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Abstract. Vision transformers (ViTs) are changing the landscape of
object detection approaches. A natural usage of ViTs in detection is to
replace the CNN-based backbone with a transformer-based backbone,
which is straightforward and effective, with the price of bringing con-
siderable computation burden for inference. More subtle usage is the
DETR family, which eliminates the need for many hand-designed com-
ponents in object detection but introduces a decoder demanding an
extra-long time to converge. As a result, transformer-based object de-
tection can not prevail in large-scale applications. To overcome these is-
sues, we propose a novel decoder-free fully transformer-based (DFFT)
object detector, achieving high efficiency in both training and infer-
ence stages, for the first time. We simplify objection detection into an
encoder-only single-level anchor-based dense prediction problem by cen-
tering around two entry points: 1) Eliminate the training-inefficient de-
coder and leverage two strong encoders to preserve the accuracy of
single-level feature map prediction; 2) Explore low-level semantic fea-
tures for the detection task with limited computational resources. In
particular, we design a novel lightweight detection-oriented transformer
backbone that efficiently captures low-level features with rich seman-
tics based on a well-conceived ablation study. Extensive experiments
on the MS COCO benchmark demonstrate that DFFTSMALL outper-
forms DETR by 2.5% AP with 28% computation cost reduction and
more than 10× fewer training epochs. Compared with the cutting-edge
anchor-based detector RetinaNet, DFFTSMALL obtains over 5.5% AP
gain while cutting down 70% computation cost. The code is available at
https://github.com/peixianchen/DFFT.
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1 Introduction

Object detection is a classic computer vision task aiming to locate and recog-
nize objects in natural images. Recently, vision transformers [24, 30, 5, 10] have
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Fig. 1: The trade-off between perfor-
mance (AP) and efficiency (Epochs
& GFLOPs) for detection meth-
ods. With a lightweight detection-
oriented backbone and a decoder-free
single-level dense prediction module,
DFFTMEDIUM gets 22% faster infer-
ence, more than 10× fewer train-
ing epochs and 3.7% higher AP than
DETR, cuts down the 77% GFLOPs
from Efficient DETR.

been widely developed as powerful backbones in traditional detection frame-
works such as Faster RCNN [26], Mask RCNN [17], and RetinaNet [20]. How-
ever, these transformer-based detectors achieve high precision at the expense of
computational efficiency (e.g., at least 200 GFLOPs), which precludes their use
in real-world applications with limited resources. DETR [2] is a pioneering work
that addresses this issue by using an encoder-decoder transformer design that
reduces object detection to an end-to-end set prediction problem. DETR’s novel
decoder helps object queries attend to diverse regions of interest on single-level
representation, considerably boosting inference efficiency (ranging from 86 to
253 GFLOPs). Unfortunately, this enhancement comes at the expense of around
10× to 20× slower training convergence. As a result, it remains open whether
transformer-based detectors can attain high precision without losing efficiency
in training and inference stages.

Recent work in the DETR family has mainly focused on improving the de-
layed convergence induced by the decoder. They augment object queries in
the decoder with explicit spatial priors such as reference points [36], anchor
points [31, 28], RPN proposals [34, 26], and conditional spatial embeddings [25,
13]. However, introducing spatial priors to the decoder stage sacrifices the de-
tector’s inference efficiency, consuming more than 1.5× GFLOPs. It also raises
the question whether the above efficient yet accurate transformer-based detector
inevitably needs a decoder.

In this paper, we build a novel detection architecture named DFFT:Decoder-
Free Fully Transformer-based object detector, which achieves both higher ac-
curacy and better training-inference efficiency across a spectrum of low resource
constraints (e.g., from 40 to 100 GFLOPs) as shown in Figure 1. Based on a
well-conceived analysis of how different transformer architectures (e.g., atten-
tion components’ type, position and linkage) involved in the backbone, feature
fusion, and class/box network, impact the trade-off between detection perfor-
mance and efficiency, DFFT simplifies the whole object detection pipeline to
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an encoder-only single-level anchor-based dense prediction task. Specifically, our
design of DFFT centers around two entry points:

Entry Point 1: Eliminate the training-inefficient decoder and leverage two
strong encoders to preserve the accuracy of single-level feature map prediction.
To design a light-weight detection pipeline comparable to DETR and maintain
high training efficiency, we eliminate the training-inefficient decoder and pro-
pose two strong transformer encoders in the feature fusion and class/box net-
work to avoid performance decline after trimming the decoder. Benefiting from
two strong encoders, DFFT conducts anchor-based dense prediction only on a
single-level feature map, ensuring training and inference efficiency while main-
taining high accuracy. (1) The scale-aggregated encoder summarizes multi-scale
cues to one feature map by progressively analyzing global spatial and semantic
relations of two consecutive feature maps. Thus, instances of various scales are
easily detected on the single feature map, avoiding exhaustive search across net-
work layers. (2) The task-aligned encoder enables DFFT to conduct classification
and regression simultaneously in a coupled head. By taking advantage of group
channel-wise attention, it resolves the learning conflicts from the two tasks and
provides consistent predictions [27, 6].

Entry Point 2: Explore low-level semantic features as much as possible for
the detection task with limited computational resources. We design a strong and
efficient detection-oriented transformer backbone after an in-depth study on dif-
ferent characteristics of transformer attention components (e.g., spatial-wise at-
tention and channel-wise attention). Furthermore, we propose to incorporate
semantic-augmented attention modules into several stages of the backbone to
capture rich low-level semantics. Low-level semantics from different stages help
the detector distinguish distractors in detail. Such design is quite different from
common backbones [24, 30, 10] that are dedicated to learn final high-level seman-
tics for the classification task.

Finally, we conduct comprehensive experiments to verify the superiority of
DFFT as well as the effectiveness of all the above designs. Compared to the foun-
dation work deformable DETR [36], DFFT achieves 61% inference acceleration,
28% training acceleration, and 1.9% AP gain.

2 Related Work

2.1 One-stage and Two-stage Detectors

Mainstream detectors exploit two types of anchors: anchor boxes [26, 20] and
anchor points [29, 9]. Anchors are generated at the center of each sliding-window
position to offer candidates for objects. Typical one-stage detectors [4, 9, 29, 15,
20] directly predict categories and offsets of anchors for the whole feature maps,
while two-stage detectors [17, 26, 1] first generate region proposals from dense
anchor boxes by a Region Proposal Network (RPN) [26] and then refine the
detection for each proposed region afterward.

One main challenge in object detection is to represent objects at vastly dif-
ferent scales effectively. Both one-stage and two-stage detectors overcome it with
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Fig. 2: Overview of existing detection methods and our proposed Decoder-Free
Fully Transformer-based (DFFT) detector. (a) Existing methods either rely on
multi-level feature detectors [20] or adopt the DETR framework [2]. (b) Our
DFFT simplifies object detection to an encoder-only single-level dense prediction
framework. The proposed two strong encoders enables us to conduct fast but
accurate inference on a single-level feature map, outperforming existing multi-
level feature detectors. The design also trims the training-inefficient decoder
for more than 10× training acceleration over DETR. We also propose a novel
lightweight detection-oriented transformer backbone to capture richer low-level
semantic features and further boost object detection.

multi-scale features and multi-level predictions. FPN [19] is widely used in these
detectors [29, 17, 20], which builds feature pyramid by sequentially combining two
adjacent layers in feature hierarchy in backbone model with top-down and lateral
connections. Later CNN-based designs on cross-scale connections use bottom-up
paths [23], U-shape modules [35], and the neural architecture search [16, 32].
YOLOF [4] provides an alternative solution, which exploits dilated encoder to
detect all objects on single-level features. In contrast, our DFFT introduces
large receptive fields to cover large objects based on the transformer’s global
relation modeling, and meanwhile, aggregates low-level semantics through the
scale-aggregated encoder. Such designs enable DFFT to achieve superior detec-
tion performance.

Recently, transformer-based backbones [5, 30, 24, 10] have shown superior per-
formance in object detection based on standard frameworks such as MaskR-
CNN [17, 1] and RetinaNet [20]. However, these backbones are usually directly
plugged into the framework without regard for the effects of replacing CNN with
transformers. These methods typically consume enormous computation costs
(e.g., over 300 GFLOPs for MobileFormer [5]). DFFT is the first method to
explore efficient and fully transformer-based detection.

2.2 End-to-end Detectors

End-to-end detectors [2, 36, 11, 25, 13] remove the complicated post-processing
like NMS and achieve one-to-one matching between the target and the candi-
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Fig. 3: Illustration of the three major modules in our proposed DFFT. DFFT con-
tains a light-weight Detection-Oriented Transformer backbone with four DOT
stages to extract features with rich semantic information, a Scale-Aggregated
Encoder (SAE) with three SAE blocks to aggregate multi-scale features into one
feature map for efficiency, and a Task-Aligned Encoder (TAE) to resolve con-
flicts between classification and regression tasks in the coupled detection head.

date by the Hungarian algorithm. DETR [2] uses an encoder-decoder transformer
framework. The transformer encoder processes the flattened deep features from
the CNN backbone. The non-autoregressive decoder takes the encoder’s outputs
and a set of learned object query vectors as the input, and predicts the category
labels and bounding boxes accordingly. The decoder’s cross-attention module
attend to different locations in the image for different object queries, which re-
quires high-quality content embeddings and thus training costs. DETR needs
a long training process (500 epochs) and is not suitable for small objects. De-
formable DETR [36] accelerates the convergence via learnable sparse sampling
and multi-scale deformable encoders. It generates a reference point for each
object query and uses deformable attention to make each reference point only
focus on a small fixed set of sampling points. Anchor DETR [31] exploits anchor
points to accelerate training. Conventional designs such as RPN [34], RCNN,
and FCOS [28] are also used to optimize the DETR framework. Although better
performance and fast convergence are achieved, the computation cost increases
significantly (e.g., 2× GFLOPs in deformable DETR) due to multi-scale feature
encoding [36, 28]. Moreover, dense priors such as reference points [36], anchor
points [31, 28], proposals [28], and conditional spatial embedding [25] are intro-
duced to optimize the DETR pipeline for fast convergence. It shows that DETR
is not the only solution for efficient, fully transformer-based detectors. Compared
with them, DFFT trims the decoder, also ensures both fast training convergence
and inference while maintains comparable performance.

3 Method

In this section, we introduce DFFT, an efficient Decoder-Free Fully Transformer-
based object detector. An overview of DFFT is illustrated in Figure 2b. The
Detection-oriented Transformer backbone F extracts features at four scales and
sends them to the following encoder-only single-level dense prediction module.
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The prediction module first aggregates the multi-scale feature into a single fea-
ture map through the Scale-Aggregated Encoder S. Then we use the Task-
Aligned Encoder T to align the feature for classification and regression tasks
simultaneously for higher inference efficiency.

3.1 Detection-oriented Transformer Backbone

Detection-oriented transformer (DOT) backbone aims to extract multi-scale fea-
tures with strong semantics. As shown in Figure 3a, it hierarchically stacks one
embedding module and four DOT stages, where a novel semantic-augmented
attention module aggregates the low-level semantic information of every two
consecutive DOT stages. For each input image x ∈ RH×W×3, the DOT back-
bone extracts features at four different scales:

fdot
1 ,fdot

2 ,fdot
3 ,fdot

4 = F (x), (1)

where fdot
i ∈ R

H

8·2i−1 × W

8·2i−1 ×Ci is the i-th feature with Ci channels for i ∈
{1, 2, 3, 4}. In what follows, we expand the formalization of the DOT backbone
function F .
Embedding Module. For an input image x ∈ RH×W×3, we first divide it
into H×W

8×8 patches and feed these patches to a linear projection to obtain patch

embeddings f̂0 of size H
8 × W

8 × C1, written as

f̂0 = Fembed(x) ∈ R
H
8 ×W

8 ×C1 , (2)

where Fembed is the embedding module described above.
DOT Block. Each DOT stage contains one DOT block Fblock, designed to ef-
ficiently capture both the local spatial and the global semantic relations at each
scale. When processing high-resolution feature maps in dense prediction, con-
ventional transformer blocks reduce computational costs by replacing the multi-
head self-attention (MSA) layer with the local spatial-wise attention layer, such
as spatial-reduction attention (SRA) [30] and shifted window-based multi-head
self-attention (SW-MSA) [24]. However, this design sacrifices detection perfor-
mance as it only extracts multi-scale features with limited low-level semantics.

To mitigate this shortcoming, our DOT block includes multiple SW-MSA
blocks [24] and one global channel-wise attention block [10], as illustrated in
the first part of Figure 3a. Note that each attention block contains an attention
layer and an FFN layer, and we omit the FFN layer in each attention block of
Figure 2 to simplify the illustration. We denote by f̂i the DOT block’s output
feature at the i-th DOT stage. We find that placing a lightweight channel-wise
attention layer behind consecutive local spatial-wise attention layers can benefit
deducing object semantics at each scale.
Semantic-Augmented Attention. While the DOT block has enhanced the
semantic information in low-level features through the global channel-wise at-
tention, semantics can be improved even further to benefit the detection task.
Thus, we propose a novel semantic-augmented attention (SAA) module Fse-att,
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which exchanges semantic information between two consecutive scale levels and
augments their features. SAA consists of an up-sampling layer and a global
channel-wise attention block. We incorporate SAA into every two consecutive
DOT blocks, as illustrated in the second part of Figure 3a. Formally, SAA takes
the outputs from the current DOT block and the former DOT stage, and then
returns the semantic augmented feature, which is sent to the next DOT stage
and also contributes to the final multi-scale feature fdot

i . We denote by f̃i SAA’s
output feature at the i-th DOT stage.

DOT Stage. The final DOT backbone contains four DOT stages Fstage where
each stage consists of one DOT block and one SAA module (except the first
stage). Specifically, the first stage contains one DOT block and no SAA module,
because the inputs of the SAA module are from two consecutive DOT stages.
Each of the remaining three stages contains a patch merging module to reduce
the number of patches similar to [24], a DOT block, and a SAA module followed
by a down-sampling layer to recover the input dimension, as shown in Figure 3a.
Thus, the formulation of the DOT block in the i-th stage can be defined as

f̂i =

{
Fblock(f̂i−1), i = 1, 2

Fblock(down(f̃i−1)), i = 3, 4
(3)

where down denotes the downsampling function.

The i-th stage’s SAA module can be defined as

f̃i =

Fse-att

(
up(f̂i) + f̂i−1

)
, i = 2

Fse-att

(
up(f̂i) + f̃i−1

)
, i = 3, 4

(4)

where up denotes the upsampling function.

The final multi-scale feature from the DOT backbone can be written as

fdot
i =

{
f̃i+1, i = 1, 2, 3

f̂i, i = 4
(5)

3.2 Encoder-only Single-level Dense Prediction

This module is designed to improve both the inference and training efficiency
of the fully transformer-based object detector with two novel encoders. It first
uses the scale-aggregated encoder (SAE) to aggregate the multi-scale features
fdot
i from the DOT backbone into one feature map ssae. After that, it uses the

task-aligned encoder (TAE) to generate aligned classification feature tcls and
regression feature treg simultaneously in a single head.

Scale-aggregated Encoder. We design this encoder with three SAE blocks,
as illustrated in Figure 3b. Each SAE block takes two features as the input and
aggregates the features step by step across all SAE blocks. We set the scale
of final aggregated feature to H

32 × W
32 to balance the detection precision and
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computational costs. For this purpose, the last SAE block will up-sample the
input feature to H

32 ×
W
32 before aggregation. This procedure can be described as

s0 = fdot
1 ,

s1 = Satt

(
down(s0) + fdot

2

)
,

s2 = Satt

(
down(s1) + fdot

3

)
,

s3 = Satt

(
s2 + up(fdot

4 )
)
,

(6)

where Satt is the global channel-wise attention block and ssae = s3 is the final
aggregated feature map.
Task-aligned Encoder. Recent one-stage detectors [4, 29] perform object clas-
sification and localization independently with two separate branches (e.g., de-
coupled head). This two-branch design omits the interaction between two tasks
and leads to inconsistent predictions [12, 14]. Meanwhile, feature learning for
two tasks in a coupled head usually exists conflicts [7, 27]. We propose the task-
aligned encoder which offers a better balance between learning task-interactive
and task-specific features via stacking group channel-wise attention blocks in a
coupled head.

As shown in Figure 3c, this encoder consists of two kinds of channel-wise
attention blocks. First, the stacked group channel-wise attention blocks Tgroup

align and finally split the aggregated feature ssae into two parts. Second, the
global channel-wise attention blocks Tglobal further encode one of the two split
features for the subsequent regression task. This procedure can be described as

t1, t2 = Tgroup(s
sae),

tcls = t1,

treg = Tglobal(t2),

(7)

where t1, t2 ∈ R
H
32×

W
32×256 are the split features, and tcls ∈ R

H
32×

W
32×256 and

treg ∈ R
H
32×

W
32×512 are the final features for the classification and regression

tasks, respectively.
Specifically, the differences between the group channel-wise attention block

and the global channel-wise attention block lie in that all the linear projections
except the projections for key/query/value embeddings in the group channel-
wise attention block are conducted in two groups. Thus, features interact in
attention operations while deduced separately in output projections.

3.3 Miscellaneous

Since DFFT conducts the single-level dense prediction on a single feature map,
the pre-defined anchors are sparse. Applying the Max-IoU matching [20] based on
the sparse anchors will cause an imbalance problem for positive anchors, making
detectors pay attention to large ground-truth boxes while ignoring the small ones
when training. To overcome this problem, we use the uniform matching strategy
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Table 1: The definition and performance of DFFT models with different magni-
tudes. In the backbone setting, we list the output feature’s number of channels
Ci and the number of SA blocks in all four backbone stages. In the effectiveness
evaluation, we report the accuracy of the pre-trained backbone on ImageNet and
the detection AP of DFFT after training on the MS COCO dataset.

Models
Backbone Settings Effectiveness (%) Efficiency (GFLOPs)

Value of Ci Number of SA Accuracy AP Backbone DFFT

DFFTNANO (3, 3, 6, 9) (2, 2, 6, 2) 80.0 42.8 26 42
DFFTTINY (4, 4, 8, 12) (1, 1, 5, 1) 81.1 43.5 39 57
DFFTSMALL (4, 4, 8, 12) (2, 2, 6, 2) 82.1 44.5 44 62
DFFTMEDIUM (4, 4, 7, 12) (2, 2, 18, 2) 82.7 45.7 48 67
DFFTLARGE (6, 6, 8, 12) (2, 2, 18, 2) 83.1 46.0 83 101

proposed by YOLOF [4] to ensure that all ground-truth boxes uniformly match
with the same number of positive anchors regardless of their sizes. Similar to
the setting of most conventional detection methods [29, 4, 20], our loss function
consists of a focal loss for classification and a generalized IOU loss for regression.
At the inference stage, we conduct object detection efficiently based on the final
aggregated feature map ssae with a single pass.

4 Experiments

We evaluate our proposed DFFT on the challenging MS COCO benchmark [21]
following the commonly used setting. It contains around 160K images of 80
categories. We compare DFFT with conventional one-stage/two-stage detection
methods and DETR-based methods. We also provide a comprehensive ablation
study to quantitatively analyze the effectiveness of each module in DFFT. The
standard mean average precision (AP) metric is used to measure detection under
different IoU thresholds and object scales.

4.1 Settings

The DOT backbone is pre-trained on ImageNet [8] with the same setting as [24].
We train DFFT with the standard 1× (12 epochs) and 3× (36 epochs) training
configurations as introduced in [24]. We use the AdamW [18] optimizer with a
batch size of 32, an initial learning rate of 1e− 4 and weight decay of 0.05. The
learning rate is stepped down by a factor of 0.1 at the 67% and 89% of training
epochs. We conduct all experiments on 8 V100 GPUs.

We implemented models with different magnitudes. The settings and perfor-
mance of these backbones are shown in Table 1, where Ci denotes the number of
channels of the i-th DOT stage’s output feature, and the number of SA blocks
within each DOT stage is also provided. Only one global channel-wise attention
block is added to the end of each stage. For each model, accuracy refers to the
backbone’s accuracy on ImageNet and AP refers to the precision after training
on the MS COCO dataset. All GFLOPs are obtained on the MS COCO dataset.
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Table 2: Comparison of our DFFT and modern detection methods on the MS
COCO benchmark [21]. The table is divided into four sections from top to bot-
tom: (1) anchor-based methods, (2) DFFT trained for 12 epochs, (3) DETR-
based methods, and (4) DFFT trained for 36 epochs. DFFT achieves competi-
tive precision with significantly fewer training epochs and inference GFLOPs.

Methods Epochs AP (%) AP50 (%) AP75 (%) APS (%) APM (%) APL (%) GFLOPs

Faster RCNN-FPN-R50 [26] 36 40.2 61.0 43.8 24.2 43.5 52.0 180
RetinaNet [20] 12 35.9 55.7 38.5 19.4 39.5 48.2 201
YOLOF-R50 [4] 12 37.7 56.9 40.6 19.1 42.5 53.2 86
Swin-Tiny-RetinaNet [24] 12 42.0 - - - - - 245
Focal-Tiny-RetinaNet [33] 12 43.7 - - - - - 265
Mobile-Former [5] 12 34.2 53.4 36.0 19.9 36.8 45.3 322

DFFTNANO 12 39.1 58.3 41.7 19.0 42.9 51.2 42
DFFTSMALL 12 41.4 60.9 44.5 20.1 45.4 58.9 62
DFFTMEDIUM 12 42.6 62.5 45.5 22.6 46.7 61.4 67

DETR-R50 [2] 500 42.0 62.4 44.2 20.5 45.8 61.1 86
WB-DETR [22] 500 39.6 58.4 43.8 18.2 42.7 54.9 62
YOLOS [11]. 150 37.6 - - - - - 172
Deformable DETR [36] 50 43.8 62.6 47.7 26.4 47.1 58.0 173
SMCA-R50 [13] 50 43.7 63.6 47.2 24.2 47.0 60.4 152
Anchor DETR-DC5-R50 [31] 50 44.2 64.7 47.5 24.7 48.2 60.6 151
Conditional DETR-R50 [25] 50 40.9 61.8 43.3 20.8 44.6 59.2 90
TSP-FCOS-R50 [28] 36 43.1 62.3 47.0 26.6 46.8 55.9 189
Efficient DETR-R50 [34] 36 44.2 62.2 48.0 28.4 47.5 56.6 159

DFFTNANO 36 42.8 61.9 46.2 23.4 46.8 59.7 42
DFFTSMALL 36 44.5 63.6 48.0 24.5 49.0 60.7 62
DFFTMEDIUM 36 45.7 64.8 49.7 25.5 50.4 63.1 67

4.2 Main Results

Compare with two-stage/one-stage detection methods. The performance
of conventional two-stage/one-stage detection methods is shown in the first part
of Table 2. Overall, anchor-based methods converge fast within only 12 epochs,
and the transformer-based methods generally outperform CNN-based methods.
For instance, Focal-Tiny-RetinaNet [33] achieves 7.8% higher AP than the orig-
inal RetinaNet [20]. However, such good performance comes at the expense of
high computational costs; most of these methods need 170 GFLOPs at the min-
imum. Even the more efficient single-level feature detection method YOLOF [4]
needs 86 GFLOPs when using ResNet-50 as the backbone.

The performance of our proposed DFFT with 12 epochs is shown in the sec-
ond part of Table 2. In contrast to the above methods that endure an obvious
trade-off between detection precision and inference efficiency, our DFFT can im-
prove these two metrics simultaneously. For example, DFFTNANO decreases 51%
GFLOPs of YOLOF while still increasing 1.4% AP, and DFFTMEDIUM achieves
42.6% AP with only 67 GFLOPs.Furthermore, DFFT reduces 200 GFLOPs from
the best-performed Focal-Tiny-RetinaNet [33] at the cost of merely 1% lower AP.
These comparisons indicate that our DFFT can effectively reduce the computa-
tional cost of the inference stage without sacrificing the detection precision.

Compare with DETR-based methods. The performance of DETR-based
methods is shown in the third part of Table 2. We observe that DETR-based
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methods can achieve better performance and inference efficiency but converges
slower. For instance, DETR only needs 86 GFLOPs at the inference stage to
achieve 42.0% AP, but it requires as large as 500 epochs to converge. WB-
DETR [22] can only achieve 39.6% AP if given the same training epochs. Sub-
sequent optimized DETR-based methods improve the convergence speed but at
the cost of inference efficiency. For example, while Deformable DETR [36] and
Condition DETR [25] need 50 epochs to converge and TSP-FOCS [28] and Ef-
ficient DETR [34] need only 36 epochs to converge, their GFLOPs are around
4%–120% larger than DETR.

45.7
44.243.8 42.0

Epoch
60~400

Fig. 4: The convergence curves of
DFFT and DETR-based methods
on the COCO 2017 validation set.
Our DFFT converges significantly
faster than the counterparts.

The performance of our DFFT with 36
epochs is listed in the fourth part of Ta-
ble 2. In contrast to the DETR-based meth-
ods that endure a hard-to-optimize trade-
off between the convergence and inference
efficiency, our DFFT can achieve state-of-
the-art detection prevision without sacrific-
ing neither of these two metrics. Compared
with DETR [36], our DFFTNANO model
improves 13× convergence speed and de-
creases 51% GFLOPs while achieving signif-
icant detection precision (42.0% vs. 42.8%).
Compared with Efficient DETR [34] under
the same number of training epochs, our
model achieves state-of-the-art 45.7% AP
with only 67 GFLOPs (57% lower). We fur-
ther demonstrate the convergence curves of
DFFT and DETR-based methods in Fig-
ure 4. DFFT reduces 28%–92% training
epochs of state-of-the-art methods.

These comparisons verify that our
DFFT can effectively optimize training and inference efficiency while achieving
competitive and even state-of-the-art detection precision.

4.3 Ablation Study

We provide a comprehensive ablation study of all designs in our DFFT: the
detection-oriented transformer (DOT) backbone, scale-aggregated encoder (SAE),
and task-aligned encoder (TAE). The ablation study starts with the major com-
ponents in DFFT, followed by the specific design of each component. We conduct
all the experiments on DFFTSMALL model that is trained for 12 epochs.

Major Components. We first evaluate the efficacy of the major components
in DFFT. We disable each component by replacing it with a vanilla method as
they are not easily removable from our detection framework. Specifically, we (1)
replace the DOT backbone (line 1) with Swin-Transformer [24] with the similar
GFLOPs; (2) disable the SAE module (lines 1, 2, 4) by directly upsampling the
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last stage’s outputs to H
32 × W

32 and feed them to TAE; and (3) replace the TAE
module (lines 1–3) with YOLOF’s head. The results are shown in Table 3.

Table 3: Ablation study of the
three major modules in DFFT.

DOT SAE TAE AP (%) GFLOPs

- - - 33.8 45
✔ - - 37.9 47
✔ ✔ - 39.9 58
✔ - ✔ 39.8 51
✔ ✔ ✔ 41.4 62

Firstly, the DOT backbone promotes the
precision from 33.8% to 37.9%, indicating that
it can obtain better semantic features that
are more suitable for the detection task. Even
without the SAE, it gets competitive preci-
sions with only the last stage’s outputs. This
also suggests that the SAA can capture multi-
scale information when aggregating semantic
information.

Secondly, SAE further improves the preci-
sion to 39.9% by aggregating multi-scale fea-
tures into one feature map. Yet, disabling SAE
would decrease the precision by 1.6%.

Table 4: Ablation study of the
DOT backbone. GCA means
adding a global channel-wise at-
tention at the end of each DOT
block. In the third line, we re-
place SAA with GCA.

GCA SAA AP (%) GFLOPs

- - 39.0 48.59
✔ - 40.1 48.97
✔ GCA 40.4 58.65
✔ ✔ 41.4 62.23

Finally, disabling TAE would decrease the
prevision by 1.5%. It verifies the necessity of
using TAE to align and encode both the clas-
sification and regression features.

Detection-oriented Transformer (DOT)
block. Table 4 studies how the global
channel-wise attention (GCA) and semantic-
augmented attention (SAA) contributes to
DOT’s performance. We only modify the back-
bone network without disabling the SAE and
TAE modules. Lines 1 and 2 show that switch-
ing from SW-MSA to our global channel-wise
attention can improve 1.1% precision without
significant impact on FLOPs. Lines 2 and 3
show that adding one GCA block costs 11
GFLOPs yet only gains 0.3% AP. Once we re-
place the GCA block with the SAA module (so
that the two settings have the same number of attention nodes), the precision
increases from 40.1% to 41.4%. These two observations suggest that SAA can
enhance performance, and having more attention nodes is not the primary cause.

We further visualize the feature maps from each backbone stage of DFFTMEDIUM

trained 12 epochs in Figure 5. In the first two stages, our DOT backbone can
obtain low-level features with sufficient semantic information to capture small
objects. The third stage then focuses on medium and large objects. Finally, the
last stage only responds to large objects. These observations verify that our
DOT backbone can enhance semantic information in low-level features and thus
boosting the detection precision.

Semantic-Augmented Attention (SAA). SAA obtains richer low-level se-
mantic features for object detection task by augmenting the semantic informa-
tion from high-level features to the low-level ones, sharing a similar effect as
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Stage 1 Stage 2 Stage 3 Stage 4Input Images

Fig. 5: Visualization of the feature map
obtained by each DOT backbone stage.
The first two stages focus on small
objects while the third stage focuses
on medium or larger objects. The last
stage only responses to large objects.

DOT+SAE+YOLOF’s head

DOT+SAE+TAE (DFFT)

Fig. 6: Illustration of detection results
from the best anchors for classifica-
tion (red) and localization (orange).
Ground-truth is indicated by blue
boxes and centers. Our TAE helps pro-
vide consistency in predictions of clas-
sification and localization.

FPN [19]. For a fair comparison with FPN, we disable the two encoders and di-
rectly feed features from the backbone to RetinaNet’s head, which is a multi-level
feature head that accepts four-scale features. The results are shown in Table 5.
While both SAA and FPN improves the precision, SAA obtains 0.5% higher AP
with 9 fewer GFLOPs than FPN. Thus, the global channel-wise attention suits
the transformer better than FPN. Including SAA within the forward pass can
obtain an even stronger model.

Scale-aggregated Encoder (SAE). SAE aggregates multi-scale features into
one feature map to reduce the inference stage’s computational costs. We compare
SAE with a similar design in YOLOF, which exploits a dilated encoder to convert
features from multiple scales. Table 6 shows that SAE improves 1.1% AP from
the dilated encoder of YOLOF. When compared with a vanilla concatenation
operation, SAE gets 1.8% higher precision. Overall, SAE can achieve better
performance with low computational costs.

Task-aligned Encoder (TAE). Benefiting from the group channel-wise atten-
tion’s capability of modeling semantic relations, TAE handles task conflicts in
a coupled head and further generates task-aligned predictions in a single pass.
As shown in the first row of Figure 6, after replacing TAE with YOLOF’s head
in the baseline model, the best anchors for classification (red) and localization
(orange) are distant from each other. That is because YOLOF [4] uses a task-
unaligned decoupled head that leads to inconsistent predictions of classification
and localization. Comparatively, our TAE provides aligned predictions with both
high classification and IOU scores (e.g., person, zebra and cat in Figure 6).

Analysis of the impact on GFLOPs and FPS. We compare the perfor-
mance of different models in terms of prediction AP and inference GFLOPs and
FPS in Table 7. For computational performance, GFLOPs and FPS are sensi-
tive to the number of channels and the number of attention blocks, respectively.
For example, compared with DFFTNANO, DFFTTINY increases 15 GFLOPs but
has a better FPS due to fewer attention blocks, and DFFTSMALL increases 20
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Table 5: Analysis of SAA. We disable
the two encoders and uses the Reti-
naNet’s head, which is a multi-level fea-
ture head accepting four-scale features.

SAA FPN AP (%) GFLOPs

- - 37.4 319
✔ - 38.9 332
- ✔ 38.4 341

Table 6: Analysis of SAE. CONCAT:
the direct concatenation of multiple
features. YOLOF: exploiting a di-
lated encoder to convert features.

Method AP (%) GFLOPs

CONCAT 39.6 56
YOLOF 40.3 58
DFFT 41.4 62

Table 7: Analysis of how the output feature’s number of channels Ci and the
number of attention blocks impact GFLOPs and FPS. All the results are mea-
sured on the same machine with a V100 GPU using mmdetection [3].

Models
Backbone Settings

Value of Ci Number of SA AP GFLOPs FPS

DETR-R50 - - 42.0 86 24
Deformable DETR - - 43.8 173 14

DFFTNANO (3, 3, 6, 9) (3, 3, 7, 3) 42.8 42 22
DFFTTINY (4, 4, 8, 12) (2, 2, 6, 2) 43.5 57 24
DFFTSMALL (4, 4, 8, 12) (3, 3, 7, 3) 44.5 62 22
DFFTMEDIUM (4, 4, 7, 12) (3, 3, 19, 3) 45.7 67 17
DFFTLARGE (6, 6, 8, 12) (3, 3, 19, 3) 46.0 101 17

GFLOPs but gets a similar FPS. Overall, we achieve better AP and inference
efficiency than deformable DETR; at the same FPS, our DFFT has better ac-
curacy and GFLOPS than DETR. Lastly, although we designed the network
architecture mainly to reduce GFLOPs, we note that the above observations
can also be used to redesign our network and optimize for FPS in the future.

5 Conclusion

In this work, we discover a trade-off between training and inference efficiency that
hinders transformer-based object detection in large-scale applications. Rather
than porting transformers directly to the conventional framework or optimizing
the DETR framework, we propose DFFT, a novel design of fully transformer-
based object detectors. It enables efficiency in both the training and inference
stages for the first time without sacrificing noticeable detection precision. Ex-
tensive evaluation reveals our DFFT’s unique advantages in capturing low-level
semantic features in object detection, as well as its ability to preserve detec-
tion precision while trimming the training-inefficient decoders in DETR. Finally,
DFFT achieves state-of-the-art performance while using only half the GFLOPs
of previous approaches, indicating a promising future work on the large-scale
application of transformers in object detection.
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