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The appendix provides the additional supplemental material that cannot be
included in the main paper due to its page limit:

– Algorithm illustration
– More results.
– More analysis.
– More implementation details.
– More details of the ACL-synthetic/real datasets.

A Algorithm illustration

We summarize our proposed algorithm in Algorithm 1.

B More results

B.1 Comparison on the sparse data

The posed RGB-D stream is the basis for both passive and active localization.
To further validate the robustness of our proposed algorithm, we discard half
of the posed RGB-D stream as the sparse data for evaluation. The numerical
comparisons with the best baselines (Camera-descent/Scene-descent) on both
the sparse data and dense data (default setting in the main paper) are shown
in Table 1. We observe that all the methods achieve worse results on the sparse
data as expected, yet our approach still outperforms the other competitors.

B.2 Comparison on more real-world datasets

To further evaluate the compatibility of our method, we compare our approach
and its best competitors on 10 scenes of the real-world Gibson V2 [7] and Replica
[4] datasets besides ACL-synthetic/-real datasets in the main paper. Shown in
Table 2, our results consistently outperforms the others.

B.3 More qualitative results

In Figure 1, we show the qualitative results of the intelligent behaviors of our
algorithm on more test scenes.
∗ Equal contribution; ordered alphabetically.
† Corresponding authors.
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Algorithm 1 The full pipeline of our algorithm
function Passive Loc. Module(observation I(t), posed RGB-D stream

{
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(i)
basis

}m

i=1
)

if initialization then
initialization ← false
Adapt the passive localizer by posed RGB-D stream

{
I
(i)
basis, C

(i)
basis

}m

i=1

Construct the scene model Dscene by fusing posed RGB-D stream
{
I
(i)
basis, C

(i)
basis

}m

i=1

Current pose estimation Ĉ(t) ← Passive localizer(I(t))

return Ĉ(t)

function Active Loc. Module(pose estimation Ĉ(t), scene model Dscene)
M

(t)
wd,M

(t)
cd ← Scene uncertainty computation({Ĉ(t), Dscene})

U(t)
cu ← Camera uncertainty computation({Ĉ(t), Dscene})

Action a(t) ← Policy network({M(t)
wd,M

(t)
cd })

return U(t)
cu , a(t)

procedure Entire Pipeline(posed RGB-D stream
{
I
(i)
basis, C

(i)
basis

}m

i=1
, accuracy threshold λcu)

t← 0
Dscene ← NULL
initialization ← true
while t < maximum step length do

Obtain the current observation I(t)

Ĉ(t) ← Passive Loc. Module(I(t),
{
I
(i)
basis, C

(i)
basis

}m

i=1
)

U(t)
cu , a(t) ← Active Loc. Module(Ĉ(t), Dscene)

if U(t)
cu is within λcu cm, λcu degrees then
break

Execute the action a(t)

t← t + 1

return Ĉ(t)

C More analysis

We provide more analysis of the camera uncertainty component below.

The iterative closest point (ICP) approach is based on the general assumption
that the two input point clouds are roughly aligned. When the estimated camera
pose of the current frame is far from its ground truth, such as 20cm, 20◦, the
camera uncertainty component generated by ICP becomes unstable and not
reliable to determine the adaptive stop condition. To be specific, following the
experiment of “Analysis of camera uncertainty” in the main paper, we further
summarize that when the estimated relative pose is within 20cm, 20◦ (λcu = 20),
about 83.57% (3220/3853) samples are truly within 20cm, 20◦ compared to the
ground truth, which is much smaller than 94.14% for 5cm, 5◦ (λcu = 5).

Therefore, a natural question to ask is, when evaluating the camera pose
in a coarse level, such as 20cm, 20◦, what is the best parameter value (λcu) to
determine the adaptive stop condition for the highest camera pose accuracy? In
Table 3, we compare the numerical results of our algorithm trained with different
parameter values (λcu = 5/20) and evaluated on the coarse-scale accuracy (20cm,
20◦). We observe that the camera pose accuracy is much worse with λcu = 20,
which validates the parameter selection λcu for the camera uncertainty component.
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Table 1. Numerical results on both the dense and sparse data.

ACL-synthetic ACL-real

Data Methods Acc (%) #steps Acc (%) #steps

Dense

Camera-descent (t+1) 61.55 22.90 61.40 26.85
Camera-descent (t+2) 55.30 22.60 59.20 25.78
Scene-descent 57.65 18.56 54.20 16.87

Ours 83.05 17.33 82.40 17.90

Sparse

Camera-descent (t+1) 55.45 24.17 49.60 31.62
Camera-descent (t+2) 55.05 28.15 52.40 37.35
Scene-descent 19.90 6.12 41.40 22.71

Ours 82.00 20.52 76.40 22.54

Table 2. Numerical results on GibsonV2 and Replica datasets.

GibsonV2 Replica

Methods Acc (%) #steps Acc (%) #steps

Camera-descent (t+1) 57.60 23.51 67.80 19.04
Camera-descent (t+2) 51.60 25.42 69.80 26.13
Scene-descent 56.20 16.16 62.80 14.60
Ours 75.00 15.27 86.80 13.30

D More implementation details

D.1 Policy network

The policy network takes the scene uncertainty component as input and generates
the probability of the three actions defined by the action space. The camera-
driven scene map is represented as a 3-channel 2D map M

(t)
cd , which can be

easily consumed by the convolution operation. We employ a convolution neural
network of 6 convolution layers (32-64-128-128-256-256) and 1 linear layer (64)
to extract the global feature (R64). Each convolution layer is of kernel size 3x3
and followed by a batch normalization layer and a max pooling layer of stride
2. The world-driven scene map is represented as a 6-channel point cloud M

(t)
wd.

Inspired by the popular point cloud processing network PointNet [2], we employ a
three-layer pointwise MLP (64-128-64) followed by a max pooling layer to extract
its global feature (R64). Finally, by concatenating all the extracted features, we
use a three-layer MLP (64-16-3) to predict the probability of the three predefined
actions.

D.2 Noise perturbation on the action space

To simulate robotic agents in a real-world condition, the action does not lead
to perfect execution, hence we add the Gaussian noise to each action. To be
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Table 3. Numerical results of our algorithm trained with different parameter values
(λcu = 5, 20) on the ACL-synthetic dataset.

Uncertainty parameters Accuracy (20cm, 20◦)

λcu = 5 85.92
λcu = 20 49.40

specific, if the agent turns left or right, the Gaussian noise of standard deviation
(6) will be added to the rotation angle θ(t) of mean value (20); if the agent moves
forward, the Gaussian noise of standard deviation (5) will be added on the 2D
positions x(t), y(t) of mean value (30). The positions are measured in centimeters,
and the rotation angle is measured in degrees. Note the standard deviation (σ)
is actually very large considering 31.74% of sampled noises are beyond σ for the
Gaussian distribution.

D.3 Implimentation details

In our experiment, we employ the Adam [1] to optimize the network weights with
the initial learning rate of 3× 10−4. Some hyper-parameters: Ncd = 12, Nwd_r =
1000, Nwd_p = 214 = 16384, Nf = 5, X = 256, Y = 256.

E More details of the ACL-synthetic/real datasets

The posed RGB-D stream in the existing camera localization datasets [3,5,6] is
usually obtained by scanning the environment with handheld sensors by human
operators, hence does not always cover the complete scene model. We design the
posed RGB-D stream in our dataset to simulate this effect. Directly visualizing
the trajectory of the posed RGB-D stream in the scene is not intuitive as it
would lose the orientation information of the camera pose, instead we choose
to visualize the scene model reconstructed from the posed RGB-D stream to
showcase how much scene region is covered by the posed RGB-D stream.

We illustrate the textured meshes of both the complete and reconstructed
scene models for the ACL-synthetic and ACL-real datasets in Figure 2, 3 and 4.
Their related statistics are shown in Table 4.
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Table 4. Scene statistics of the ACL-synthetic and ACL-real dataset. We summarize
the number of scenes, scene area, max scene area, min scene area and the number of
frames in the RGB-D sequences. The unit for all areas is m2. The Area and #frames
metrics are averaged over all the scenes involved.

Scene #scenes Area Max area Min area #frames

ACL-synthetic Train split 15 37.89 49.40 25 58.00
Test split 20 43.17 75.00 26.9 54.45

ACL-real Test split 5 64.82 98.28 23.62 88.40

All 40 43.90 98.28 23.62 60.03
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d) Camera-driven uncertainty channel e) World-driven uncertainty channel

b) Long trajectorya) Starting from the same origin c) Initial textureless observation

d) Camera-driven uncertainty channel e) World-driven uncertainty channel

b) Long trajectorya) Starting from the same origin c) Initial textureless observation

d) Camera-driven uncertainty channel e) World-driven uncertainty channel

b) Long trajectorya) Starting from the same origin c) Initial textureless observation

Fig. 1. Qualitative results of the intelligent behaviors learned by our algorithm.
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The complete scene model
The scene model

reconstructed with
the posed RGB-D stream

The complete scene model
The scene model

reconstructed with
the posed RGB-D stream

Fig. 2. Visualization of the ACL-synthetic dataset.
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The complete scene model
The scene model

reconstructed with
the posed RGB-D stream

The complete scene model
The scene model

reconstructed with
the posed RGB-D stream

Fig. 3. Visualization of the ACL-synthetic dataset.
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The complete scene model
The scene model

reconstructed with
the posed RGB-D stream

The complete scene model
The scene model

reconstructed with
the posed RGB-D stream

Fig. 4. Visualization of the ACL-real dataset.
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