
Supplementary

1 More Details of OA-MIL Deployment

Here we provide more details of OA-MIL deployment on FasterRCNN [34] and
RetinaNet [27].

fc1

ROI feature

fc2

Classifier

shared

Classifier

Selected 
instance
𝒃𝑖
∗

Regressor
Training 

Instance Generator

Box Refinement

RPN

Object-Aware 
Instance Selection

Training 
Instance Classifier

Object-Aware Instance Extension

bag 𝐵𝑖
0

Box Refinement

…

Box Refinement…

bag 𝐵𝑖
1 bag 𝐵𝑖

𝑁

𝒛𝑖

Fig. 1. An overview of our OA-MIL on FasterRCNN. RPN denotes region pro-
posal network and Box Refinement denotes the second stage of FasterRCNN. For sim-
plicity, we omit the bag construction process, where the object bags are constructed
based on the outputs of the box refinement module. We perform object-aware in-
stance extension in a multi-stage manner, which produces an extended object bag set
{B0

i , B
1
i , . . . , B

N
i }. Then, we adopt object-aware instance selection to select the best

instance b∗
i , which is used to train the instance generator (regressor), the instance se-

lector (classifier), and the instance classifier (classifier).

1.1 Deployment to FasterRCNN

The deployment includes two steps, the first step is to construct object bags and
the second step is to apply OA-MIL on FasterRCNN. Fig. 1 depicts the pipeline
of our method on FasterRCNN.

Bag Construction. We construct object bags based on the outputs of the
second stage of FasterRCNN. Specifically, we treat each inaccurately annotated
object as a positive bag, where instances are positive anchors (object proposals)
corresponding to a specific object. In addition, we treat each negative anchor as
a negative bag.



2

OA-MIL Deployment. As shown in Fig. 1, the instance selector and the
instance classifier share the same classifier, i.e., ωf and ωg share the same pa-
rameters. The regressor in the second stage is treated as the instance generator.
We perform object-aware instance extension by multi-stage refinement, which
produces a set of extended object bags {B0

i , B
1
i , . . . , B

N
i }. Then, object-aware

instance selection is applied to select the best instance b∗
i , where b∗

i is used to
train the instance generator (regressor), the instance selector (classifier), and
the instance classifier (classifier). We follow Eq. (11) to train the second stage
of FasterRCNN. Note that the training objective of RPN is the same as [34]. In
addition, we find that computing instance selection loss (Eq. (3)) across classes
is better. Specifically, we first compute the loss of each object bag using Eq. (3)
and then average the instance selection loss of each class.

Implementation Details. We implement our method on FasterRCNN [34]
with ResNet50-FPN [19,26] backbone. Following common practices [17], the
model is trained with “1×” schedule. The hyper parameters are set as γ = 7.5,
θ = 0.85, N = 4, and λ is selected from {0.01, 0.1} (depending on datasets and
noise levels). Our implementation is based on MMDetection toolbox [6].

1.2 Deployment to RetinaNet

The deployment process on RetinaNet is similar to FasterRCNN.

Bag Construction. Since RetinaNet is a one-stage detector, we construct the
object bags based on the final outputs of RetinaNet. The bag construction pro-
cess is the same as FasterRCNN.

OA-MIL Deployment. Similar to FasterRCNN, the instance selector and the
instance classifier also share the same classifier. The regression branch is treated
as an instance generator. We also use Eq. (11) to train RetinaNet, where the
classification and regression loss are the same as [27]. Note that we perform
instance extension by recursively constructing positive bags, because RetinaNet
does not have a box refinement module.

Implementation Details. We implement our method on RetinaNet [27] with
ResNet50-FPN [19,26] backbone. We set the hyper parameters as γ = 0.5, θ =
0.5, N = 3, and λ is selected from {0.01, 0.05, 0.15} according to datasets.

2 Hyper-Parameter Sensitivity

2.1 Sensitiveness of Eq. (5)

Here we evaluate the sensitiveness of γ and θ in φ(x) (Eq. (5)), because they
determine the process of OA-IS. Table 1 shows the results of different γ’s and
θ’s. With γ increases, the mAP improves. We find that γ = 7.5 works well in
practice and is relatively robust to γ ∈ [2.5, 7.5]. Next, we fix γ = 7.5 and prune



Robust Object Detection With Inaccurate Bounding Boxes 3

Table 1. Sensitiveness of OA-IS under different γ’s and θ’s on the VOC 2007 test set.
The evaluation metric is mAP@0.5(%)

Method Type γ θ
Box Noise Level
20% 40%

Vanilla FasterRCNN - - - 71.2 42.5

FasterRCNN with OA-IS

Varying γ

1.0 1.0 72.2 57.7
2.5 1.0 73.1 62.7
5.0 1.0 73.6 63.0
7.5 1.0 73.7 63.2

Varying θ

7.5 0.3 73.8 59.5
7.5 0.5 74.6 61.7
7.5 0.85 74.2 63.3
7.5 1.0 73.7 62.8

Table 2. Sensitiveness of the loss-balancing weight λ in Eq. (11). Experiments are
conducted on VOC dataset under 40% noise.

λ 0.01 0.05 0.1 0.2 0.5

mAP@0.5 (%) 51.0 60.1 63.8 62.1 51.2

Table 3. Sensitiveness of the number of instance extension N . Experiments are con-
ducted on the VOC dataset under 40% noise.

N 0 2 4

mAP@0.5 (%) 63.3 63.5 63.8

θ. We observe that low box noise (i.e., 20%) favors small θ while high box noise
(i.e., 40%) favors large θ. An intuitive explanation is that the ground-truth boxes
become more and more inaccurate when box noise increases, thus we may rely
more on the selected instances under high box noise. Despite we use γ = 7.5 and
β = 0.85 to balance different box noise levels, the performance is not necessarily
the best.

2.2 Sensitiveness of λ in Eq. (11)

The results are shown in Table 2. The performance first increases and then
drops. It reaches the peak when λ is 0.1. This suggests that our approach favors
a modest value of λ.

2.3 Sensitiveness of the Number of Instance Extension N

Table 3 shows the results. We can observe that the performance improves steadily
when more instance extensions are executed. However, we shall note that a large
N will bring extra computational cost during training.



4

(a) Qualitative results on the VOC 2007 dataset.

(b) Qualitative results on the COCO dataset

(c) Qualitative results on the GWHD dataset

Fig. 2. Qualitative results of our OA-MIL FasterRCNN (red boxes) and
vanilla FasterRCNN (yellow boxes) on the VOC, COCO, and GWHD
datasets. The ground-truth boxes are in green. Best viewed in color with zoom in.

3 Qualitative Results

Fig. 2 shows the qualitative results of the vanilla FasterRCNN and our OA-MIL
FasterRCNN on the VOC, COCO, and GWHD datasets. Note that the models
are trained on VOC with 30% box noise, COCO with 40% box noise, and the
“noisy” version of GWHD, respectively.

Specifically, Fig. 2(a) and Fig. 2(b) illustrate the results on the VOC and
COCO datasets, we can observe that the vanilla FasterRCNN model tends to
predict bounding boxes that cover object parts or include background areas. In
addition, the vanilla model also suffers from missing detections in some cases
(e.g., it only predicts two horses instead of three in Fig. 2(b)). On the contrary,
our method can predict more accurate bounding boxes.

Different from the VOC and COCO datasets, the GWHD dataset only con-
tains wheat head objects. As shown in Fig. 2(c), the vanilla model not only
suffers from inaccurate localization but also produces false negatives (missing
detections). Note that we omit the ground-truth boxes, because they may over-
lap with the predictions of our method. In addition, since the noisy GWHD
dataset only contains around 20% inaccurate box annotations (i.e., the impact



Robust Object Detection With Inaccurate Bounding Boxes 5

(a) Missing detections on overlapped objects

(b) Missing detections on small objects

(c) Inaccurate localization on objects with huge size

Fig. 3. Failure cases of our OA-MIL FasterRCNN (red boxes) on the COCO
dataset. The ground-truth boxes are in green. Best viewed by zooming in.

of noisy labels is less severe than the VOC and COCO datasets), our method
also predicts similar boxes against the vanilla model.

4 Failure Case Analysis

Despite our method achieves promising results with noisy box annotations, it
still has some limitations. Fig. 3 illustrates some failure cases of our approach,
where our model is trained under 40% box noise on the COCO dataset (red
boxes). For comparison, we also visualize the ground-truth boxes (green boxes).
First, overlapped objects could render detection failure. Second, our model may
miss small objects, because small objects are sensitive to perturbation. Finally,
our method can also be difficult to accurately localize objects when they occupy
a large proportion of an image.



6

5 Implementation Details of the Compared Methods

We compare our method with several state-of-the-art approaches [18,20,48].
However, the experimental settings of the above methods are different from ours.
For a fair comparison, we implement these methods using the same network ar-
chitecture (FasterRCNN with ResNet50-FPN backbone) to construct baselines
as follows:

1) KL Loss [20] proposes a novel bounding box regression loss for learning object
detectors with uncertainty. Our reimplemented baseline achieves 39.0 AP on
COCO val2017, which is comparable with the original paper that reports
39.2 AP.

2) Co-teaching [18] simultaneously trains two models where each model selects
its small-loss samples to train the other. We adopt Co-teaching into Faster-
RCNN in a dual-head fashion, i.e., we maintain two box refinement heads for
selecting “clean” data to train each other. Note that RPN is shared between
the two detection heads and is trained on all samples.

3) SD-LocNet [48] proposes an adaptive sampling method to identify reliable
object instances via measuring their localization stability scores. We assign
higher weights to samples with higher classification scores and lower predic-
tion variance over consecutive training epochs.

6 Discussion on the Significance of Object Bag

Our object bag distinct the bag in WSOD from two aspects: i) the concept
of bag is established on the object instead of image, which explicitly encodes
the object location information; ii) the object bag is dynamic during training
rather than fixed, which unveils the performance upper bound. In what follows,
we first discuss the necessity of our object bag by comparing it with the image
bag in WSOD. Then, we investigate the significance of dynamic object bag
construction.

Object Bag vs. Image Bag. Since an object is contained in an image, one may
think that cropping generously around a noisy object box can form a cropped
image bag, thus the existing WSOD methods can be used to tackle the noisy
data. However, we argue that the object bag is significantly different from the
image bag in two aspects. First, the object bag explicitly exploits the localization
information and is capable of leveraging the context information of an object. On
the contrary, the cropped image bag ignores the localization information, i.e.,
we only know cropped object patch contains an object but do not know where is
the object. In addition, the context is destroyed by cropping operation. Second,
each cropped object forms a new training image, which significantly enlarges
the training set and increases the training cost. This situation is more severe
when the dataset contains a tremendous amount of objects. On the other hand,
our object bag can easily cooperate with existing object detectors and does not
change training images.



Robust Object Detection With Inaccurate Bounding Boxes 7

Table 4. Comparison of object bag and cropped image bag on the VOC 2007 test set

Method
Box Noise Level

Training Time
20% 40%

Copped Image Bag with C-MIL
padding=50 17.0 19.9 ∼ 12 hour
padding=100 29.8 29.0 ∼ 16 hour
padding=200 32.0 29.7 ∼ 22 hour

Object Bag with OA-MIL (Ours) 74.3 63.8 < 1.5 hour

Table 5. Comparison of OA-MIL FasterRCNN that trained with dynamic object bag
and fixed object bag on the VOC 2007 test set. The evaluation metric is mAP@0.5 (%)

Method
Box Noise Level

10% 20% 30% 40%

Fixed Object Bag using Selective Search [43] 72.9 69.8 61.9 48.2

Dynamic Object Bag (Ours) 77.4 74.3 70.6 63.8

To demonstrate the difference between the object bag and the image bag,
we adopt C-MIL [45] to train the detection model with the cropped image bag
(i.e., object patches that cropped around the noisy bounding box annotations).
Although there are various options to crop around an object, we simply crop
object with different padding strides, i.e., cropping object patch with padding
equals 50, 100, and 200 pixels. Note that padding can preserve context informa-
tion to some extend, otherwise the cropped object patch may only contain object
parts because the ground-truth box is inaccurate. As shown in Table 4, our ob-
ject bag is superior to the cropped image bag on both performance and training
efficiency. Specifically, the cropped image bag requires 8× ∼ 14× longer train-
ing time than our object bag and suffers from severe performance degradation,
which indicates that it can not deal with noisy box annotations. In addition, the
results also show that the cropped image bag performs worse than the image
bag (40.7 reported in C-MIL [45]), which further suggests that cropping object
patch is not an appropriate option. We shall note that the comparison in
Table 4 is not fair, because a cropped image may contain few objects. We just
aim to demonstrate that the cropped image bag is not an appropriate option.

Dynamic Object Bag vs. Fixed Object Bag. Typical MIL methods in
WSOD use an off-the-shelf object proposal generator to construct the image
bag, thus the image bag is fixed during training. Different from WSOD, our
method involves training learnable instance generator, i.e., the object bag is
dynamically constructed during training. We argue that a dynamic object bag is
essential for training accurate object detectors with inaccurate box annotations.
The reasons are two folds: (i) a dynamic object bag enables flexible optimization
while off-the-shelf proposal model limits the performance upper bound; (ii) it
increases the diversity of training samples that is beneficial for training.



8

To elaborate the significance of the dynamic object bag, we first replace the
RPN module in FasterRCNN with selective search [42], thus the object bag is
fixed during training. Then, we separately train FasterRCNN with dynamic ob-
ject bag and fixed object bag on the VOC dataset. Table 5 shows the performance
comparison under 10% to 40% box noise, the dynamic object bag outperforms
the fixed object bag by a large margin, which validates our claim. It is worth
noting that the fixed object bag significantly limits the detection performance
upper bound, especially under high box noise levels, e.g., 40% box noise (48.2
vs. 63.8).


	Supplementary

