling converts image h to image h′.
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Fig. 6: Example of non-existence of equivariance [8] when there is 180◦ rotation
of the ego camera. No transformation can convert image h to image h′.

= (û, v̂) + (tu, tv)

= (û+ tu, v̂ + tv)

Intuitively, equivariance is a disentaglement method. The 2D translation equiv-
ariance disentangles the 2D translations (tu, tv) from the original image h and
therefore, the network generalizes to unseen 2D translations.

A1.3 Existence and Non-existence of Equivariance

The result from [8] says that generic projective equivariance does not exist in
particular with rotation transformations. We now show an example of when the
equivariance exists and does not exist in the projective manifold in Figs. 5 and 6
respectively.

A1.4 Why do not Monocular 3D CNN detectors generalize?

Monocular 3D CNN detectors do not generalize well because they are not equiv-
ariant to arbitrary 3D translations in the projective manifold. To show this, let
H(x, y, z) denote a 3D point cloud. The monocular detection network Φ operates
on the projection h(u, v) of this point cloud H to output the position (x̂, ŷ, ẑ)
as

Φ(KH(x, y, z)) = (x̂, ŷ, ẑ)
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=⇒ Φ(h(u, v)) = (x̂, ŷ, ẑ),

where K denotes the projection operator. We translate this point cloud by an
arbitrary 3D translation of (tx, ty, tz) to obtain the new point cloud H(x+tx, y+
ty, z + tz). Then, we again ask the monocular detector Φ to do prediction over
the translated point cloud. However, we find that

Φ(KH(x+ tx, y + ty, z + tz)) ̸= Φ(h(u+K(tx, ty, tz), v +K(tx, ty, tz)))

= Φ(h(u, v)) +K(tx, ty, tz)

=⇒ Φ(KH(x+ tx, y + ty, z + tz)) ̸= Φ(KH(x, y, z)) +K(tx, ty, tz)

In other words, the projection operator K does not distribute over the point
cloud H and arbitrary 3D translation of (tx, ty, tz). Hence, if the network Φ is
a vanilla CNN (existing monocular backbone), it can no longer invoke its 2D
translation equivariance of Eq. (5) to get the new 3D coordinates (x̂ + tx, ŷ +
ty, ẑ + tz).

Note that the LiDAR based 3D detectors with 3D convolutions do not suffer
from this problem because they do not involve any projection operator K. Thus,
this problem exists only in monocular 3D detection. This makes monocular 3D
detection different from 2D and LiDAR based 3D object detection.

A1.5 Overview of Theorem 1

We now pictorially provide the overview of Theorem 1 (Example 13.2 from [30]),
which links the planarity and projective transformations in the continuous world
in Fig. 7.
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Fig. 7: Overview of Theorem 1 (Example 13.2 from [30]), which links the planarity
and projective transformations in the continuous world.
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A1.6 Approximation of Corollary 1

We now give the approximation under which Corollary 1 is valid. We assume
that the ego camera does not undergo any rotation. Hence, we substitute R = I
in Eq. (1) to get

h(u− u0, v − v0) = h′
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Next, we use the assumption that the ego vehicle moves in the z-direction as
in [5], i.e., substitute tx= ty=0 to get

h(u−u0, v−v0) = h′
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The patch plane is mx+ny+ oz+p = 0. We consider the planes in the front
of camera. Without loss of generality, consider p < 0 and o > 0.

We first write the denominator D of RHS term in Eq. (8) as
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If the coefficients of the patch plane m,n, o, its width W and focal length

f follow the relationship (|m|+|n|)W
2f << o, the patch plane is “approximately”

parallel to the image plane. Then, a few quantities can be ignored in the denom-
inator D to get

D ≈ 1 + tz
o

p
(9)

Therefore, the RHS of Eq. (8) gets simplified and we obtain

Ts : h(u− u0, v − v0) ≈ h′

(
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,
v − v0
1+tz

o
p

)
(10)

An immediate benefit of using the approximation is Eq. (2) does not depend on
the distance of the patch plane from the camera. This is different from wide-
angle camera assumption, where the ego camera is assumed to be far from the
patch plane. Moreover, patch planes need not be perfectly aligned with the image
plane for Eq. (2). Even small enough perturbed patch planes work. We next show
the approximation in the Fig. 8 with θ denoting the deviation from the perfect
parallel plane. The deviation θ is about 3 degrees for the KITTI dataset while
it is 6 degrees for the Waymo dataset.

θ

z

y

Fig. 8: Approximation of Corollary 1. Bold shows the patch plane parallel to the
image plane. The dotted line shows the approximated patch plane.

e.g. The following are valid patch planes for KITTI images whose focal length
f = 707 and width W = 1242.

−0.05x+ 0.05y + z = 30

0.05x− 0.05y + z = 30 (11)

The following are valid patch planes for Waymo images whose focal length f =
2059 and width W = 1920.

−0.1x+ 0.1y + z = 30

0.1x− 0.1y + z = 30 (12)

Although the assumption is slightly restrictive, we believe our method shows
improvements on both KITTI and Waymo datasets because the car patches are
approximately parallel to image planes and also because the depth remains the
hardest parameter to estimate [53].
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A1.7 Scale Equivariance of SES Convolution for Images

[74] derive the scale equivariance of SES convolution for a 1D signal. We simply
follow on their footsteps to get the scale equivariance of SES convolution for a
2D image h(u, v) for the sake of completeness. Let the scaling of the image h be
s. Let ∗ denote the standard vanilla convolution and Ψ denote the convolution
filter. Then, the convolution of the downscaled image Ts(h) with the filter Ψ is
given by
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= s2Ts [h ∗ Ts−1(Ψ)] (u, v). (13)

Next, [74] re-parametrize the SES filters by writing Ψσ(u, v) =
1
σ2Ψ

(
u
σ ,

v
σ

)
.

Substituting in Eq. (13), we get

[Ts(h) ∗ Ψσ] (u, v) = s2Ts [h ∗ Ts−1(Ψσ)] (u, v) (14)

Moreover, the re-parametrized filters are separable [74] by construction and
so, one can write

Ψσ(u, v) = Ψσ(u)Ψσ(v). (15)

The re-parametrization and separability leads to the important property that

Ts−1 (Ψσ(u, v)) = Ts−1 (Ψσ(u)Ψσ(v))

= Ts−1 (Ψσ(u)) Ts−1 (Ψσ(v))

= s−2Ψs−1σ(u)Ψs−1σ(v)

= s−2Ψs−1σ(u, v). (16)

Substituting above in the RHS of Eq. (14), we get

[Ts(h) ∗ Ψσ] (u, v) = s2Ts
[
h ∗ s−2Ψs−1σ

]
(u, v)

=⇒ [Ts(h) ∗ Ψσ] (u, v) = Ts [h ∗ Ψs−1σ] (u, v), (17)

which is a cleaner form of Eq. (13). Eq. (17) says that convolving the downscaled
image with a filter is same as the downscaling the result of convolving the image
with the upscaled filter [74]. This additional constraint regularizes the scale
(depth) predictions for the image, leading to better generalization.
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Table 13: Comparison of Methods on the basis of inputs, convolution kernels, out-
puts and whether output are scale-constrained.

Method
Input #Conv

Output
Output Constrained

Frame Kernel for Scales?

Vanilla CNN 1 1 4D ✕

Depth-Aware [4] 1 > 1 4D ✕

Dilated CNN [97] 1 > 1 5D Integer [92]
DEVIANT 1 > 1 5D Float

Depth-guided [20] 1 + Depth 1 4D Integer [92]
Kinematic3D [5] > 1 1 5D ✕

A1.8 Why does DEVIANT generalize better compared to CNN
backbone?

DEVIANT models the physics better compared to the CNN backbone. CNN
generalizes better for 2D detection because of the 2D translation equivariance in
the Euclidean manifold. However, monocular 3D detection does not belong to the
Euclidean manifold but is a task of the projective manifold. Modeling translation
equivariance in the correct manifold improves generalization. For monocular 3D
detection, we take the first step towards the general 3D translation equivariance
by embedding equivariance to depth translations. The 3D depth equivariance
in DEVIANT uses Eq. (14) and thus imposes an additional constraint on the
feature maps. This additional constraint results in consistent depth estimates
from the current image and a virtual image (obtained by translating the ego
camera), and therefore, better generalization than CNNs. On the other hand,
CNNs, by design, do not constrain the depth estimates from the current image
and a virtual image (obtained by translating the ego camera), and thus, their
depth estimates are entirely data-driven.

A1.9 Why not Fixed Scale Assumption?

We now answer the question of keeping the fixed scale assumption. If we as-
sume fixed scale assumption, then vanilla convolutional layers have the right
equivariance. However, we do not keep this assumption because the ego cam-
era translates along the depth in driving scenes and also, because the depth is
the hardest parameter to estimate [53] for monocular detection. So, zero depth
translation or fixed scale assumption is always violated.

A1.10 Comparisons with Other Methods

We now list out the differences between different convolutions and monocular
detection methods in Tab. 13. Kinematic3D [5] does not constrain the output at
feature map level, but at system level using Kalman Filters. The closest to our
method is the Dilated CNN (DCNN) [97]. We show in Tab. 9 that DEVIANT
outperforms Dilated CNN.
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A1.11 Why is Depth the hardest among all parameters?

Images are the 2D projections of the 3D scene, and therefore, the depth is lost
during projection. Recovering this depth is the most difficult to estimate, as
shown in Tab. 1 of [53]. Monocular detection task involves estimating 3D center,
3D dimensions and the yaw angle. The right half of Tab. 1 in [53] shows that if
the ground truth 3D center is replaced with the predicted center, the detection
reaches a minimum. Hence, 3D center is the most difficult to estimate among
center, dimensions and pose. Most monocular 3D detectors further decompose
the 3D center into projected (2D) center and depth. Out of projected center and
depth, Tab. 1 of [53] shows that replacing ground truth depth with the predicted
depth leads to inferior detection compared to replacing ground truth projected
center with the predicted projected center. Hence, we conclude that depth is the
hardest parameter to estimate.
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Fig. 9: (a) SES convolution [29,74] The non-trainable basis functions multiply with
learnable weights w to get kernels. The input then convolves with these kernels to get
multi-scale 5D output. (b) Scale-Projection [74] takes max over the scale dimension
of the 5D output and converts it to 4D. [Key: ∗ = Vanilla convolution.]

Fig. 10: Steerable Basis [74] for 7×7 SES convolution filters. (Showing only 8 of the
49 members for each scale).

A2 Implementation Details

We now provide some additional implementation details for facilitating repro-
duction of this work.

A2.1 Steerable Filters of SES Convolution

We use the scale equivariant steerable blocks proposed by [73] for our DEVIANT
backbone. We now share the implementation details of these steerable filters.
Basis. Although steerable filters can use any linearly independent functions as
their basis, we stick with the Hermite polynomials as the basis [73]. Let (0, 0)
denote the center of the function and (u, v) denote the pixel coordinates. Then,
the filter coefficients ψσnm [73] are

ψσnm =
A

σ2
Hn

(u
σ

)
Hm

( v
σ

)
e−

u2+v2

σ2 (18)

Hn denotes the Probabilist’s Hermite polynomial of the nth order, and A is the
normalization constant. The first six Probabilist’s Hermite polynomials are

H0(x) = 1 (19)
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H1(x) = x (20)

H2(x) = x2 − 1 (21)

H3(x) = x3 − 3x (22)

H4(x) = x4 − 6x2 + 3 (23)

Fig. 10 visualizes some of the SES filters and shows that the basis is indeed at
different scales.

A2.2 Monocular 3D Detection

Architecture.We use the DLA-34 [98] configuration, with the standard Feature
Pyramid Network (FPN) [44], binning and ensemble of uncertainties. FPN is a
bottom-up feed-forward CNN that computes feature maps with a downscaling
factor of 2, and a top-down network that brings them back to the high-resolution
ones. There are total six feature maps levels in this FPN.

We use DLA-34 as the backbone for our baseline GUP Net [49], while we use
SES-DLA-34 as the backbone for DEVIANT. We also replace the 2D pools by
3D pools with pool along the scale dimensions as 1 for DEVIANT.

We initialize the vanilla CNN from ImageNet weights. For DEVIANT, we
use the regularized least squares [73] to initialize the trainable weights in all the
Hermite scales from the ImageNet [18] weights. Compared to initializing one of
the scales as proposed in [73], we observed more stable convergence in initializing
all the Hermite scales.

We output three foreground classes for KITTI dataset. We also output three
foreground classes for Waymo dataset ignoring the Sign class [62].
Datasets. We use the publicly available KITTI,Waymo and nuScenes datasets
for our experiments. KITTI is available at http://www.cvlibs.net/datasets/
kitti/eval_object.php?obj_benchmark=3d under CC BY-NC-SA 3.0 License.
Waymo is available at https://waymo.com/intl/en_us/dataset-download-terms/
under the Apache License, Version 2.0. nuScenes is available at https://www.
nuscenes.org/nuscenes under CC BY-NC-SA 4.0 International Public License.
Augmentation. Unless otherwise stated, we horizontal flip the training images
with probability 0.5, and use scale augmentation as 0.4 as well for all the models
[49] in training.
Pre-processing. The only pre-processing step we use is image resizing.
• KITTI. We resize the [370, 1242] sized KITTI images, and bring them to the

[384, 1280] resolution [49].
• Waymo. We resize the [1280, 1920] sized Waymo images, and bring them to

the [512, 768] resolution. This resolution preserves their aspect ratio.
Box Filtering. We apply simple hand-crafted rules for filtering out the boxes.
We ignore the box if it belongs to a class different from the detection class.
• KITTI.We train with boxes which are atleast 2m distant from the ego camera,

and with visibility > 0.5 [49].
• Waymo. We train with boxes which are atleast 2m distant from the ego cam-

era. The Waymo dataset does not have any occlusion based labels. However,

http://www.cvlibs.net/datasets/kitti/eval_object.php?obj_benchmark=3d
http://www.cvlibs.net/datasets/kitti/eval_object.php?obj_benchmark=3d
https://waymo.com/intl/en_us/dataset-download-terms/
https://www.nuscenes.org/nuscenes
https://www.nuscenes.org/nuscenes
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Waymo provides the number of LiDAR points inside each 3D box which serves
as a proxy for the occlusion. We train the boxes which have more than 100
LiDAR points for the vehicle class and have more than 50 LiDAR points for
the cyclist and pedestrian class.

Training. We use the training protocol of GUP Net [49] for all our experiments.
Training uses the Adam optimizer [35] and weight-decay 1×10−5 . Training dy-
namically weighs the losses using Hierarchical Task Learning (HTL) [49] strategy
keeping K as 5 [49]. Training also uses a linear warmup strategy in the first 5
epochs to stabilize the training. We choose the model saved in the last epoch as
our final model for all our experiments.
• KITTI. We train with a batch size of 12 on single Nvidia A100 (40GB) GPU

for 140 epochs. Training starts with a learning rate 1.25 × 10−3 with a step
decay of 0.1 at the 90th and the 120th epoch.

• Waymo. We train with a batch size of 40 on single Nvidia A100 (40GB) GPU
for 30 epochs because of the large size of the Waymo dataset. Training starts
with a learning rate 1.25× 10−3 with a step decay of 0.1 at the 18th and the
26th epoch.

Losses. We use the GUP Net [49] multi-task losses before the NMS for training.
The total loss L is given by

L = Lheatmap + L2D,offset + L2D,size + L3D2D,offset + L3D,angle

+ L3D,l + L3D,w + L3D,h + L3D,depth. (24)

The individual terms are given by
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The superscripts b and g denote the predicted box and ground truth box
respectively. CE and Focal denote the Cross Entropy and Focal loss respectively.

The number of heatmaps depends on the number of output classes. δ2D de-
notes the deviation of the 2D center from the center of the heatmap. δ3D2D,offset

denotes the deviation of the projected 3D center from the center of the heatmap.
The orientation loss is the cross entropy loss between the binned observation an-
gle of the prediction and the ground truth. The observation angle α is split
into 12 bins covering 30◦ range. δl3D, δw3D and δh3D denote the deviation of
the 3D length, width and height of the box from the class dependent mean size
respectively.

The depth is the hardest parameter to estimate [53]. So, GUP Net uses
in-network ensembles to predict the depth. It obtains a Laplacian estimate of
depth from the 2D height, while it obtains another estimate of depth from the
prediction of depth. It then adds these two depth estimates.
Inference. Our testing resolution is same as the training resolution. We do not
use any augmentation for test/validation. We keep the maximum number of
objects to 50 in an image, and we multiply the class and predicted confidence to
get the box’s overall score in inference as in [36]. We consider output boxes with
scores greater than a threshold of 0.2 for KITTI [49] and 0.1 for Waymo [62].
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Table 14: Generalization gap (

−
� ) on KITTI Val cars. Monocular detection has huge
generalization gap between training and inference sets. [Key: Best]

Method
Scale

Set
IoU3D ≥ 0.7 IoU3D ≥ 0.5

Eqv AP3D|R40
[%]( −�) APBEV|R40

[%]( −�) AP3D|R40
[%]( −�) APBEV|R40

[%]( −�)
Easy Mod Hard Easy Mod Hard Easy Mod Hard Easy Mod Hard

GUP Net [49]
Train 91.83 74.87 67.43 95.19 80.95 73.55 99.50 93.62 86.22 99.56 93.88 86.46
Val 21.10 15.48 12.88 28.58 20.92 17.83 58.95 43.99 38.07 64.60 47.76 42.97
Gap 70.73 59.39 54.55 66.61 60.03 55.72 40.55 49.63 48.15 34.96 46.12 43.49

DEVIANT ✓
Train 91.09 76.19 67.16 94.76 82.61 75.51 99.37 93.56 88.57 99.50 93.87 88.90
Val 24.63 16.54 14.52 32.60 23.04 19.99 61.00 46.00 40.18 65.28 49.63 43.50
Gap 66.46 59.65 52.64 62.16 59.57 55.52 38.37 47.56 48.39 34.22 44.24 45.40

Table 15: Comparison on multiple backbones on KITTI Val cars. [Key: Best]

BackBone Method
IoU3D ≥ 0.7 IoU3D ≥ 0.5

AP3D|R40
[%]( −�) APBEV|R40

[%]( −�) AP3D|R40
[%]( −�) APBEV|R40

[%]( −�)
Easy Mod Hard Easy Mod Hard Easy Mod Hard Easy Mod Hard

ResNet-18 GUP Net [49] 18.86 13.20 11.01 26.05 19.37 16.57 54.90 40.65 34.98 60.54 46.13 40.12
DEVIANT 20.27 14.21 12.56 28.09 20.32 17.49 55.75 42.41 36.97 60.82 46.43 40.59

DLA-34 GUP Net [49] 21.10 15.48 12.88 28.58 20.92 17.83 58.95 43.99 38.07 64.60 47.76 42.97
DEVIANT 24.63 16.54 14.52 32.60 23.04 19.99 61.00 46.00 40.18 65.28 49.63 43.50

A3 Additional Experiments and Results

We now provide additional details and results of the experiments evaluating our
system’s performance.

A3.1 KITTI Val Split

Monocular Detection has Huge Generalization Gap. As mentioned in
Sec. 1, we now show that the monocular detection has huge generalization gap
between training and inference. We report the object detection performance on
the train and validation (val) set for the two models on KITTI Val split in
Tab. 14. Tab. 14 shows that the performance of our baseline GUP Net [49] and
our DEVIANT is huge on the training set, while it is less than one-fourth of the
train performance on the val set.

We also report the generalization gap metric [93] in Tab. 14, which is the
difference between training and validation performance. The generalization gap
at both the thresholds of 0.7 and 0.5 is huge.
Comparison on Multiple Backbones. A common trend in 2D object detec-
tion community is to show improvements on multiple backbones [82]. DD3D [57]
follows this trend and also reports their numbers on multiple backbones. There-
fore, we follow the same and compare with our baseline on multiple backbones
on KITTI Val cars in Tab. 15. Tab. 15 shows that DEVIANT shows consistent
improvements over GUP Net [49] in 3D object detection on multiple backbones,
proving the effectiveness of our proposal.
Comparison with Bigger CNN Backbones. Since the SES blocks increase
the Flop counts significantly compared to the vanilla convolution block, we next
compare DEVIANT with bigger CNN backbones with comparable GFLOPs and
FPS/ wall-clock time (instead of same configuration) in Tab. 16. We compare
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Table 16: Results with bigger CNNs having similar flops on KITTI Val cars.
[Key: Best]

Method BackBone
Param (

−
� ) Disk Size (

−
� ) Flops (

−
� ) Infer (

−
� ) AP3D IoU3D≥ 0.7 ( −�) AP3D IoU3D≥ 0.5 ( −�)

(M) (MB) (G) (ms) Easy Mod Hard Easy Mod Hard

GUP Net [49] DLA-34 16 235 30 20 21.10 15.48 12.88 58.95 43.99 38.07
GUP Net [49] DLA-102 34 583 70 25 20.96 14.64 12.80 57.06 41.78 37.26
GUP Net [49] DLA-169 54 814 114 30 21.76 15.35 12.72 57.60 43.27 37.32

DEVIANT SES-DLA-34 16 236 235 40 24.63 16.54 14.52 61.00 46.00 40.18

Table 17: Results on KITTI Val cyclists and pedestrians (Cyc/Ped) (IoU3D≥
0.5). [Key: Best, Second Best]

Method Extra
Cyc AP3D|R40

[%]( −�) Ped AP3D|R40
[%]( −�)

Easy Mod Hard Easy Mod Hard

GrooMeD-NMS [36] − 0.00 0.00 0.00 3.79 2.71 2.61
MonoDIS [70] − 1.52 0.73 0.71 3.20 2.28 1.71
MonoDIS-M [68] − 2.70 1.50 1.30 9.50 7.10 5.70
GUP Net (Retrained) [49] − 4.41 2.17 2.03 9.37 6.84 5.73

DEVIANT (Ours) − 4.05 2.20 2.14 9.85 7.18 5.42

DEVIANT with DLA-102 and DLA-169 - two biggest DLA networks with Im-
ageNet weights4 on KITTI Val split. We use the fvcore library5 to get the pa-
rameters and flops. Tab. 16 shows that DEVIANT again outperforms the bigger
CNN backbones, especially on nearby objects. We believe this happens because
the bigger CNN backbones have more trainable parameters than DEVIANT,
which leads to overfitting. Although DEVIANT takes more time compared to
the CNN backbones, DEVIANT still keeps the inference almost real-time.
Performance on Cyclists and Pedestrians. Tab. 17 lists out the results
of 3D object detection on KITTI Val Cyclist and Pedestrians. The results show
that DEVIANT is competitive on challenging Cyclist and achieves SOTA results
on Pedestrians on the KITTI Val split.
Cross-Dataset Evaluation Details. For cross-dataset evaluation, we test on
all 3,769 images of the KITTI Val split, as well as all frontal 6,019 images of the
nuScenes Val split [9], as in [67]. We first convert the nuScenes Val images to
the KITTI format using the export kitti6 function in the nuscenes devkit. We
keep KITTI Val images in the [384, 1280] resolution, while we keep the nuScenes
Val images in the [384, 672] resolution to preserve the aspect ratio. For M3D-
RPN [4], we bring the nuScenes Val images in the [512, 910] resolution.

Monocular 3D object detection relies on the camera focal length to back-
project the projected centers into the 3D space. Therefore, the 3D centers de-
pends on the focal length of the camera used in the dataset. Hence, one should
take the camera focal length into account while doing cross-dataset evaluation.
We now calculate the camera focal length of a dataset as follows. We take the
camera matrix K and calculate the normalized focal length f̄ =

2fy
H , where H

denotes the height of the image. The normalized focal length f̄ for the KITTI

4 Available at http://dl.yf.io/dla/models/imagenet/
5 https://github.com/facebookresearch/fvcore
6 https://github.com/nutonomy/nuscenes-devkit/blob/master/python-sdk/

nuscenes/scripts/export_kitti.py

http://dl.yf.io/dla/models/imagenet/
https://github.com/facebookresearch/fvcore
https://github.com/nutonomy/nuscenes-devkit/blob/master/python-sdk/nuscenes/scripts/export_kitti.py
https://github.com/nutonomy/nuscenes-devkit/blob/master/python-sdk/nuscenes/scripts/export_kitti.py
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Table 18: Stress Test with rotational and xy-translation ego movement on KITTI Val
cars. [Key: Best]

Set Method
AP3D IoU3D≥ 0.7 ( −�) AP3D IoU3D≥ 0.5 ( −�)
Easy Mod Hard Easy Mod Hard

Subset GUP Net [49] 17.22 11.43 9.91 47.47 35.02 32.63
(306) DEVIANT 20.17 12.49 10.93 49.81 36.93 34.32

KITTI Val GUP Net [49] 21.10 15.48 12.88 58.95 43.99 38.07
(3769) DEVIANT 24.63 16.54 14.52 61.00 46.00 40.18

dataset is 3.82, while the normalized focal length f̄ for the nuScenes dataset is
2.82. Thus, the KITTI and the nuScenes images have a different focal length [84].

M3D-RPN [4] does not normalize w.r.t. the focal length. So, we explicitly
correct and divide the depth predictions of nuScenes images from the KITTI
model by 3.82/2.82 = 1.361 in the M3D-RPN [4] codebase. The GUP Net [49]
and DEVIANT codebases use normalized coordinates i.e. they normalize w.r.t.
the focal length. So, we do not explicitly correct the focal length for GUP Net
and DEVIANT predictions.

We match predictions to the ground truths using the IoU2D overlap threshold
of 0.7 [67]. After this matching, we calculate the Mean Average Error (MAE) of
the depths of the predicted and the ground truth boxes [67].
Stress Test with Rotational and/or xy-translation Ego Movement.
Corollary 1 uses translation along the depth as the sole ego movement. This
assumption might be valid for the current outdoor datasets and benchmarks,
but is not the case in the real world. Therefore, we conduct stress tests on how
tolerable DEVIANT and GUP Net [49] are when there is rotational and/or xy-
translation movement on the vehicle.

First, note that KITTI andWaymo are already large-scale real-world datasets,
and our own dataset might not be a good choice. So, we stick with KITTI and
Waymo datasets. We manually choose 306 KITTI Val images with such ego
movements and again compare performance of DEVIANT and GUP Net on this
subset in Tab. 18. The average distance of the car in this subset is 27.69 m
(±16.59 m), which suggests a good variance and unbiasedness in the subset.
Tab. 18 shows that both the DEVIANT backbone and the CNN backbone show
a drop in the detection performance by about 4 AP points on the Mod cars
of ego-rotated subset compared to the all set. This drop experimentally con-
firms the theory that both the DEVIANT backbone and the CNN backbone
do not handle arbitrary 3D rotations. More importantly, the table shows that
DEVIANT maintains the performance improvement over GUP Net [49] under
such movements.

Also, Waymo has many images in which the ego camera shakes. Improve-
ments on Waymo (Tab. 12) also confirms that DEVIANT outperforms GUP
Net [49] even when there is rotational or xy-translation ego movement.
Comparison of Depth Estimates from Monocular Depth Estimators
and 3D Object Detectors.We next compare the depth estimates from monoc-
ular depth estimators and depth estimates from monocular 3D object detectors
on the foreground objects. We take a monocular depth estimator BTS [41] model
trained on KITTI Eigen split. We next compare the depth error for all and fore-
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Table 19: Comparison of Depth Estimates of monocular depth estimators and 3D
object detectors on KITTI Val cars. Depth from a depth estimator BTS is not good
for foreground objects (cars) beyond 20+ m range. [Key: Best, Second Best]

Method
Depth Ground Back+ Foreground Foreground (Cars)
at Truth 0−20 20−40 40−∞ 0−20 20−40 40−∞

GUP Net [49] 3D Center 3D Box − − − 0.45 1.10 1.85
DEVIANT 3D Center 3D Box − − − 0.40 1.09 1.80

BTS [41] Pixel LiDAR 0.48 1.30 1.83 0.30 1.22 2.16

Fig. 11: Equivariance error (∆) comparison for DEVIANT and GUP Net on previous
three frames of the KITTI monocular videos at block 3 in the backbone.

ground objects (cars) on KITTI Val split using MAE (

−
� ) metric in Tab. 19 as

in Tab. 6. We use the MSeg [39] to segment out cars in the driving scenes for
BTS. Tab. 19 shows that the depth from BTS is not good for foreground objects
(cars) beyond 20+ m range. Note that there is a data leakage issue between the
KITTI Eigen train split and the KITTI Val split [69] and therefore, we expect
more degradation in performance of monocular depth estimators after fixing the
data leakage issue.
Equivariance Error for KITTI Monocular Videos. A better way to com-
pare the scale equivariance of the DEVIANT and GUP Net [49] compared to
Fig. 4, is to compare equivariance error on real images with depth translations of
the ego camera. The equivariance error ∆ is the normalized difference between
the scaled feature map and the feature map of the scaled image, and is given by

∆ =
1

N

N∑
i=1

||TsiΦ(hi)− Φ(Tsihi)||22
||TsiΦ(hi)||22

, (36)

where Φ denotes the neural network, Tsi is the scaling transformation for the
image i, and N is the total number of images. Although we do evaluate this error
in Fig. 4, the image scaling in Fig. 4 does not involve scene change because of the
absence of the moving objects. Therefore, evaluating on actual depth translations
of the ego camera makes the equivariance error evaluation more realistic. We next
carry out this experiment and report the equivariance error on three previous
frames of the val images of the KITTI Val split as in [5]. We plot this equivariance
error in Fig. 11 at block 3 of the backbones because the resolution at this block
corresponds to the output feature map of size [96, 320]. Fig. 11 is similar to
Fig. 4b, and shows that DEVIANT achieves lower equivariance error. Therefore,
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Table 20: Five Different Runs on KITTI Val cars. [Key: Average]

Method Run
IoU3D ≥ 0.7 IoU3D ≥ 0.5

AP3D|R40
[%]( −�) APBEV|R40

[%]( −�) AP3D|R40
[%]( −�) APBEV|R40

[%]( −�)
Easy Mod Hard Easy Mod Hard Easy Mod Hard Easy Mod Hard

1 21.67 14.75 12.68 28.72 20.88 17.79 58.27 43.53 37.62 63.67 47.37 42.55
2 21.26 14.94 12.49 28.39 20.40 17.43 59.20 43.55 37.63 64.06 47.46 42.67

GUP Net [49] 3 20.87 15.03 12.61 28.66 20.56 17.48 60.19 44.08 39.36 65.26 49.44 43.17
4 21.10 15.48 12.88 28.58 20.92 17.83 58.95 43.99 38.07 64.60 47.76 42.97
5 22.52 15.92 13.31 30.77 22.40 19.36 59.91 44.00 39.30 64.94 48.01 43.08

Avg 21.48 15.22 12.79 29.02 21.03 17.98 59.30 43.83 38.40 64.51 48.01 42.89

1 23.19 15.84 14.11 29.82 21.93 19.16 60.19 45.52 39.86 66.32 49.39 43.38
2 23.33 16.12 13.54 31.22 22.64 19.64 61.59 46.33 40.35 67.49 50.26 43.98

DEVIANT 3 24.12 16.37 14.48 31.58 22.52 19.65 62.51 46.47 40.65 67.33 50.24 44.16
4 24.63 16.54 14.52 32.60 23.04 19.99 61.00 46.00 40.18 65.28 49.63 43.50
5 25.82 17.69 15.07 33.63 23.84 20.60 62.39 46.46 40.61 67.55 50.51 45.80

Avg 24.22 16.51 14.34 31.77 22.79 19.81 61.54 46.16 40.33 66.79 50.01 44.16

Table 21: Experiments Comparison.

Method Venue Multi-Dataset Cross-Dataset Multi-Backbone

GrooMeD-NMS [36] CVPR21 − − −
MonoFlex [100] CVPR21 − − −
CaDDN [62] CVPR21 ✓ − −
MonoRCNN [67] ICCV21 − ✓ −
GUP Net [49] ICCV21 − − −
DD3D [57] ICCV21 ✓ − ✓
PCT [80] NeurIPS21 ✓ − ✓
MonoDistill [14] ICLR22 − − −
MonoDIS-M [68] TPAMI20 ✓ − −
MonoEF [103] TPAMI21 ✓ − −
DEVIANT - ✓ ✓ ✓

DEVIANT has better equivariance to depth translations (scale transformation
s) than GUP Net [49] in real scenarios.

Model Size, Training, and Inference Times. Both DEVIANT and the base-
line GUP Net have the same number of trainable parameters, and therefore, the
same model size. GUP Net takes 4 hours to train on KITTI Val and 0.02 ms per
image for inference on a single Ampere A100 (40 GB) GPU. DEVIANT takes 8.5
hours for training and 0.04 ms per image for inference on the same GPU. This is
expected because SE models use more flops [74, 104] and, therefore, DEVIANT
takes roughly twice the training and inference time as GUP Net.

Reproducibility. As described in Sec. 5.2, we now list out the five runs of our
baseline GUP Net [49] and DEVIANT in Tab. 20. Tab. 20 shows that DEVIANT
outperforms GUP Net in all runs and in the average run.

Experiment Comparison. We now compare the experiments of different pa-
pers in Tab. 21. To the best of our knowledge, the experimentation in DEVIANT
is more than the experimentation of most monocular 3D object detection papers.

A3.2 Qualitative Results

KITTI.We next show some more qualitative results of models trained on KITTI
Val split in Fig. 13. We depict the predictions of DEVIANT in image view on
the left and the predictions of DEVIANT and GUP Net [49], and ground truth
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(a) Depth equivariance error (

−
� ). (b) Error (

−
� ) on objects.

Fig. 12: (a) Depth (scale) equivariance error of vanilla GUP Net [49] and proposed
DEVIANT. (See Sec. 5.2 for details) (b) Error on objects. The proposed backbone
has less depth equivariance error than vanilla CNN backbone.

in BEV on the right. In general, DEVIANT predictions are more closer to the
ground truth than GUP Net [49].
nuScenes Cross-Dataset Evaluation. We then show some qualitative results
of KITTI Val model evaluated on nuScenes frontal in Fig. 14. We again observe
that DEVIANT predictions are more closer to the ground truth than GUP Net
[49]. Also, considerably less number of boxes are detected in the cross-dataset
evaluation i.e. on nuScenes. We believe this happens because of the domain shift.
Waymo. We now show some qualitative results of models trained on Waymo
Val split in Fig. 15. We again observe that DEVIANT predictions are more closer
to the ground truth than GUP Net [49].

A3.3 Demo Videos of DEVIANT

Detection Demo. We next put a short demo video of our DEVIANT model
trained on KITTI Val split at https://www.youtube.com/watch?v=2D73ZBrU-PA.
We run our trained model independently on each frame of 2011 09 26 drive 0009
KITTI raw [27]. The video belongs to the City category of the KITTI raw video.
None of the frames from the raw video appear in the training set of KITTI Val
split [36]. We use the camera matrices available with the video but do not use
any temporal information. Overlaid on each frame of the raw input videos, we
plot the projected 3D boxes of the predictions and also plot these 3D boxes in
the BEV. We set the frame rate of this demo at 10 fps as in KITTI. The at-
tached demo video demonstrates very stable and impressive results because of
the additional equivariance to depth translations in DEVIANT which is absent
in vanilla CNNs. Also, notice that the orientation of the boxes are stable despite
not using any temporal information.
Equivariance Error Demo.We next show the depth equivariance (scale equiv-
ariance) error demo of one of the channels from the vanilla GUP Net and our

https://www.youtube.com/watch?v=2D73ZBrU-PA
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proposed method at https://www.youtube.com/watch?v=70DIjQkuZvw. As be-
fore, we report at block 3 of the backbones which corresponds to output feature
map of the size [96, 320]. The equivariance error demo indicates more white
spaces which confirms that DEVIANT achieves lower equivariance error com-
pared to the baseline GUP Net [49]. Thus, this demo agrees with Fig. 12a. This
happens because depth (scale) equivariance is additionally hard-baked into DE-
VIANT, while the vanilla GUP Net is not equivariant to depth translations (scale
transformations).
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Fig. 13: KITTI Qualitative Results. DEVIANT predictions in general are more
accurate than GUP Net [49]. [Key: Cars, Cyclists and Pedestrians of DEVIANT; all
classes of GUP Net, and Ground Truth in BEV].
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Fig. 14: nuScenes Cross-Dataset Qualitative Results. DEVIANT predictions in
general are more accurate than GUP Net [49]. [Key: Cars of DEVIANT; Cars of GUP
Net, and Ground Truth in BEV].
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Fig. 15: Waymo Qualitative Results. DEVIANT predictions in general are more
accurate than GUP Net [49]. [Key: Cars, Cyclists and Pedestrians of DEVIANT; all
classes of GUP Net, and Ground Truth in BEV].
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