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Abstract. Estimating accurate 3D locations of objects from monocu-
lar images is a challenging problem because of lacking depth. Previous
work shows that utilizing the object’s keypoint projection constraints to
estimate multiple depth candidates boosts the detection performance.
However, the existing methods can only utilize vertical edges as pro-
jection constraints for depth estimation. So these methods only use a
small number of projection constraints and produce insufficient depth
candidates, leading to inaccurate depth estimation. In this paper, we
propose a method that utilizes dense projection constraints from edges
of any direction. In this way, we employ much more projection constraints
and produce considerable depth candidates. Besides, we present a graph
matching weighting module to merge the depth candidates. The proposed
method DCD (Densely Constrained Detector) achieves state-of-the-art
performance on the KITTI and WOD benchmarks. Code is released at
https://github.com/BraveGroup/DCD.

Keywords: Monocular 3D object detection, dense geometric constraint,
message passing, graph matching

1 Introduction

Monocular 3D detection [17,45,7,51] has become popular because images are
large in number, easy to obtain, and have dense information. Nevertheless, the
lack of depth information in monocular images is a fatal problem for 3D detec-
tion. Some methods [2,22] use deep neural networks to regress the 3D bound-
ing boxes directly, but it is challenging to estimate the 3D locations of the
objects from 2D images. Another line of work [44,8,30] employs a pre-trained
depth estimator. However, training the depth estimator is separated from the
detection part, requiring a large amount of additional data. In addition, some
works [17,51,23] use geometric constraints, i.e., regresses the 2D/3D edges, and
then estimates the object’s depth from the 2D-3D edge projection constraints.

https://github.com/BraveGroup/DCD
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Fig. 1. The object’s depth is estimated by 2D-3D edge projection constraints. This fig-
ure compares the involved edges in the object’s depth estimation between (a) previous
work and (b) ours. The previous work only deals with vertical edges. Our work is able
to handle the edges of any direction.

These works employ 3D shape prior information and exhibit state-of-the-art
performance, which is worthy of future research.

A problem of the previous work is that their geometric constraints are insuf-
ficient. Specifically, some existing methods [51,25,50] estimate the height of the
2D bounding box and the 3D bounding box, and then generate the depth candi-
dates of an object from 2D-3D height projection constraints. The final depth is
produced by weighting all the depth candidates. As Fig. 1 shows, this formula-
tion is only suitable for the vertical edges, which means they only utilize a tiny
amount of constraints and 3D prior, leading to inaccurate depth estimations.

Some of the depth candidates are of low quality, so weighting is needed.
However, the previous work’s weighting methods are suboptimal. Since the final
depth is derived from the weighted average of depth candidates, the weight
should reflect the quality of each depth candidate. Existing methods [23] use a
branch to regress the weight of each depth candidate directly, and this branch is
paralleled to the keypoints regression branch. So the weighting branch does not
know each keypoint’s quality. Some work predicts the uncertainty of each depth
to measure the quality of the depth and use the uncertainty to weight [25,51].
However, they obtain the uncertainty of each depth candidate independently,
and they do not supervise the weight explicitly.

To address the problem of insufficient geometric constraints, we propose a
Densely Geometric-constrained Depth Estimator (DGDE). DGDE can estimate
depth candidates from projection constraints provided by edges of any direction,
no more limited to the vertical edges. This estimator allows better use of the
shape information of the object. In addition, training the neural network with



Densely Constrained Depth Estimator for Monocular 3D Object Detection 3

abundant 2D-3D projection constraints helps the neural network understand the
mapping relationship from the 2D plane to the 3D space.

To weight the depth candidates properly, we propose a new depth candi-
dates weighting module that employs graph matching, named Graph Matching
Weighting module. We construct complete graphs based on 2D and 3D semantic
keypoints. In a 2D keypoint graph, the 2D keypoint coordinates are placed on
the vertices, and an edge represents a pair of 2D keypoints. The 3D keypoint
graph is constructed in the same way. We then match the 2D edges and 3D edges
and produce the matching scores. The 2D-3D edge matching score is used as the
weight of the corresponding depth candidate. These weights are explicitly super-
visable. Moreover, the information of the entire 2d/3d edges is used to generate
each 2d-3d edge matching score.

In summary, our main contributions are:

1. We propose a Dense Geometric-constrained Depth Estimator (DGDE). Dif-
ferent from the previous methods, DGDE estimates depth candidates utiliz-
ing projection constraints of edges of any direction. Therefore, considerable
2D-3D projection constraints are used, producing considerable depth candi-
dates. We produce high-quality final depth based on these candidates.

2. We propose an effective and interpretable Graph Matching Weighting module
(GMW). We construct the 2D/3D graph from 2D/3D keypoints respectively.
Then we regard the graph matching score of the 2D-3D edge as the weight of
the corresponding depth candidate. This strategy utilizes all the keypoints’
information and produces explicitly supervised weights.

3. We localize each object more accurately by weighting the estimated depth
candidates with corresponding matching scores. Our Densely Constrained
Detector (DCD) achieves state-of-the-art performance on the KITTI and
Waymo Open Dataset (WOD) benchmarks.

2 Related Work

Monocular 3D Object Detection.Monocular 3D object detection [16,5,7,13]
becomes more and more popularity because monocular images are easy to ob-
tain. The existing methods can be divided into two categories: single-center-
point-based and multi-keypoints-based.

Single-center-point-based methods [22,54,52] use the object’s center point
to represent an object. In detail, M3D-RPN [2] proposes a depth-aware convolu-
tional layer with the estimated depth. MonoPair [7] discovers that the relation-
ships between nearby objects are useful for optimizing the final results. Although
single-center-point-based methods are simple and fast, location regression is un-
stable because only one center point is utilized. Therefore, the multi-keypoints-
based methods [23,51,17] are drawing more and more attention recently.

Multi-keypoints-based methods predict multiple keypoints for an object. More
keypoints provide more projection constraints. The projection constraints are
useful for training the neural network because constraints build the mapping
relationship from the 2D image plane to the 3D space. Deep MANTA [5] defines
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4 wireframes as templates for matching cars, while 3D-RCNN [16] proposes a
render-and-compare loss. Deep3DBox [29] utilizes 2D bounding boxes as con-
straints to refine 3D bounding boxes. KM3D [17] localizes the objects utilizing
eight bounding boxes points projection. MonoJSG [20] constructs an adaptive
cost volume with semantic features to model the depth error. AutoShape [23],
highly relevant to this paper, regresses 2D and 3D semantic keypoints and weighs
them by predicted scores from a parallel branch. MonoDDE [19] is a concurrent
work. It uses more geometric constraints than MonoFlex [51]. However, it only
uses geometric constraints based on the object’s center and bounding box points,
while we use dense geometric constraints derived from semantic keypoints. In this
paper, we propose a novel edge-based depth estimator. The estimator produces
depth candidates by projection constraints, consisting of edges of any direction.
We weight each edge by graph matching to derive the final depth of the object.
Graph Matching and Message Passing. Graph matching [37] is defined as
matching vertices and edges between two graphs. This problem is formulated
as a Quadratic Assignment Problem (QAP) [3] originally. It has been widely
applied in different tasks, such as multiple object tracking [14], semantic key-
point matching [53] and point cloud registration [10]. In the deep learning era,
graph matching has become a differentiable module. The spectral relaxation [49],
quadratic relaxation [14] and Lagrange decomposition [32] are common in use.
However, one simple yet effective way to implement the graph matching layer
is using the Sinkhorn [4,33,42] algorithm, which is used in this paper. This pa-
per utilizes a graph matching module to achieve the message passing between
keypoints. This means that we calculate the weighting score not only from the
keypoint itself but also by taking other keypoints’ regression quality into consid-
eration, which is a kind of message passing between keypoints. All the keypoints
on the object help us judge each keypoint’s importance from the perspective
of the whole object. Message passing [12] is a popular design, e.g., in graph
neural network [1] and transformer [39]. The message passing module learns
to aggregate features between nodes in the graph and brings the global infor-
mation to each node. In the object detection task, Relation Networks [15] is a
pioneer work utilizing message passing between proposals. Message passing has
also been used for 3D vision. Message passing between frames [46], voxels [9]
and points [34] is designed for LiDAR-based 3D object detection. However, for
monocular 3D object detection, message passing is seldom considered. In recent
work, PGD [43] conducts message passing in the geometric relation graph. But
it does not consider the message passing within the object.

3 Methodology

The overview of our framework is in Fig. 2. We employ a single-stage detector
[51] to detect the object’s 3D attributes from the monocular image. We propose
the Densely Geometric-constrained Depth Estimator (DGDE), which can calcu-
late the depth from any direction’ 2D-3D edge. The DGDE can effectively utilize
the semantic keypoints of the object and produce many depth candidates. Be-
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Fig. 2. Overview of our framework. (a) We propose a method Densely Geometric-
constrained Depth Estimator (DGDE). DGDE is able to estimate the object’s depth
candidates from 2D-3D projection constraints of edges of any direction. (b) Graph
Matching Weighting module (GMW) obtains the weights of estimated depth candi-
dates by Graph Matching. A robust depth is derived from combing the multiply depth
candidates with corresponding weights.

sides, we utilize the regressed 2D edges, 3D edges, and orientation as the input
for our 2D-3D edge Graph Matching network. Our Graph Matching Weighting
module (GMW) matches each 2D-3D edge and produces a matching score. By
combining the multiple depths with their corresponding matching scores, we can
finally generate a robust depth for the object.

3.1 Geometric-based 3D Detection Definition

The geometric-based monocular 3D object detection estimates the object’s
location by 2D-3D projection constraints. Specifically, the network predicts the
object’s dimension (h,w, l), rotation ry, since autonomous driving datasets gen-
erally assume that the ground is flat. Assuming an object has n semantic key-
points, we regress the i-th(i = 1, 2, . . . , n) keypoint’s 2D coordinate (ui, vi) in
image coordinate and 3D coordinate (xi

o, y
i
o, z

i
o) in object frame. The object

frame’s coordinate origin is the object’s center point. The i-th 2D-3D keypoint
projection constraint is established from (ui, vi, xi

o, y
i
o, z

i
o, ry). Given n seman-

tic 2D-3D keypoint projection constraints, it is an overdetermined problem for
solving 3D object location (xc, yc, zc), which is the translation vector for trans-
forming the points from the object frame into the camera frame. The method of
generating semantic keypoints of each object is adapted from [23]. We establish a
few car models by PCA and refine the models by the 3D points segmented from
the points cloud and 2D masks. After we obtain the keypoints, we can use our
DGDE to estimate the object’s depth from the keypoint projection constraints.
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3.2 Densely Geometric-constrained Depth Estimation

While previous depth estimation methods [51] only take vertical edges into
account, our DGDE can handle edges of any direction. Therefore, we are able
to utilize much more constraints to estimate the depth of each depth candidate.

Next, we will show the details of estimating dense depth candidates of an
object from 2D-3D keypoint projection constraints. The solution is based on
the keypoint’s projection relationship from 3D space to the 2D image. The i-
th(i = 1, 2, . . . , n) keypoint’s 3D coordinate (xi

o, y
i
o, z

i
o) is defined in the object

frame and is projected on a 2D image plane by the equation:

si[ui, vi, 1]
T = K[R|t][xi

o, y
i
o, z

i
o, 1]

T , (1)

where si is the i-th keypoint’s depth, K is the camera intrinsic matrix and
K,R, t is represented as:

K =

fx 0 cx
0 fy cy
0 0 1

 ,R =

 cos ry 0 sin ry
0 1 0

− sin ry 0 cos ry

 , t = [xc, yc, zc]
t. (2)

By Eq. (1) and Eq. (2), the equation of i-th keypoint’s projection constraint is
denoted as:

si = zc − xi
o sin ry + zio cos ry,

ũi(zc − xi
o sin ry + zio cos ry) = xc + xi

o cos ry + zio sin ry,

ṽi(zc − xi
o sin ry + zio cos ry) = yc + yio,

(3)

where ũi = ui−cx
fx

, ṽi =
vi−cy
fy

. Intuitively, (zc − xi
o sin ry + zio cos ry) means an

object’s i-th 3D keypoint’s Z coordinate (i.e., depth) in the camera coordinate.
(xc + xi

o cos ry + zio sin ry) means 3D keypoint’s X coordinate while (yc + yio)
means its Y coordinate.

Similarly, the j-th(j = 1, 2, . . . , n) projection constraint is denoted as:
sj = zc − xj

o sin ry + zjo cos ry,

ũj(zc − xj
o sin ry + zjo cos ry) = xc + xj

o cos ry + zjo sin ry,

ṽj(zc − xj
o sin ry + zjo cos ry) = yc + yjo.

(4)

From Eq. (3) and Eq. (4), we can densely obtain the zc from the i-th,j-
th,i ̸= j keypoint(i.e., edgeij) projection constraints as:

zijc =


li − lj
ũi − ũj

, (5)

hi − hj

ṽi − ṽj
, (6)

where li = xi
o cos (ry) + zio sin (ry) + ui(xi

o sin (ry) − zio cos (ry)) and hi = yio +
vi(xi

o sin (ry)−zio cos (ry)). This equation reveals that depth can be calculated by
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the projection constraints of an edge of any direction. Given zc, we can estimate
xc, yc from Eq. (3) as xi

c = uizc − li, y
i
c = vizc − hi.

We generate m = n(n − 1)/2 depth candidates given n keypoints. It is in-
evitable to meet some low-quality depth candidates in such a large number of
depths. Therefore, an appropriate weighting method is necessary to ensemble
these depth candidates.

3.3 Depth Weighting by Graph Matching

As we estimate the depth candidate zijc (i, j = 1, · · · , n) for the object o
from DGDE, the final depth zc of the object can be weighted from these depth
estimations according to the estimation quality wi,j , as

zc =
∑
i<j

wi,jz
ij
c . (7)

In this section, we propose a new weighting method, called Graph Matching
Weighting module (GMW).
Graph Construction and Edge Feature extraction. We construct 2D key-
point graph G2d = (V2d, E2d) and 3D keypoint graph G3d = (V3d, E3d). In G2d,
each vertex i ∈ V2d denotes a predicted keypoint (2d)pi = [ui, vi] in image coor-
dinate and the edge (2d)ei,j ∈ E2d denotes the pair of (2d)pi and (2d)pj , the edge
feature (2d)f i,j is extracted from the 2D coordinate (2d)pi and (2d)pj . The 3D
keypoint graph is almost similar to the 2D keypoint graph. The only difference
is that the vertex i′ ∈ V3d denotes the 3D coordinate (3d)pi′ = [xi′

o , y
i′

o , z
i′

o ].
Following [47], the 2D and 3D edge feature extractor are as

(2d)f i,jk = ReLUk(BNk(CNk(
(2d)FCk(

(2d)f i,jk−1)))), (8)

(3d)f i
′,j′

k = ReLUk(BNk(CNk(
(3d)FCk(

(3d)f i
′,j′

k−1 )))), (9)

where k ∈ {1, · · · ,K} denotes the index of layers, and FC, CN, BN, ReLU denote
fully-connected layer, Context Normalization [47], Batch Normalization, and
ReLU, respectively. It is worth mentioning that Context Normalization extracts
the global information of all edges. The input of the edge feature extractor is
f i,j0 = [pi,pj ], where [·] denotes the concatenation of the vectors. The output of

edge feature extractor (2d)f i,j and (3d)f i
′,j′ should be L2-normalized to [0, 1].

Graph matching layer. Given the extracted 2D and 3D edge features, the
Cost Matrix M ∈ Rm×m is calculated from the L2 distance between each 2D
edge feature (2d)f i,j on the edge s and 3D edge feature (3d)f i

′,j′ on the edge t:

Ms,t = L2((2d)f i,j ,(3d) f i
′,j′), (s, t ∈ {1, · · · ,m}), (10)

where m denotes the number of edges. Then we take M as the input of declar-
ative Sinkhorn layer[4] to gain the Assignment Matrix P. The Sinkhorn layer
iteratively optimizes P by minimizing the objective function:

F(M,P) =

m∑
s=1

m∑
t=1

(Ms,tPs,t + αPs,t(logPs,t − 1)), (11)
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where Ps,t(logPs,t − 1) is a regularization term and α is the coefficient. P ∈
U(a,b) as:

U(a,b) = {X ∈ Rm×m
+ |X1m = 1m,XT1m = 1m}, (12)

where 1m is an m-dimensional vector with all values to be 1. Note that, Sinkhorn
is a differentiable graph matching solver that can make the whole pipeline learn-
able. When calculating the final depth zc according to Eq. (7), the weight
w = Softmax(1/Diag(M)), where Diag(M) means the vector consisting of di-
agonal elements of matrix M. Intuitively, it means that we take the similarity
of the 2D and 3D edges with the same semantic label as the prediction quality.
Loss function. We design regression loss Lr

m to supervise the final weighted
depth zc, and classification loss Lc

m to supervise the assignment matrix P of
graph matching output to be an identity matrix. Specifically, Lc

m is the Binary
Entropy Loss (BCE), Lr

m is an L1 loss:

Lc
m =

m∑
s=1

m∑
t=1

BCE(Ps,t, P∗
s,t),Lr

m = |
∑
i<j

wi,jz
ij
c − z∗c |, (13)

where P∗ = I is the ground truth assignment matrix, z∗c is the ground truth
depth of the object. The final matching loss is Lm = Lc

m + βLr
m, where β is a

hyper-parameter.

4 Experiments

4.1 Setup

Dataset. We evaluate our method on the KITTI [11] and Waymo Open Dataset
v1.2 (WOD) [38]. The KITTI [11] dataset is collected from Europe Streets. It
consists of 7481 images for training and 7518 images for testing. We divide the
training data into a train set (3712 images) and a validation set (3769 images)
as in [55]. Waymo Open Dataset (WOD) [38] has 798 training sequences, 202
validation sequences, and 150 test sequences. The dataset contains images cap-
tured by 5 high-resolution cameras in complex environments and is much more
challenging than KITTI [11] dataset. We only use the images from the FRONT
camera for training and evaluation. The training set has 158,081 images and the
validation set has 39,848 images.
Evaluation Metrics. For the KITTI dataset, we compare our methods with
previous methods on the test set using AP3D|R40

result from the test server. In
ablation studies, the results on val set are reported. For the WOD, we focus on
the category of vehicle. Following the official evaluation criteria, we compare the
performance with the state-of-the-art methods using average precision (AP) and
average precision weighted by heading (APH) metrics. The results are shown in
Table 3. The objects are classified into two difficulty levels (LEVEL 1, LEVEL 2)
according to the object’s points’ number under the LiDAR sensor.
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Table 1. The result on the KITTI test server compared with other public methods in
recent years.

Methods Reference Category
AP3D|R40|IoU@0.7 APBEV |R40|IoU@0.7

Easy Mod. Hard Easy Mod. Hard

PatchNet [26] ECCV20
Pretrained Depth

15.68 11.12 10.17 22.97 16.86 14.97
D4LCN [8] CVPR20 16.65 11.72 9.51 22.51 16.02 12.55
DDMP-3D [40] CVPR21 19.71 12.78 9.80 28.08 17.89 13.44

CaDDN [31] CVPR21 LiDAR Auxiliary 19.17 13.41 11.46 27.94 18.91 17.19

RTM3D [18] ECCV20

Directly Regress

14.41 10.34 8.77 19.17 14.20 11.99
Movi3D [36] ECCV20 15.19 10.90 9.26 22.76 17.03 14.85
Ground-Aware [21] RAL21 21.65 13.25 9.91 29.81 17.98 13.08
MonoDLE [28] CVPR21 17.23 12.26 10.29 24.79 18.89 16.00
MonoRCNN [35] ICCV21 18.36 12.65 10.03 25.48 18.11 14.10
MonoEF [56] CVPR21 21.29 13.87 11.71 29.03 19.70 17.26

MonoRUn [6] CVPR21

Geometric-based

19.65 12.30 10.58 27.94 17.34 15.24
AutoShape [23] ICCV21 22.47 14.17 11.36 30.66 20.08 15.59
GUPNet [25] ICCV21 22.20 15.02 13.12 30.29 21.19 18.20
MonoFlex(Baseline) [51] CVPR21 19.94 13.89 12.07 28.23 19.75 16.89
DCD(Ours) ECCV22 23.81 15.90 13.21 32.55 21.50 18.25

4.2 Implementation Details

Detection Framework.We apply the 3D object detection framework following
[51], which uses DLA-34 [48] as backbone. We use MultiBin loss [29] for rotation.
L1 loss is adopted to estimate dimension, 2D/3D keypoints and depth.

Keypoints. The source of keypoints is discussed in Sec. 3.1. We use 73 key-
points in total consisting of the following parts: (1) 63 semantic keypoints; (2)
8 bounding box corners and the top center and the bottom center of the 3D
bounding box. There are 2628 unique keypoint pairs that can be generated from
73 keypoints, so we can obtain 2628 depth estimations at most for each ob-
ject. For robustness, we select 1500 depth estimations as the final candidates for
weighting. The details of the selection strategy are in Sec. 4.4.

Training and Inference.For the KITTI dataset, all the input images are
padded into 1280× 384. We train the model using AdamW [24] optimizer with
an initial learning rate of 3e-4 for 100 epochs. The learning rate decays by 10×
at 80 and 90 epochs. We train the model on 2 RTX2080Ti GPUs and the batch
size is 8. We train the weighting network (i.e., matching network) separately.
The weighting network employs the AdamW optimizer with learning rate 1e-4
and weight decay 1e-5. We first train using the classification loss in the weighting
network for 50 epochs and add the regression loss for another 50 epochs. During
inference, only monocular images are needed. For the WOD, the input size of
the images is 1920×1280. We ignore objects whose 2D bounding box’s width or
height is less than 20 pixels. We train our detection model for 20 epochs with
8 RTX2080Ti GPUs. The batch size is 8 and the learning rate is set to 8e-5,
decayed 10× at the 18-th epoch. The rest of the experiment settings are the
same as KITTI.
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Ours Baseline

Fig. 3. The qualitative results on the KITTI val set. Rather than representing an
object as a bounding box, we utilize semantic keypoints to represent an object. The
red boxes represent the ground truth, while the green boxes represent the prediction.

4.3 Comparison with State-of-the-arts Methods

Table 1 shows the comparison with other state-of-the-art methods on the
KITTI [11] test set. Our method (DCD) achieves state-of-the-art performance
on both AP3D and APBEV . We surpass the directly-regress-depth-based method
and pretrain-depth-estimator-based methods by a large margin. It reveals that
geometric constraints are critical to accurately locating objects. Compared with
other geometric-based methods, we still have a significant improvement. We out-
perform our baseline MonoFlex [51] by 2.01 in AP3D Mod. level, which reveals
the importance of sufficient geometric constraints for monocular 3D detection.
We also surpass other geometric-based methods such as AutoShape [23] and
GUPNet [25] thanks to the dense geometric constraints and effective weighting
method. The result of Pedestrian and Cyclist is in Table 2. Using only bounding
box corners as input, we can still observe an improvement over MonoFlex [51].
It shows that our method can handle the problem that some objects are hard to
obtain semantic keypoints (without CAD models or non-rigid). The qualitative
result is in Fig. 3.

We also achieve state-of-the-art performance on WOD [38] as Table 3 shows.
We surpass the previous state-of-the-art methods such as CaDDN [31] and
PCT [41]. We also re-implement MonoFlex [51] on WOD [38] for a fair com-
parison. Compared with the baseline method, we improve the AP IoU@0.7 by
0.87.

4.4 Ablation Studies

Keypoints enable better depth estimation. We utilize multiple keypoints
rather than bounding boxes to represent an object. The keypoints can accurately
reflect the object’s outline, which provides meaningful shape prior and abundant
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Table 2. The AP3D|R40 results for Pedestrian and Cyclist on KITTI test set. We use
the bounding box corners as the input of DGDE.

Method
Pedestrian Cyclist

Easy Mod. Hard Easy Mod. Hard

M3D-RPN [2] 4.92 3.48 2.94 0.94 0.65 0.47
MonoPair [7] 10.02 6.68 5.53 3.79 2.12 1.83

MonoFlex [51] 9.43 6.31 5.26 4.17 2.35 2.04
AutoShape [23] 5.46 3.74 3.03 5.99 3.06 2.70

Ours 10.37 6.73 6.28 4.72 2.74 2.41

Table 3. The result on WOD [38] val set. Italics: These methods utilize the whole
train set, while the others use 1/3 amount of images in train set. ‡: M3D-RPN is re-
implemented by [31]. †: PatchNet is re-implemented by [41]. ∗: MonoFlex is our baseline
and re-implemented ourselves.

Difficulty Method 3D AP (IoU@0.7) 3D APH (IoU@0.7) 3D AP (IoU@0.5) 3D APH (IoU@0.5)

LEVEL 1/LEVEL 2

M3D-RPN‡ [2] 0.35/0.33 0.34/0.33 3.79/3.61 3.63/3.46
PatchNet†[27] 0.39/0.38 0.37/0.36 2.92/2.42 2.74/2.28

PCT [41] 0.89/0.66 0.88/0.66 4.20/4.03 4.15/3.99
CaDDN [31] 5.03/4.49 4.99/4.45 17.54/16.51 17.31/16.28

MonoFlex∗ [51] 11.70/10.96 11.64/10.90 32.26/30.31 32.06/30.12
DCD(Ours) 12.57/11.78 12.50/11.72 33.44/31.43 33.24/31.25

information for depth estimation. To show the benefits gained from dense geo-
metric constraints, we visualize the predicted depths’ error on KITTI val set as
Fig. 4 shows.
The effectiveness of DGDE. To discover the inner workings of multiple 2D-
3D keypoints projection constraints, we apply the DGDE on the state-of-the-
art method MonoFlex [51]. MonoFlex predicts eight bounding box corners and
two top-down center points. In addition to the ten keypoints, we add another
regression branch on MonoFlex to predict 63 semantic keypoints. Basically, they
are sampled from the model surface representing the rough skeletons.

In Table 4, the improvements from (d) to (e) are significant (+1.30 on the
Hard level) even with only 10 keypoints. With more keypoints ((c) and (f)),
DGDE achieves holistic improvements on both the uncertainty-based weighting
method and our matching-based method.
The more keypoints, the better performances. Our depth estimator can
produce depth candidates by edge projection constraints of arbitrary directions.
To fully realize the potential of our depth estimator, we use all the extra 63
semantic keypoints. Thus, it is easy to generate numerous edges and obtain
considerable depth candidates (2628). With such a large number of depth candi-
dates, it is more likely to generate an accurate and robust final depth. In Table
4, the model (f) with all keypoints outperforms our baseline by a large margin
of 2.31 AP on Easy level and 1.51 AP on Mod. level.
The effectiveness of Graph Matching Weighting module (GMW). As
the number of projection constraints increases, it is urgent to weigh the con-
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Fig. 4. This figure is the histogram of the depth error on the KITTI val set. X-axis
represents the distance from the predicted final depth to the GT depth, and Y-axis
represents the number of depths of objects with log scale. As the figure shows, our
method can estimate depth much more accurately than baseline.

straints appropriately since some are of low quality. To this end, we apply GMW
and compare it with uncertainty-based methods. The uncertainty-based meth-
ods ((a), (b) and (c)) estimate uncertainty independently for each edge. Thus
they are not capable of exploiting the global instance information of all edge
projection constraints. Different from that, GMW is able to exploit the global
information and achieve much better results. For example, model (f) (w/ GMW)
surpasses model (c) (w/o GMW) by 1.55 AP on the Hard level, where the model
is provided with global information to deal with severe occlusions.

Table 4. Quantitative results using the state-of-the-art method MonoFlex [51] as base-
line. This table shows the effectiveness of DGDE and GMW. The Sec. 4.4 explains the
strategy of choosing 1500 depth candidates.

Weighting Method DGDE #Keypoints #Depth Candidates
AP3D|R40|IoU@0.7

Easy Mod Hard

(a) Uncertainty (Baseline) [51] 10 5 21.63 15.87 13.38
(b) Uncertainty ✓ 10 45 21.72 16.09 13.35
(c) Uncertainty ✓ 73 1500 22.84 16.53 13.77
(d) GMW 10 5 22.58 16.14 13.63
(e) GMW ✓ 10 45 23.30 16.91 14.93
(f) GMW ✓ 73 1500 23.94 17.38 15.32

Study of supervision priority in GMW. In Table 5, we find that enabling
depth regression supervision at the beginning detriments the performance. There
is a straightforward explanation: when the match is incorrect, supervising the
weighted depth will make the gradients noisy.
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The Number of Edges. The numerical calculation of the depth by Eq. (6) is
very unstable when the denominator is too close to zero. We made a histogram
for the analysis. As shown in Fig. 5, the vast majority of these small-denominator
depths are of poor quality. For this reason, we use a mask to ignore the depth
candidates with extremely small denominators. This ablation study shows how
the number of selected depth candidates influences the model performance. As
Table 6 shows, the AP |R40 increases when the number of selected depths is from
50 to 1500, peaks when the number of depths is 1500 and decreases afterward.

Fig. 5. The horizontal axis represents the value of the denominator of Eq. (6) for an
object. The heights of green bins represent the number of depth candidates computed
by DGDE, while the heights of red bins represent the number of high-quality depth
candidates whose distance from ground truth depth is less than 0.5m.

Table 5. Ablation of supervision priority of GMW
module.

Reg loss Cls loss Reg loss start
AP3D|R40|IoU@0.7

Easy Mod Hard

✓ - 23.38 17.03 15.01
✓ ✓ 0 epoch 22.93 16.83 14.72
✓ ✓ 50 epochs 23.94 17.38 15.32

Table 6. Ablation of the
different number of edges.

#Edges
AP3D|R40|IoU@0.7

Easy Mod Hard

50 23.35 16.93 15.01
500 23.58 17.11 15.13
1500 23.94 17.38 15.32
2628 23.37 16.98 14.98

4.5 Disscussion about DCD and AutoShape

Although both of our method and AutoShape [23] utilize multiple keypoints
to estimate the object’s location, there are three critical differences:
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– AutoShape directly uses all 2D-3D keypoints projection constraints to solve
the object depth. Our method solves a depth candidate from each edge con-
straint. Thus, our edge constraints are not only in a larger number but also
in higher order than the keypoint constraints.

– AutoShape generates keypoint weights independently without explicit in-
teraction between keypoints. Our method uses a learnable graph matching
module to model the edge constraints, so we produce each depth’s weight
based on all the edge constraints, leading to better weighting.

We re-implement Autoshape’s depth estimation and weighting method on our
baseline and the experiment result is in Table 7.

Table 7. We re-implement the AutoShape’s depth estimation and weighting regres-
sion methods on our baseline. The combined depth estimator combines all keypoint
projection constraints as input and produces one depth as output.

Method #Keypoints Depth Estimatior #Depth Candidates
AP3D|R40|IoU@0.7

Easy Mod Hard

Autoshape [23] 73 Combined 1 22.37 16.48 14.58
DCD (Ours) 73 DGDE 1500 23.94 17.38 15.32

5 Conclusion

This paper proposes a method that can densely calculate an object’s depth
from 2D-3D projection constraints of edges of any direction. Therefore, we can
obtain n(n − 1)/2 depths for an object with n keypoints. Moreover, we pro-
pose a novel framework that can generate reliable weights for each depth by
matching the 2D-3D edges. We finally produce a robust depth by combing each
depth candidate with its weight. The experiments show the effectiveness of our
method, where we outperform all the existing methods in the KITTI and WOD
benchmarks.

Acknowledgements

This work was supported in part by the Major Project for New Generation of
AI (No.2018AAA0100400), the National Natural Science Foundation of China
(No. 61836014, No. U21B2042, No. 62072457, No. 62006231). Also, our sincere
and hearty appreciations go to Lue Fan, who polishes our paper and offers many
valuable suggestions.



Densely Constrained Depth Estimator for Monocular 3D Object Detection 15

References

1. Battaglia, P.W., Hamrick, J.B., Bapst, V., Sanchez-Gonzalez, A., Zambaldi, V.,
Malinowski, M., Tacchetti, A., Raposo, D., Santoro, A., Faulkner, R., et al.:
Relational inductive biases, deep learning, and graph networks. arXiv preprint
arXiv:1806.01261 (2018) 4

2. Brazil, G., Liu, X.: M3d-rpn: Monocular 3d region proposal network for object de-
tection. In: Proceedings of the IEEE/CVF International Conference on Computer
Vision. pp. 9287–9296 (2019) 1, 3, 11
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