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1 Experiment Details

We provide additional details for our experiments below.

1.1 Training the Normalizing Flow Model

We train a continuous normalizing flow model (FFJORD [1]) for estimating the
rareness of detection objects. As detailed in the main text, we train the flow
model on the normalized feature vectors after PCA transformation obtained via
ROI max-pooling the final feature map of the MVF detector using predicted or
ground-truth bounding boxes.

The feature vectors are reduced to the dimension of 10 after the PCA trans-
formation. The flow model consists of a stack of 4 consecutive FFJORD bijectors.
Each FFJORD bijector consists of 4 hidden layers, each hidden layer consists of
64 units, and uses tanh() activation. The model is trained using an Adam Opti-
mizer, with an initial learning rate of 1e-4, learning rate decay every 2400 steps,
with a decay rate of 0.98. We train the flow model for a total of 100 epochs. For
the base distribution of the flow model, we use a spherical Gaussian distribution
with unit variance. See Fig. 1 for a visualization of the inferred feature densities
using a flow model trained using the procedure above.

1.2 3D Auto-labeler Implementation

We adopt the auto-labeling pipeline as outlined in [2]. We use a strong teacher
model to serve as the auto-labeler. For the active learning experiments, we train
a 5-frame MVF model [5] on the same 10% fully-labeled segments as the single-
frame MVF student model. We then use this 5-frame MVF model to extract
boxes, create object tracks using [4], and further refine the detections using the
refiner [2].

2 Additional Visualizations of Rare Examples
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(a) PCA projection of the
training embeddings.

(b) PCA projection of
generated embeddings.

(c) Estimated log proba-
bility of embeddings.

Fig. 1: Visualization of (a) the embeddings used for training the normalizing
flow model, (b) the generated embeddings from the flow model by sampling the
learned distribution, that matches the training distribution very well, signifying
a good learned estimation of feature densities.(c) a visualization of the estimated
log probability of the embeddings from a learned normalizing flow model. The
model is able to assign higher log probability to denser features (common exam-
ples) and lower log probability to sparser features (rare examples).
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Fig. 2: Additional visualizations of rare examples as inferred by the trained flow
model. Warmer colors indicate more rare instances in the scene. The most rare
instances in the scene include large vehicles (construction vehicles, trucks), ve-
hicles of irregular geometries such as a flatbed trailer, as well as potentially
mislabeled objects such as cones.
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3 Additional Experimental Evaluation

3.1 Pedestrian Rare Example Mining

We perform an additional experimental evaluation for rare example mining per-
formance on pedestrians to offer more insights into using rare example mining
for other object categories. Similar to the main experiments in the paper, we per-
form this experiment on the Waymo Open Dataset [3]. We use the same MVF
[5] backbone as the main pedestrian detector and utilize [2] for auto-labeling the
unlabeled instances. We mainly compare three sets of experiments. We compare
two active learning experiments that train on 10% of the fully-labeled segments,
plus an additional 10% of mined pedestrian tracks from the rest of the training
segments, where the tracks are either mined using our MD-REM++ method or
by randomly selecting from the remaining tracks. For our MD-REM++ method,
we use a hard example filtering function where the number of points threshold
p̃ = 10 and d = 50(m). We report on Average Precision (AP) metrics at an
IoU threshold of 0.5. Unlike vehicle experiments where we have an intuitive es-
timate of rareness based on vehicle size, for pedestrian experiment we instead
evaluate the model performance on the intra-class long-tail by evaluating the
AP performance on the top-5% rarest ground truth objects (based on inferred
log probability). We present our results in Table 1.

Experiment Human Labels (%) All Rare (Top 5%)

Fully Supervised (100%;0%) 0.757 0.111

Random (10%;10%) 0.705 0.038
Ours (MD-REM++) (10%;10%) 0.729 0.060

Table 1: Active learning experiments for pedestrians on Waymo Open Dataset.

We conclude two main findings from the pedestrian experiment that is con-
sistent with the vehicle experiments:

1. Our rare example mining method is able to significantly outperform base-
lines.

2. Our flow-based method is able to find challenging instances for the model,
as the model performs much worse on rare subsets, compared to the general
distribution.
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3.2 Additional Evaluation for Vehicle Rare Example Mining

We show additional evaluation for the experiments presented in Table 3 (main
paper). We present the results below.

Experiment Human Labels (%) All Regular Large Rare (Top 5%)

Fully Supervised (100%;0%) 0.730 0.732 0.458 0.178

Ours (MD-REM++) (10%,3%) 0.732 0.735 0.423 0.126
Ours (MD-REM++) (10%,6%) 0.729 0.732 0.415 0.126
Ours (MD-REM++) (10%;9%) 0.730 0.732 0.443 0.152

Table 2: Additional evaluations for Table 3 in the main paper. Here we report
AP @ IoU 0.7 for these experiments.

Similar to the pedestrian experiment metrics, we further introduce a Top-5%
rare subset metric. By mining more data via increasing the mining budget using
our REM approach, we are able to further close up the gap with the fully labeled
model with a much more reduced total labeling cost.
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