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Fig. 1: Supplementary figures for Figure 6 in the main paper.

1 Supplementary Figures

Figures 1 and 2 illustrate more detection results in addition to Figure 6 in the
main paper. As we can observe, our proposed TAE makes the best anchors for
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classification (red) and localization (orange) closer than YOLOF (blue boxes and
centers indicate the ground truth). It shows that TAE can handle task conflicts
in a coupled head and further generates task-aligned predictions in a single pass.
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Fig. 2: Supplementary figures for Figure 6 in the main paper.

Table 1: The performance of different GCA position in DOT Block. We report
the accuracy of the pretrained backbone on ImageNet and the detection AP with
YOLOF after training on the MS COCO dataset.

Position
Results (%)

Accuracy AP

w/o GCA 80.0 32.0
Top 80.5 33.8

Middle 80.7 30.0
Bottom 81.2 34.1

2 Supplementary Experiments

We provide a supplementary experiment for our detection-oriented transformer
(DOT) backbone. In this experiment, we conduct ablation studies of the position
of global channel-wise attention (GCA) within the DOT block. For this purpose,
we use the YOLOF framework and replace the backbone network. The results
are shown in Table 1. The results show that placing GCA at the bottom achieves
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the best performance. This observation indicates GCA’s strong capability of ag-
gregating local features. As a result, placing GCA at the end of DOT blocks can
aggregate local features from previous layers and extract corresponding global
semantic information.
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Fig. 3: The detailed architecture of DFFT, including how the feature shape
changes during the forward propagation.


