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A1 Physical Priors

We use physical priors as inputs in our network to improve the estimated 6D
pose of an object. These priors form relations between polarisation properties
and azimuth and zenith angle of the surface normal, which serve as geometric
cues orthogonal to color information. We calculate the physical priors under the
assumption of either specular or diffuse reflection. To recover the azimuth and
zenith angle of the surface normal, we present the calculation for solving the
unknowns of Eq. A1.

A polarimetric camera registers intensity behind four linear polarisers with
angles 0◦, 45◦, 90◦, 135◦, which depends on unpolarised intensity Iun, degree of
polarisation ρ, and angle of polarisation ϕ:

Iφpol
= Iun · (1 + ρ cos(2(ϕ− φpol))). (A1)

Eq. A1 can be re-written as:
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For all angles φpol ∈ {0◦, 45◦, 90◦, 135◦}, we get a linear equation system for

each pixel location with Iφpol
∈ IR4×1Iφpol
∈ IR4×1Iφpol
∈ IR4×1, β ∈ IR3×4β ∈ IR3×4β ∈ IR3×4 and x ∈ IR3×1x ∈ IR3×1x ∈ IR3×1. After solving

this over-determined linear equation system using least squares, we find unpo-
larised intensity, degree of polarisation and angle of polarisation:

Iun = x1

ρ =
√
x2
2 + x2

3

ϕ =
1

2
arctan

x3

x2

. (A3)



2 D. Gao, Y. Li, P. Ruhkamp, I. Skobleva, M. Wysocki et al.

The azimuth angle can be found using Eq.2. Then, we can estimate the
azimuth angle θ from Eq.3 by linear interpolation. Both models take in the
same value for the refractive index η, since it is an intrinsic property of the
material and it does not depend on the reflection model. The values used for our
objects can be seen in Tab. A1.

Table A1. Refractive Indices. Refractive indices per object with certain material
used for the physical model of PPP-Net.

Object Material Refractive Index

Teapot ceramic 1.54
Can aluminium composite 1.35
Fork stainless steel 2.75
Knife stainless steel 2.75
Bottle glass 1.52
Cup plastics 1.50

A2 Additional Experiments and Ablation Studies

Runtime Analysis. On a desktop PC with an Intel i7 4.20GHz CPU and an
NVIDIA 2080 GPU, given a 512 × 612 pixel image, our network takes ca. 64
ms for a single object, including 40 ms for detection, and 13 ms to calculate the
physical priors with our non-optimized implementation.

A2.1 Ablations on Modalities

Ablations on Input Modalities. Tab. A2 is an extension to Tab.1 in the
main paper and summarises the quantitative evaluation for different modalities
for PPP-Net for all objects under consideration in the dataset.
Ablations on Output Modalities. 6D pose estimation mainly depends on
accurate correspondences prediction by NOCS regression as reported in the ab-
lation in Tab. A3. The ADD drops significantly for the model without (w/o)
NOCS output before Patch-PnP, i.e. only shape information is utilised for pose
prediction. Still, as proven by the ablations in the paper, the auxiliary explicit
prediction of object-centric shape information as normals map benefits 6D pose
estimation as the network is more strongly guided towards extracting physical
shape priors from the input.

A2.2 Ablations on Network Architecture

Tab. A4 indicates naively concatenating geometric priors and RGBP images for
direct input to the network (as in [5]) results in inferior normal prediction quality,
and also leads to less improvement on pose estimation results (compare concat
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Table A2. PPP-Net Input Modalities Evaluation. Different combinations of
input and output modalities are used for training to study their influence on pose
estimation accuracy ADD(-S) for objects with different photometric complexity. Where
applicable, metrics for estimated normals are reported as well.

Object
Photo.
Chall.

Input Modalities Output Variants Normal Metrics Pose Metric
RGB Polar RGB Physical N Normals NOCS mean↓ med.↓ 11.25◦↑ 22.5◦↑ 30◦↑ ADD(-S)

Cup

✓ ✓ - - - - - 91.1
✓ ✓ - - - - - 91.3
✓ ✓ ✓ 7.3 5.5 86.2 96.1 97.9 91.3
✓ ✓ ✓ ✓ 4.5 3.5 94.7 99.1 99.6 97.2

Teapot †

✓ ✓ - - - - - 97.8
✓ ✓ - - - - - 99.5
✓ ✓ ✓ 7.9 5.4 82.5 94.5 97.1 99.2
✓ ✓ ✓ ✓ 5.3 4.0 91.6 98.7 99.5 99.9

Can †

✓ ✓ - - - - - 91.8
✓ ✓ - - - - - 93.2
✓ ✓ ✓ 5.7 3.9 90.0 97.0 98.6 96.7
✓ ✓ ✓ ✓ 6.0 4.5 89.0 97.3 98.9 98.4

Fork ††

✓ ✓ - - - - - 85.4
✓ ✓ - - - - - 86.1
✓ ✓ ✓ 11.0 7.3 72.6 90.7 93.9 92.9
✓ ✓ ✓ ✓ 6.5 4.3 87.6 95.9 97.6 95.9

Knife ††

✓ ✓ - - - - - 84.1
✓ ✓ - - - - - 88.0
✓ ✓ ✓ 12.2 8.0 68.7 88.5 92.4 89.4
✓ ✓ ✓ ✓ 6.8 5.4 88.2 97.3 98.6 96.4

Bottle † † †

✓ ✓ - - - - - 90.5
✓ ✓ - - - - - 93.5
✓ ✓ ✓ 5.6 4.7 92.9 99.0 99.6 94.7
✓ ✓ ✓ ✓ 5.4 4.5 92.1 99.0 99.6 97.5

Table A3. PPP-Net Output Ablation. With and without NOCS output.

Object Pose Metric (ADD)

Teapot w/ 99.9 w/o 72.7

Fork w/ 95.9 w/o 79.3

against ours in Tab. A4). This holds true for all objects, whereas photometri-
cally more challenging objects show a larger relative improvement. These results
confirm the importance of our design choices of PPP-Net to employ a dedicated
encoder for the physics-based derived geometric priors, and its positive effect on
6D object pose estimation results. We thus propose a careful integration design
of such physical priors into established principles of 6D object pose estimation
within our novel hybrid encoder. We deliberately choose a simple general archi-
tecture for PPP-Net for best comparison and evaluation against SOTA, and to
show that even such simplistic encoders can achieve significant accuracy for 6D
pose prediction with the physical priors from polarisation as inputs.

A2.3 Other Ablations

Ablation on Detector. We train an object detector using Faster R-CNN
without additional modification of polarimetric inputs. It is not affected by the
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Table A4. Fusion Ablation. Naive concatenation against our proposed fusion strat-
egy of RGB and physical priors in PPP-Net.

Object Fusion
Input Modalities Output Variants Normal Metrics Pose Metric

Polar RGB Physical N Normals NOCS mean↓ med.↓ 11.25◦ ↑ 22.5◦↑ 30◦↑ ADD

Cup concat ✓ ✓ ✓ ✓ 6.0 4.9 91.1 98.1 99.1 93.6
Cup ours ✓ ✓ ✓ ✓ 4.5 3.5 94.7 99.1 99.6 97.2

Teapot concat ✓ ✓ ✓ ✓ 7.4 5.7 83.4 96.3 98.4 97.3
Teapot ours ✓ ✓ ✓ ✓ 5.3 4.0 91.6 98.7 99.5 99.9

Can concat ✓ ✓ ✓ ✓ 8.5 6.4 81.8 95.1 97.5 92.2
Can ours ✓ ✓ ✓ ✓ 6.0 4.5 89.0 97.3 98.9 98.4

Fork concat ✓ ✓ ✓ ✓ 10.7 7.8 70.0 91.8 95.0 87.6
Fork ours ✓ ✓ ✓ ✓ 6.5 4.3 87.6 95.9 97.6 95.9

Knife concat ✓ ✓ ✓ ✓ 10.8 8.5 67.1 92.8 96.2 86.1
Knife ours ✓ ✓ ✓ ✓ 6.8 5.4 88.2 97.3 98.6 96.4

Bottle concat ✓ ✓ ✓ ✓ 7.6 6.0 86.5 94.8 96.4 93.1
Bottle ours ✓ ✓ ✓ ✓ 5.4 4.5 92.1 99.0 99.6 97.5

photometric challenges of the objects, as indicated by similar results in Tab. A5
when training/testing PPP-Net with the GT bounding box and the predicted
ones.

Table A5. BBox Ablations.

Configuration Cup Teapot Can Fork Knife Bottle

Train with GT BBox/Test with pred BBox 97.2 99.9 98.4 95.9 96.4 97.5

Train/Test with GT BBox 99.0 99.9 99.0 96.1 97.6 97.5

Ablation on Refractive Index. As mentioned, the prior knowledge of the
refractive index of materials in the scene is one limitation of our model. To
analyse the impact of incorrect indices, we report pose accuracy results when
trained/tested with minor (1.54 vs. 1.5) and large deviations (2.75 vs. 1.5) of the
correct index in Tab. A6. The results in the 2nd row highlight that our model still
performs well when providing incorrect refractive indices during inference. This
indicates that the model is robust enough to extract relevant features. When
training and testing with very different indices, we see a slight decrease in ADD
(cf. fork, knife).

Table A6. Refractive Index Ablation.

Object Cup Teapot Can Fork Knife Bottle
Refractive Index 1.50 1.54 1.35 2.75 2.75 1.52

Train/Test with correct index 97.2 99.9 98.4 95.9 96.4 97.5
Train with correct index,

test with incorrect (1.5)
97.2 99.9 98.3 95.8 96.2 97.5

Train/Test with incorrect index (1.5) 97.2 99.9 98.0 93.5 90.1 97.5
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Ablation on Photometric Complexity. Recent RGB-D pipelines (to which
we compare) try to overcome photometric challenges, e.g. textureless objects,
by incorporating depth information. Correct depth information is essential here,
but depth sensors suffer specifically in these areas. On the contrary, the physical
properties encoded in the polarimetric images, which are leveraged by PPP-
Net, preserve object-centric shape information also for very challenging (e.g.
reflective, transparent) objects. We train and test CosyPose [2] on our data
using single-view mode without ICP refinement or additional 1 million synthetic
data as when training on T-LESS [1], which ensures the same settings for all
benchmarking experiments. We outperform CosyPose for every object in Tab. A7
with significant improvement for photometrically challenging objects.

Table A7. CosyPose [2] Benchmarking.

Methods Cup Teapot Can Fork Knife Bottle Mean

CosyPose [33] 88.5 94.3 91.0 83.0 89.5 79.6 87.7

Ours 97.2 99.9 98.4 95.9 96.4 97.5 97.6

A3 Qualitative Visualizations

In Fig. A1, we visualise the 6D pose by overlaying the image with the corre-
sponding transformed 3D bounding box. For better visualization we cropped
the images and zoomed into the area of interest.

A4 Instance-level Polarimetric Object Pose Dataset

Fig. A2 illustrates our scene settings as well as the pose annotation quality.
We cover a wide range of variety in the background, illumination, as well as
object settings. And our pose annotations are accurate for all objects, including
the challenging reflective and transparent ones. High accuracy of annotations is
achieved with the process described in [3], which involves tipping multiple times
the surface of objects with a calibrated tool tip attached to a robotic arm and
subsequent ICP alignment with the pre-scanned 3D mesh of the object (see Sec.4
for more details). We provide 6D pose annotations for all objects in the scene,
but here only consider the objects introduced in Fig. 5 which cover a wide range
of photometric complexity. Fig. A2 shows the superimposed 3D meshes of these
objects with high accuracy.
Camera Alignment. The extrinsic calibration, which is derived by an hand-
eye calibration against the robotic end-effector with high accuracy, is used for
aligning different camera modalities. The alignment of cameras is only limited
by their form factors. To reduce this effect and to bring the optical centers of all
cameras as close to another as possible, we design a custom rig. However, small
changes in the viewpoint of each camera cannot be completely avoided.
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Fig.A1. Qualitative Results. Predicted and GT 6D poses are illustrated by blue
and green bounding boxes, respectively.

Fig.A2. Dataset and Annotation Examples. The figure shows one polarisation
image together with the rendered models.
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Dataset Comparison. Tab. A8 gives an overview of different dataset charac-
teristics.

Table A8. Dataset Comparison.
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YCB-V [55] ✓ ✓ ✓ ✓ 92
T-LESS [23] ✓ ✓ ✓ ✓ 20
Linemod [21] ✓ ✓ ✓ ✓ 15

Ours ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 20
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