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Abstract. Modeling sparse and dense image matching within a uni-
fied functional correspondence model has recently attracted increasing
research interest. However, existing efforts mainly focus on improving
matching accuracy while ignoring its efficiency, which is crucial for real-
world applications. In this paper, we propose an efficient structure named
Efficient Correspondence Transformer (ECO-TR) by finding correspon-
dences in a coarse-to-fine manner, which significantly improves the ef-
ficiency of functional correspondence model. To achieve this, multiple
transformer blocks are stage-wisely connected to gradually refine the pre-
dicted coordinates upon a shared multi-scale feature extraction network.
Given a pair of images and for arbitrary query coordinates, all the cor-
respondences are predicted within a single feed-forward pass. We further
propose an adaptive query-clustering strategy and an uncertainty-based
outlier detection module to cooperate with the proposed framework for
faster and better predictions. Experiments on various sparse and dense
matching tasks demonstrate the superiority of our method in both effi-
ciency and effectiveness against existing state-of-the-arts. Project page:
https://dltan7.github.io/ecotr/.
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1 Introduction

As a fundamental research direction in computer vision, finding the correspon-
dences among pairs of images has been widely utilized in plenty of down-stream
tasks, including optical flow estimation [19,8,53], visual localization [46,32,34],
camera position calibration [15,41], 3D reconstruction [5,11], and visual tracking
[30]. Given a pair of images, according to how the queries and correspondences

⋆ Authors contributed equally.

https://orcid.org/0000-0002-1341-2763
https://orcid.org/0000-0001-9163-2932
https://dltan7.github.io/ecotr/


2 D. Tan, J-J. Liu, X. Chen, et al.

0 100 300 500 1000 2000 5000 10000
# Queries (pts)

0

100

200

300

400

In
fe

re
nc

e 
tim

e 
(s

)

COTR
ECO-TR (ours)

# Queries

Time (s) Method
COTR ECO-TR

Speed-up

5.33 0.31 17.14
13.46 0.62 21.68
22.21 0.93 23.81

1,000 43.56 1.02 42.52
2,000 87.28 1.12 78.04
5,000 217.16 1.62 133.89
10,000 434.81 2.36 184.38

ratio

100
300
500

Fig. 1. Comparison of the inference time between the proposed ECO-TR and COTR
[14]. The query numbers are set from 100 to 10,000. As we can see, the time-consuming
of COTR increases linearly as the number of points increases, while our method basi-
cally does not change.

are determined, the applications mentioned above can be generally categorized
into sparse matching and dense matching. The former focuses on two sets of key-
points being sparsely and respectively extracted from both images and matched
to minimize a pre-defined alignment error [21,34,15]; the latter treats all pixels
in the first image as queries which are densely mapped to the other image for
correspondences [19,37,59,51].

The above two kinds of applications were studied independently for a long
time, and various optimizations were designed separately. Recently, COTR [14]
claims that these two applications can be naturally modeled within a unified
framework since the only difference between the sparse and dense matching is
the number of points to query. It proposes to recursively apply a transformer-
based [4,52,7] model at multiple scales in a gradually zooming-in manner to ob-
tain accurate correspondences. Though impressive performance has been achieved,
its complex off-line pipeline and slow inference speed seriously limit its practi-
cality in real-world applications.

We argue that there are three main reasons leading to the unsatisfactory
COTR. The first is the recursive zoom-in refinement framework, which must
re-extract the corresponding features in the next local patch matching. In the
case of many queries, these features are likely to overlap, which means plenty
of repeated and redundant calculations. The second is switching the role of the
queries and correspondences to filter out the mismatched queries, which double
the overall computation. The third is that the staged training strategy leads to
unstable training convergence which needs to be carefully fine-tuned.

Instead of sacrificing speed for performance, in this work, we present an ef-
ficient correspondence transformer network (ECO-TR), showing that both ef-
ficiency and effectiveness can be achieved within a single feed-forward pass.
Specifically, we propose to complete the coarse-to-fine refinement process of the
found correspondences in a stage-by-stage manner. Our framework consists of a
bottom-up convolutional neural network (CNN) for multi-scale feature extrac-
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tion and several top-down transformer blocks corresponding to different match-
ing accuracies. During the coarse-to-fine refinement process, rather than cropping
image patches of different positions and sizes according to the coarsely predicted
coordinates and recursively re-feeding them into CNN to obtain the correspond-
ing feature maps, we obtain the multi-scale feature maps w.r.t. the input image
at one time by taking advantages of the pyramid and translation invariance
nature of modern CNNs, and directly crop on the collected feature maps. The
proposed feature-level cropping method can effectively avoid repeated calcula-
tions. To a certain extent, the inference speed of the model does not increase
linearly with the increase of query points.

To further improve the efficiency of our framework, an Adaptive Query-
Clustering (AQC) module is proposed to gather similar queries into a cluster,
which speeds up the inference. Moreover, we propose an uncertainty module to
estimate the confidence of the predicted correspondences, which achieves good
performance on outlier detection nearly for free. As illustrated in Table 1, our
approach can process 1000 queries within one second on a single NVIDIA Telsa
V100 GPU for a pair of images with size 800× 800, which is around 40 times
faster than COTR under the same conditions.

To evaluate the performance of the proposed approach, we report the re-
sults on multiple challenging datasets covering both sparse and dense correspon-
dence finding tasks. Experimental results demonstrate that our method surpasses
COTR in performance and speed by a large margin. In addition, we conduct ex-
tensive ablation experiments to better understand the impact of each component
in our framework. The contributions are summarized below:

– We propose a new coarse-to-fine framework for finding correspondence that
can be applied to both sparse and dense matching tasks. Our method can
be optimized end-to-end and evaluate an arbitrary number of queries within
a single feed-forward.

– We design an adaptive query-clustering strategy and an uncertainty-based
outlier filtering module to achieve a better balance between efficiency and
effectiveness.

– Our method significantly outperforms the existing best-performing func-
tional method in speed and still achieves comparable performance in sparse
correspondence tasks and better in dense correspondence tasks.

2 Related Work

Sparse methods. The most common paradigm for sparse image matching
pipelines consists of three stages: keypoint detection, keypoint description, and
feature matching. In terms of the detection stage, a sparse set of repeatable
and matchable keypoints are selected by the detection methods [31,35,2,50],
which are robust against viewpoint changes and different lighting conditions.
Then, the keypoints are described by patch-level input or image-level input.
Patch-based description methods [44,24,45,10] take cropped patches as inputs
and are usually trained by metric learning. Image-based description methods
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such as [9,6,27,22,43] take a full image as input and apply fully-convolutional
neural networks [20] to generate dense descriptors. This kind of method usually
combines detector and descriptor, which share the same backbone in training
and yield better performance on both tasks.

Traditional feature matching methods use Nearest Neighbor (NN) search to
find potential matches. Recently, many approaches [3,54,55,56,40] filter outliers
by heuristics or learned priors. SuperGlue [33] uses an attentional graph neural
network and optimal transport method to obtain state-of-the-art performance
on sparse matching tasks. Unlike the method mentioned above, given some key-
points as queries, COTR [14] refines the matches in the other image recursively
by correspondence neural network. Following COTR, we design an end-to-end
model to accelerate this scheme.

Dense methods. The main purpose of dense matching is to estimate the op-
tical flow. NC-Net [29] represents all keypoints and possible correspondences
as a 4D correspondence volume restricted to low-resolution images. Sparse NC-
Net [28] applies sparse correlation layers instead of all possible correspondences
to mitigate this restriction, whereby higher resolution images can be tackled.
DRC-Net [17] reduces the computational cost and promotes performance by us-
ing coarse-resolution and fine-resolution feature maps of different layers. GLU-
Net [48] finds pixel-wise correspondences by global and local features extracted
from images with different resolutions. GOCor [47] disambiguates features in
similar regions via an improved feature correlation layer. PDC-Net [49] excludes
incorrect dense matches in occluded and homogeneous regions by estimating an
uncertainty map and filtering the inaccurate correspondences. Patch2Pix [58]
replaces pixel-level matches with patch-level match proposals and later refines
them by regression layers. LoFTR [39] establishes accurate semi-dense matches
with linear transformers in a coarse-to-fine manner. For COTR, the dense match-
ing result is generated by interpolating sufficient sparse queries’ results. Same
with COTR, our method can give dense matching results by interpolation, too.

Functional methods. The functional method in image matching. COTR is the
first one that obtains matches by a functional correspondence finding architec-
ture. Given a pair of images and coordinates of one query, COTR regresses the
possible match in the other image via a transformer-based correspondence find-
ing network. Each query is processed independently, and dense correspondences
are estimated by interpolating sparse correspondences using Delaunay triangu-
lation of the queries. However, being a recursive method, it will be extremely
time-consuming when many keypoints are queried. We mitigate this problem
in an end-to-end manner, which runs dozens of times faster than COTR and
achieves comparable or superior performance.
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Fig. 2. The pipeline of our proposed framework. It takes a pair of images (bottom-left)
and a set of queries ({Q}) of arbitrary numbers as input and outputs the correspon-
dences ({RF}) and uncertainty scores ({UF}), respectively. The right part illustrates
the feature patches cropping process during each prediction refinement stage.

3 Coarse-to-Fine Refinement Network

This section describes the proposed end-to-end framework that can find the
correspondences for arbitrary queries given a pair of images within a single feed-
forward pass in detail.

3.1 Overall Pipeline

We show a schematic diagram of the overall pipeline of the proposed frame-
work in Fig. 2. It mainly consists of a bottom-up multi-scale feature extraction
pathway based on the CNN and a top-down coarse-to-fine prediction refinement
pathway based on the transformer. Given a pair of images IA and IB , we first
resize them to the same spatial resolution (B × C × H × W , B is the ‘batch’
dimension) and feed them into the CNN backbone to obtain multi-scale features.
After that, the collected multi-scale features are used along with the input queries
to predict the correspondences in a coarse-to-fine, gradually refining manner in
the top-down pathway. We also predict an uncertainty score w.r.t. each corre-
spondence representing how confident the network is of its prediction, which can
be utilized to filter out the outliers nearly for free. Since it could be a bunch
of queries to be processed in one feed-forward, we further introduce an adap-
tive query-clustering strategy to better balance efficiency and effectiveness. The
following subsections describe the above-mentioned components in detail.

3.2 Efficient Feature Extraction

To obtain correspondence locations precisely, existing work usually crops im-
age patches around potential matching regions and iteratively feeds them back
into the network in a progressively enlarged manner. The main drawbacks of
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Fig. 3. Illustration of the uncertainty estimation branch. Green and red points indicate
matches with low uncertainties and high uncertainties, respectively. ECO-TR gives am-
biguous predictions in textureless regions and the border area with high uncertainties.

the aforementioned practice are: 1) the input image is cropped and resized into
patches multiple times with different zoom-in factors around each query position.
Each patch generated is then fed into the network, which involves many redun-
dant computations. 2) Image patches for each query are cropped and processed
by the network independently, which usually means serial processing and ineffi-
cient use of computational resources. We found that the main cause of these two
shortcomings can be attributed to the setting of cropping patches at different
spatial levels directly on the image.

Considering the pyramid and translation invariance nature of modern CNNs,
we propose to alleviate the drawbacks mentioned above by deferring the crop-
ping operation after the feature extraction step. Specifically, we first obtain the
multi-scale feature maps w.r.t. each input image at one time and then directly
crop on the collected feature maps to get feature patches at any position and
scale. We take the ResNet-50[26] network as our backbone for multi-scale feature
extraction without loss of generality. Following the previous success in generating
more powerful and representative features, we attach a pyramid pooling module
(PPM) [57] to capture more global information at the top of ResNet-50. The
output of PPM and the side-outputs at res1-4 stages of the ResNet-50 network
are collected to build a hierarchical multi-scale feature integration structure. As
shown in the left part of Fig. 2, to meet the needs of the subsequent top-down
pathway which has three refinement stages (i.e., coarse, middle, and fine), we
choose to combine the intermediate outputs of {PPM, res4}, {res2-4} and
{res1-3} stages, respectively. The integrated three sets of features (denoted
as {FC ,FM ,FF }) are then resized to 1/32, 1/16, and 1/4 spatial resolutions
w.r.t. the input stitched images pair, respectively.

3.3 Coarse-to-Fine Prediction Refinement

The schematic pipeline of the coarse-to-fine prediction refinement process is
shown in the middle part (light orange parallelogram background) of Fig. 2.
Generally speaking, it consists of three successively connected stages: coarse,
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middle, and fine, respectively responsible for predicting correspondences with
different precision. Each stage is a transformer building block of three encoders
and three decoders. The coarse stage (TRC) takes a set of queries Q of arbitrary
numbers and the entire previously combined features FC as input. It outputs the
coarsely predicted correspondences set RC along with their uncertainty scores.
With the guidance of the coordinates in Q and RC , we crop square patches cen-
tered at them on the previously collected middle-level features FM with a fixed
window size of wM , as illustrated by the dashed arrows in the middle left of
Fig. 2. The cropped feature patches are then re-arranged into a new batch along
with the input queries Q (normalized based on the cropping centers and window
sizes) being forwarded to the next stage (i.e., the middle stage (TRM )). The fine
stage shares similar procedures with the middle stage. After the fine stage, we
obtain the final outputs of the proposed framework: the finest correspondences
RF and their uncertainty scores UF .

For each stage, concatenated backbone features are supplemented by 2D
linear positional encoding in the sinusoidal format and flattened before be-
ing fed into the transformer encoder. During the decode stage, coordinates of
queries with positional encoding attend to the output of the transformer en-
coder. Here, we disallow self-attention among the query points, for queries are
independent of each other. COTR computes the cycle consistency errors and
rejects matches whose errors are greater than a specified threshold to filter out
uncertain matches, which doubles the computational cost. To further acceler-
ate our framework, we introduce an uncertainty estimation branch. Two FFN
branches follow the outputs of the last transformer decoder. One is employed to
regress the corresponding relative coordinates of each query, and the other is to
predict the uncertainties of these coordinates. Unreliable predictions with high
uncertainties will be filtered during the inference stage.

Having predicted matches Ri and their uncertainties Ui of level i, loss Li is
calculated by:

Li =
∥∥Ri − Ri

gt

∥∥ · (1− Ui) + λi · Ui, (1)

where Ri
gt is ground truth matches coordinates of queries and λi is the thresh-

old of level i, where i ∈ {C,M,F} represents stages coarse, middle, and fine. We
set λC = 0.1, λM = 0.05, λF = 0.01 during training.

All three stages are supervised during training at the same time. Specifically,
the final loss L is defined as

L = LC + LM + LF . (2)

Experiments show that the mid- and fine-level supervision during training pro-
vides predictions for corresponding stages and gives distinctive back-propagation
signals to the CNN backbone, which is beneficial to the prediction of coarse-level.
More details are provided in Sec. 4.5.

3.4 Adaptive Query-Clustering

The transformer structure is capable of processing many queries in one forward
propagation. To improve efficiency, each patch should contain as many queries as
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Algorithm 1: Adaptive Query-Clustering Algorithm

Input: Coordinates of queries Q; Matches of Q predicted by previous stage R;
Iteration number t; K-means class number Knum; Distance threshold
Th

Output: All patch pairs and corresponding matches in these patches
1 for i = 1 to t do
2 Divide Q to Knum clusters by K-means algorithm, and assign class labels

to every pair in (Q,R) ;
3 for each class j do
4 Set (Q′, R′) = all pairs labeled j ;
5 Set cq = the center coordinates of Q′ ;
6 Set cr = the center coordinates of R′ ;
7 for each pair (q, r) in (Q′, R′) do
8 if ∥q − cq∥ > Th or ∥r − cr∥ > Th
9 Set the class label of (q, r) = −1

10 end
11 Crop patches centered at cq and cr and assign pairs labeled j to these

patches
12 end
13 Set (Q,R) = all pairs labeled -1

14 end
15 for each pair (q, r) labeled −1 in (Q,R) do
16 Crop patches centered at q and r, and assign pair (q, r) to these patches
17 end

possible. A straightforward practice is to directly slice the input images pair into
two sets of grids according to the pre-defined window sizes and strides (usually,
the stride is set equal to the corresponding window size). By densely coupling the
patches between these two sets, any query-correspondence pair can be assigned
to one of the patch pairs. We denote the above way of point-to-patch assignment
as GRID for simplicity. However, we observe that an inevitable drawback of the
query-correspondence independent kind of assignment strategies is that some
matches will always exist around the patches’ borders, which usually got sub-
optimal matching results. We attribute this unsatisfying phenomenon to the lack
of sufficient contextual information around the border area.

To achieve a better trade-off between efficiency and effectiveness, we propose
an Adaptive Query-Clustering(AQC) algorithm to automatically and dynami-
cally assign images patches for all query-correspondence pairs, as illustrated in
Alg. 1. To demonstrate the superiority of AQC, we compare it with GRID in
Sec. 4.5. Experiments show that clustering by AQC gives better performance
than GRID.

3.5 Implementation Details

We implemented our model in PyTorch [25]. The local feature CNN uses a
modified version of ResNet-50 as a backbone without pretraining. For coarse-to-



ECO-TR 9

Table 1. Quantitative results on HPatches. Average End Point Error (AEPE) and
Percentage of Correct Keypoints (PCK) are reported here. For each method, different
thresholds (1px, 3px and 5px) of PCK are used. For a fair comparison of PCK, we
report the reproduced results of COTR under the same image size.

Method AEPE ↓ PCK-1px ↑ PCK-3px ↑ PCK-5px ↑
LiteFlowNet [13] 118.85 13.91 - 31.64
PWC-Net [38] 96.14 13.14 - 37.14
GLU-Net [48] 25.05 39.55 71.52 78.54
GLU-Net+GOCor [47] 20.16 41.55 - 81.43
COTR+Interp (reproduce) [14] 3.83 36.64 76.65 87.42
ECO-TR+Interp 2.67 40.19 79.89 90.24

COTR(reproduce) [14] 3.62 38.72 80.90 90.85
ECO-TR 2.52 38.02 79.79 90.71

fine refinement modules, we set the crop window size wM = 17, wF = 13. For
the AQC module, we set t = 1, Knum = 128. The distance threshold Th is set
to 0.8 times of the corresponding side of patches during training and 0.6 times
during inference. More details can be found in the supplementary material.

4 Experiments

We evaluate our method across several datasets. We do not retrain or fine-tune
our model on any other dataset for a fair comparison. Experiments are arranged
as follows:

1. Dense matching tasks are evaluated on HPatches [1], KITTI [12], and ETH [36]
datasets. Following COTR’s evaluation protocol, we evaluate the results of
sampled matches and interpolated dense optical flow.

2. We evaluate the pose estimation task on the same scene as COTR from
Megadepth [18] dataset for sparse matching.

3. For ablations studies, we evaluate the impact of each proposed contribution
using the ETH3D dataset.

4.1 Results on HPatches Dataset

We evaluate ECO-TR on the HPatches dataset for dense matching tasks in the
first experiment. HPatches dataset contains 116 scenes, with 57 scenes changing
in viewpoint and 59 scenes changing in lighting conditions. Following COTR,
we evaluate the dense matching results on viewpoint-changing splits. Same with
GLU-Net, we resize the reference image during our evaluation, while COTR is
evaluated under the original scale in its experiments, which is not comparable in
PCK value. Therefore, we reproduce the number of COTR under fair settings.
For each method, we find a maximum of 1,000 matches from each pair. Then, we
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Table 2. Quantitative results on KITTI. Average End Point Error (AEPE) and
flow outlier ratio (Fl) on KITTI-2012 and KITTI-2015 are reported below. COTR†

means we evaluated it with DenseMatching tools provided by the authors of GLU-Net.

Method
KITTI-2012 KITTI-2015

AEPE ↓ Fl.[%] ↓ AEPE ↓ Fl.[%] ↓
LiteFlowNet [13] 4.00 17.47 10.39 28.50
PWC-Net [38] 4.14 20.28 10.35 33.67
DGC-Net [23] 8.50 32.28 14.97 50.98
GLU-Net [48] 3.34 18.93 9.79 37.52
RAFT [42] - - 5.04 17.8
GLU-Net+GOCor [47] 2.68 15.43 6.68 27.57
PDC-Net [49] 2.08 7.98 5.22 15.13

COTR† + Interp. [14] 1.47 8.79 3.65 13.65
ECO-TR + Interp. 1.46 6.64 3.16 12.10

COTR† [14] 1.15 6.98 2.06 9.14
ECO-TR 0.96 3.77 1.40 6.39

interpolate correspondences on the Delaunay triangulation map of the queries
and get the dense correspondences. The results are reported in Table 1.

For the dense matching task, ECO-TR achieves better performance than
COTR under all metrics. For the matching accuracy, COTR is a little better than
ECO-TR evaluated by PCK. We attribute this gap to the difference in image
resolution. COTR can utilize high-resolution images via four recursive zoom-
ins, which is unmanageable for ECO-TR due to its end-to-end architecture. The
average endpoint error(AEPE) for ECO-TR is lower than COTR.

4.2 Results on KITTI Dataset

We use the KITTI dataset to evaluate the performance of our method under real
road scenes. KITTI2012 dataset contains static scenes only, while the KITTI2015
dataset has more challenging dynamic scenes. Following [42,47,14], we use the
training split, which has ground truth of camera intrinsics, poses, and depth
maps collected by LIDAR. All methods above-mentioned were trained on other
datasets and evaluated on this training split. In line with previous works[DGC,
GLU, GOC, COTR], We employ the Average End-point Error (AEPE) and
percentage of optical flow outliers (Fl) as evaluation metrics. Here, inliers are
defined as AEPE<3 pixels or < 5%. Same with COTR, We sample 40, 000 points
for a fair comparison.

As shown in Table 2, our method outperforms all others on these two datasets.
For example, our method achieves AEPE= 1.09 and 1.70 on KITTI-2012 and
KITTI-2015, respectively, which is 30% higher than COTR on average. The in-
terpolated results are slightly worse than the sparse results, yet still better than
the other dense methods by a large margin, including PDC-Net, which esti-
mates dense correspondence and excludes unreliable matches, too. Qualitative
examples on KITTI dataset are illustrated in Fig. 4.
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(a) Input image (b) COTR (c) ECO-TR (d) COTR (e) ECO-TR

Fig. 4. Qualitative results on KITTI – We show the error map (Columns (b, c))
and optical flow (Columns (d, e)) for three pairs from KITTI-2015. ECO-TR provided
clearer outlines of moving objects.

Table 3. Results on ETH3D. We evaluated our method over pairs of ETH3D images
sampled from different frame intervals. Average End Point Error (AEPE) are reported
here. Lower AEPE is better.

Method
AEPE ↓

rate=3 rate=5 rate=7 rate=9 rate=11 rate=13 rate=15

LiteFlowNet [13] 1.66 2.58 6.05 12.95 29.67 52.41 74.96
PWC-Net [38] 1.75 2.10 3.21 5.59 14.35 27.49 43.41
DGC-Net [23] 2.49 3.28 4.18 5.35 6.78 9.02 12.23
GLU-Net [48] 1.98 2.54 3.49 4.24 5.61 7.55 10.78
COTR+Interp. [14] 1.71 1.92 2.16 2.47 2.85 3.23 3.76
ECO-TR+Interp. 1.52 1.70 1.87 2.06 2.21 2.44 2.69

COTR [14] 1.66 1.82 1.97 2.13 2.27 2.41 2.61
ECO-TR 1.48 1.61 1.72 1.81 1.89 1.97 2.06

4.3 Results on ETH3D Dataset

ETH3D dataset contains ten image sequences of indoor and outdoor scenes and
provides ground truth sparse correspondences under different frame intervals.
Following COTR, we report the performance of our method under pairs with
seven different intervals, from 3 to 15, respectively. The results in Table 3 show
that our proposal outperforms other competitors under all rates, especially when
matching pairs with large geometric transformations, i.e. pairs with a higher rate.

4.4 Results on Megadepth Dataset

MegaDepth [18] images show extreme viewpoint and appearance variations. The
poses of images are generated via structure-from-motion and multi-view stereo
(MVS) methods, which can be used as ground truth during evaluation. We choose
St. Paul’s Cathedral as our test scene. We sample 900 pairs of images that have
commonly visible regions. Mean average accuracy(mAA) at a 5° and 10° error
threshold are reported here, where the error is defined as the maximum of angular
error in rotation and translation. For COTR, we follow the strategy used in its
paper and evaluate the performance under different numbers of matches. For
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Fig. 5. Qualitative results on MegaDepth dataset. We set queries on left images
and obtain matches in right images. We estimate the relative pose between image pairs
and the angular errors in rotation and translation are reported in the upper-left corner.
The number of inliers evaluated by epipolar distance is shown as well.

Table 4. Quantitative results on MegaDepth. We evaluated our method against
COTR with different numbers of predicted matches. Mean average accuracy(mAA) at
a 5° and 10° error threshold are reported here.

Method
#Matches N=2048 N=1024 N=512 N=300 N=100

@5 @10 @5 @10 @5 @10 @5 @10 @5 @10

COTR 0.443 0.660 0.448 0.665 0.434 0.650 0.434 0.654 0.410 0.626
ECO-TR 0.453 0.661 0.452 0.664 0.447 0.656 0.430 0.652 0.418 0.636

ECO-TR, we estimate the scale of buildings in pairs first. We sample sparse
points in one image as queries and predict their correspondences by coarse-stage
ECO-TR. Then, we crop original images and obtain patches that share regions
of two images. We resize cropped patches and feed them to the model again,
and take random points in one image as queries and find reliable matches with
low uncertainty in the other image. To further improve performance, a cycle
consistency check is applied here. To compare the performance under the same
number of matches, we drop some matches randomly. For a fair comparison,
other settings except the matching method are fixed for two methods. The results
in Table 4 show that ECO-TR gives a comparable performance, while our
pipeline is significantly faster than COTR. Qualitative examples of MegaDepth
are illustrated in Fig. 5.

4.5 Ablation Studies

In this section, we will conduct several ablation experiments on ETH3D dataset
to discuss the efficiency and effectiveness of our method. More ablations on
KITTI dataset are provided in the supplementary material.

Analysis of inference time. Table 5 reports the time cost of each component
of ECO-TR. Table 6 further compares the runtimes of the corresponding com-
ponents between ECO-TR and COTR with similar GPU memory costs (about
8192MB). As can be seen, all components in ECO-TR are more efficient than
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Table 5. Detailed inference time (sec.) of each component.

#points pre- and post-process backbone TRC TRM TRF

0.1k 0.036 0.064 0.012 0.120 0.081

10k 0.037 0.062 0.026 0.480 1.740

Table 6. Detailed comparison of inference time (sec.) with COTR.

Method #points backbone transformer pre- and post-process sum
COTR 0.1k 0.67 3.74 1.03 5.44

ECO-TR 0.1k 0.06 0.21 0.04 0.31
COTR 10k 92.55 60.71 280.27 433.53

ECO-TR 10k 0.06 2.24 0.05 2.35

COTR’s, where the end-to-end framework (pre- and post-process in an end-to-
end manner) contributes most to the efficiency.

Analysis of multistage zoom-ins. First, we analyze the effect of multistage
zoom-ins architecture. As shown in Table 7, we evaluate the result of ECO-TR
without middle- and fine-stage inference (EC). It leads to substantially worse
results. Adding middle-stage inference benefits the results(ECM ) but is still less
effective than three stages version(ECMF ). We can see that the design of three-
stage refinement is essential for good performance. Furthermore, instead of train-
ing with the supervision of all three branches, we detach the middle-stage and
fine-stage branches during training(EC′). The result shows that it leads to worse
results, which indicates that deeply supervised models give more distinctive fea-
tures which yield better performance.

Analysis of clustering method. We test the performance of our pipeline with
different clustering methods mentioned in Sec. 3.4. GRID and AQC are evaluated
under the same distance threshold Th for a fair comparison. The results of AQC
and GRID clustering are provided in EAQC and EGRID in Table 7, respectively.
The result shows that our Adaptive Query-Clustering yields better performance
than GRID clustering. The gap between the two strategies gradually increases
as the difficulty of test pairs increases.

Analysis of transformer type. We replace the full attention transformer
block in our middle- and fine-stage model with the linear substitution [16] used
in LoFTR, and the corresponding results are shown in Elinear. Compared with
full attention result in Efully, the AEPE of pairs with rate=3 increases by 0.02
and pairs with rate=3,5 increase by 0.01, while still better than other methods
in Table 3 by a large margin. Furthermore, the average inference time of ECO-
TR is reduced by 20 percent when the linear transformer is applied, but this
generally leads to a slight degradation in performance. It shows our pipeline has
the potential to be further accelerated at a small cost.
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Table 7. Ablations on ETH3D. We evaluate the impact of each component of
our method over image pairs from the ETH3D dataset. Pairs are sampled from 3
different frame intervals, which indicate varying difficulty levels. Average End Point
Error (AEPE) is reported here. Lower AEPE is better.

AEPE ↓ EC EC′ ECM ECMF EAQC EGRID EfullyElinear EcycEuncEcyc+unc

rate=3 5.21 5.63 2.47 1.53 1.53 1.64 1.53 1.55 1.53 1.48 1.48
rate=9 7.17 7.50 3.09 2.11 2.11 2.32 2.11 2.12 2.00 1.82 1.81
rate=15 9.19 9.53 3.83 2.72 2.72 3.10 2.72 2.74 2.45 2.08 2.06

Analysis of outlier filtering method. We compare the effectiveness of the
uncertainty-based outlier filtering algorithm in Table 7. We run ECO-TR with
different filtering strategies. Ecyc employs cycle consistency check as a filter, and
Eunc employs uncertainty estimation as a filter. The result shows that filtering
by uncertainty estimation gives better performance than filtering by cycle con-
sistency check method. Additionally, Ecyc+unc employs uncertainty estimation
and cycle consistency checks together. Results show that by further using these
two strategies together, ECO-TR achieves better performance.

5 Conclusions

This paper introduces an efficient coarse-to-fine transformer-based network for
local feature matching. The main improvement is from three sides: 1) We pro-
pose an efficient network structure in a coarse-to-fine manner, fully utilizing the
information from different layers and can be trained integrally. 2) We design an
adaptive query-clustering (AQC) module that gathers similar query points in the
same patch and achieves a better balance between efficiency and effectiveness.
3) An uncertainty-based outlier detection module is proposed to filter out the
queries without correspondence. Our method significantly improves the speed
of functional matching and achieves comparable or better performance both on
sparse and dense matching tasks.

Limitations The main limitation is that the training of ECO-TR requires a
large amount of GPU computing resources. In addition, simple interpolation and
refinement techniques limit the performance of dense estimates. We leave these
for the future work.
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