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Abstract. We propose a novel keypoint voting scheme based on inter-
secting spheres, that is more accurate than existing schemes and allows
for fewer, more disperse keypoints. The scheme is based upon the distance
between points, which as a 1D quantity can be regressed more accurately
than the 2D and 3D vector and offset quantities regressed in previous
work, yielding more accurate keypoint localization. The scheme forms
the basis of the proposed RCVPose method for 6 DoF pose estimation
of 3D objects in RGB-D data, which is particularly effective at handling
occlusions. A CNN is trained to estimate the distance between the 3D
point corresponding to the depth mode of each RGB pixel, and a set of
3 disperse keypoints defined in the object frame. At inference, a sphere
centered at each 3D point is generated, of radius equal to this estimated
distance. The surfaces of these spheres vote to increment a 3D accu-
mulator space, the peaks of which indicate keypoint locations. The pro-
posed radial voting scheme is more accurate than previous vector or offset
schemes, and is robust to disperse keypoints. Experiments demonstrate
RCVPose to be highly accurate and competitive, achieving state-of-the-
art results on the LINEMOD (99.7%) and YCB-Video (97.2%) datasets,
notably scoring +4.9% higher (71.1%) than previous methods on the
challenging Occlusion LINEMOD dataset, and on average outperforming
all other published results from the BOP benchmark for these 3 datasets.
Our code is available at http://www.github.com/aaronwool/rcvpose.
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1 Introduction

Object pose estimation is an enabling technology for many applications includ-
ing robot manipulation, human-robot interaction, augmented reality, and au-
tonomous driving [36,35,45]. It is challenging due to background clutter, occlu-
sions, sensor noise, varying lighting conditions, and object symmetries. Tradi-
tional methods have tackled the problem by establishing correspondences be-
tween a known 3D model and image features [15,40]. They have generally relied
on hand-crafted features and therefore fail when objects are featureless or when
scenes are very cluttered and occluded [18,36]. Recent methods use deep learn-
ing and train end-to-end networks to directly regress an input image to a 6 DoF
pose [19,49]. For example, CNN-based techniques have been proposed which
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Fig. 1: Radial voting scheme: 3D scene point Pi at depth di projects to 2D image
pixel pi. The network estimates radial distance ri from pi. Sphere Si is centered
at Pi with radius ri, and all accumulator space A voxels on the surface of Si are
incremented. Keypoint k lies at the intersection of S1 ∩ S2, and all other Si

regress 2D keypoints and use Perspective-n-Point (PnP) to estimate the 6 DoF
pose parameters [35,43]. As an alternate to directly regressing keypoint coor-
dinates, methods which vote for keypoints have been shown to be highly effec-
tive [36,49,18,37], especially when objects are partially occluded. These schemes
regress a distinct geometric quantity that relates positions of 2D pixels to 3D
keypoints, and for each pixel casts this quantity into an accumulator space. As
votes accumulate independently per pixel, these methods perform especially well
in challenging occluded scenes.

While recent voting methods have shown great promise and leading perfor-
mance, they require the regression of either a 2-channel (for 2D voting) [36] or
3-channel (for 3D voting ) [14] activation map where voting quantities are accu-
mulated in order to vote for keypoints. The activation map is the image shaped
tensor where voting quantities are saved. The dimensionality of the activation
map follows from the formulation of the geometric quantity being regressed,
and the estimation errors in each channel tend to compound. This leads to re-
duced localization accuracy for higher dimensional activation maps when voting
for keypoints. This observation has motivated our novel radial voting scheme,
which regresses a one dimensional activation map for RGB-D data, leading to
more accurate localization. The increase in keypoint localization accuracy also
allows us to disperse our keypoint set farther, which increases the accuracy of
transformation estimation, and ultimately that of 6 DoF pose estimation.

Our proposed method, RCVPose, trains a CNN to estimate the distance
between a 3D keypoint, and the 3D scene point corresponding to each 2D RGB
pixel. At inference, this distance is estimated for each 2D scene pixel, which is
a 1D quantity and therefore has the potential to be more accurate than higher-
dimension quantities regressed in previous methods. For each pixel, a sphere
of radius equal to this regressed distance is centered at each corresponding 3D
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scene point. Those 3D accumulator space cells (voxels) that intersect with the
surface of these spheres are incremented, and peaks indicate keypoint locations,
as illustrated in Fig. 1. Executing this for minimally 3 keypoints allows the
unique recovery of the 6 DoF object pose.

Our main contribution is a novel radial voting scheme (based on a 1D regres-
sion) which we experimentally show to be more accurate than previous voting
schemes (which are based on 2D and 3D regressions). Based on our radial vot-
ing scheme, a further contribution is a novel 6 DoF pose estimation method,
called RCVPose. Notably, RCVPose requires only 3 keypoints per object, which
is fewer than existing methods that use 4 or more keypoints [36,14,37]. We ex-
perimentally characterize the performance of RCVPose on 3 standard datasets,
and show that it outperforms previous peer-reviewed methods, performing es-
pecially well in highly occluded scenes. We also conduct experiments to justify
certain design decisions and hyperparameter settings.

2 Related Work

Estimating 6 DoF pose has been extensively addressed in the literature [26,15,49,3].
Recent deep learning-based methods use CNNs to generate pose and can be
generally classified into the three categories of viewpoint-based [15], keypoint-
based [49], and voting-based methods [37].

Viewpoint-based methods predict 6 DoF poses by matching 3D or pro-
jected 2D templates. In [33], a generative auto-encoder architecture used a GAN
to convert RGB images into 3D coordinates, similar to the image-to-image trans-
lation task. Generated pixel-wise predictions were used in multiple stages to form
2D to 3D correspondences to estimate poses with RANSAC-based PnP. Man-
hardt et al. [27] proposed predicting several 6 DoF poses for each object instance
to estimate the pose distribution generated by symmetries and repetitive tex-
tures. Each predicted hypothesis corresponded to a single 3D translation and
rotation, and estimated hypotheses collapsed onto the same valid pose when
the object appearance was unique. Recent variations include Trabelsi et al. [44],
who used a multi-task CNN-based encoder/multi-decoder network, and Wang et
al. [47] and [20,34,42], who used a rendering method by a self-supervised model
on unannotated real RGB-D data to find an optimal alignment.

Keypoint-based methods detect specified object-centric keypoints and
apply PnP for final pose estimation. Hu et al. [18] proposed a segmentation-
driven 6 DoF pose estimation method which used the visible parts of objects
for local pose prediction from 2D keypoint locations. They then used the output
confidence scores of a YOLO-based [39] network to establish 2D to 3D corre-
spondences between the image and the object’s 3D model. Zakharov et al. [50]
proposed a dense pose object detector to estimate dense 2D to 3D correspon-
dence maps between an input image and available 3D models, recovering 6 DoF
pose using PnP and RANSAC. In addition to RGB data, depth information was
used in [14] to detect 3D keypoints with a Deep Hough Voting network, with
the 6 DoF pose parameters then fit with a least-squares method.
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Voting-based methods have a long history in pose estimation. Before
artificial intelligence became widespread, first the Hough Transform [8] and
RANSAC [10] and subsequently methods such as pose clustering [32] , image
retrieval [4,41] and geometric hashing [21] were widely used to localize sim-
ple geometric shapes, objects in images and full 6 DoF object pose. Hough
Forests [11], while learning-based, still required hand-crafted feature descrip-
tors. Voting was also extended to 3D point cloud images, such as 4PCS [1] and
its variations [30,29], to estimate affine-invariant poses.

Following the advent of CNNs, hybrid methods emerged combining aspects
of both data-driven and classical voting approaches. Both [18] and [36] con-
clude with RANSAC-based keypoint voting, whereas Deep Hough Voting [37]
proposed a complete MLP pipeline of keypoint localization using a series of con-
volutional layers as the voting module. To estimate keypoints, two different deep
learning-based voting schemes have appeared [36,49,18,37], the proposed scheme
introducing a third. At training, all voting schemes regress a distinct quantity
that relates positions of pixels to keypoints. At inference, this quantity is esti-
mated for each pixel, and is cast into an accumulator space in a voting process.
Accumulator spaces can cover the 2D [49,18,37] image space, or more recently
the 3D [36] camera reference frame. After voting, peaks in accumulator space
indicate positions of keypoints in the 2D image or 3D camera frame.

While only a few hybrid voting-based methods exist for 6 DoF pose esti-
mation, they have outstanding performance, which has motivated us to develop
RCVPose as a further advance of this class of hybrid method. Specifically, our
method is inspired by PVNet [36], and is most closely related to the recently
proposed PVN3D of He et al. [14], which combined PVNet and Deep Hough Vot-
ing [37] with a 3D accumulator space, utilizing the offset voting scheme of [49].

3 Methodology

3.1 Keypoint Voting Scheme Alternatives

The three keypoint voting schemes are illustrated in 2D in Fig. 2a, for image
pixel p and keypoint k to be estimated. The grid represents the (initially empty)
accumulator space bins, which are the voxel space elements where votes are
cast. In offset voting, the values of ∆x and ∆y are estimated from forward
inference through the network. These values are used to offset p to reference
that accumulator bin (shown in blue) containing k, the value of which is then
incremented. Alternately, in vector voting, the direction n⃗ is estimated, and all
bins (shown in green and blue) that intersect with n⃗ are incremented. Finally, in
radial voting, the scalar r is estimated, and all bins (shown outlined in red) are
incremented that intersect with the perimeter of the circle of radius r centered
at p. When repeated for all image pixels, the bin containing k will contain the
maximum accumulator space value, irrespective of which scheme is used, so long
as the quantities estimated by network inference are sufficiently accurate. In
Fig. 2b, circles generated by radial voting are illustrated for three image pixels.
Each bin contains a count of the number of circle perimeters that it intersects,
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(a) Votes cast (in 2D) for offset, vector,
and radial voting

(b) Accumulator space values after ra-
dial voting for 3 points

Fig. 2: Keypoint Voting Schemes in 2D: a) Pixel p casts votes for keypoint k
at blue bin (offset and vector voting), green bins (vector voting), and red bins
(radial voting). b) Radial votes cast for pixels p1, p2, and p3 result in bin peaks
at the intersection of the circles, with the peak occuring at keypoint k

such that the peak value of 3 indicates the location of keypoint k. The above
three voting schemes extend directly to 3D space, in which the accumulator space
is a grid of voxels, the offset scheme contains an additional ∆z component, n⃗ is
a 3-dimensional vector, and the radial scheme casts votes on the surfaces of 3D
spheres rather than 2D circles.

Formally, let pi be pixel from RGB-D image I with 2D image coordinate
(ui, vi) and corresponding 3D camera frame coordinate (xi, yi, zi). Further let
kθj = (xj , yj , zj) denote the camera frame coordinate of the jth keypoint of an
object located at 6 DoF pose θ. The quantity mo regressed in the first offset
scheme [18,37] is the displacement between the two 3D points, denoted as mo=
(∆x,∆y,∆z)=(xi−xj , yi−yj , zi−zj). Alternately, the 3D quantity mv from the
second vector scheme [36,49] is the unit vector pointing to kθj from pi, denoted as
mv=(dx, dy, dz)= mo

∥mo∥ . The 3D vector scheme can alternately be parametrized

into a 2D polar scheme, denoted as mp=(ϕ, ψ)= (cos−1 dz, tan−1 dy
dx ). Finally,

the 1D quantitymr from the radial scheme proposed here is simply the Euclidean
distance between the points, i.e. mr=∥mo∥.

The above quantities encode different information about the relationship
between pi and k

θ
j . For example, mv, mp, and mr can be derived directly from

mo, whereas mo cannot be derived from the others. Also, mr and mv (and mp)
are independent of one another. This difference in geometric information leads
to their different dimensionality, and ultimately the greater accuracy of radial
voting, as discussed in Sec. 4.4.

3.2 Keypoint Estimation Pipeline

The above described voting schemes can be used interchangeably within a key-
point estimation pipeline. The training inputs (Fig. 3) are: RGB fields IRGB

of image I; ground truth binary segmented image S of the foreground object
at pose θ; ground truth keypoint coordinate kθj , and; the ground truth voting
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Fig. 3: RCVPose training and inference. M̂0, M̂1, and M1 have channel depth
D=1 for radial, D=2 for polar, or D=3 for offset or vector voting schemes

scheme values (i.e. one of mo, mv, mp or mr) for each pixel in S, represented
by matrix M1. M1 is calculated for a given kθj using one of the voting scheme
values, and has either channel depth D=3 for mo or mv, D=2 for mp, or D=1
for mr. Both S and M1 are assessed to compute the loss L as:

L = LS + LM1
, (1)

LS =
1

N

N∑
i=1

∣∣∣Ŝi − Si

∣∣∣ , (2)

LM1 =
1

N

N∑
i=1

(
|M̂1i −M1i|

)
, (3)

with summations over all N pixels. The network output is estimate Ŝ of S, and
(unsegmented) estimate M̂0 of M1.

At inference (Fig. 3), IRGB is fed to the network which returns estimates

Ŝ and M̂0, the element-wise multiplication of which yields segmented estimate
M̂1. Each pixel (ui, vi) of M̂1, with corresponding 3D coordinate (xi, yi, zi) drawn
from the depth field ID of I, then independently casts a vote through the voting
module into the initially empty 3D accumulator space A.

Vote casting is performed for each (ui, vi), and is distinct for each voting

scheme. In offset voting, accumulator space A bin A[xi + M̂1[ui, vi, 0], yi +

M̂1[ui, vi, 1], zi+M̂1[ui, vi, 2]] is incremented, thereby voting for the specific bin
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of A that contains keypoint kθj . In vector and polar voting, every A bin is in-

cremented that intersects with the ray α(xi+M̂1[ui, vi, 0], yi+M̂1[ui, vi, 1], zi+

M̂1[ui, vi, 2]), for α > 0, thereby casting a vote for every bin along the ray that
intersects with (xi, yi, zi) and k

θ
j . Finally, in radial voting, every A bin is incre-

mented that intersects with the sphere of radius M̂1[ui, vi] centered at (xi, yi, zi),
thereby voting for every bin that lies on the surface of a sphere upon which kθj re-
sides. Whichever scheme is used, at the conclusion of vote casting for all (ui, vi),
a global peak will exist in the A bin containing kθj , and a simple peak detection

operation is then sufficient to estimate keypoint position k̂θj , within the precision
of A. The radial voting scheme has been shown to be more accurate than the
other schemes at keypoint estimation, as shown in the experiments in Sec. 4.4.

3.3 RCVPose

The above keypoint voting method formed the core of RCVPose. Radial vot-
ing was used, based on its superior accuracy as demonstrated in Sec. 4.4. The
network of Fig. 3 was used with ResNet-152 as the FCN-ResNet module. The
minimal K= 3 keypoints were used for each object, selected from the corners
of each object’s bounding box. Based on Sec. 4.5, keypoints were scaled to lie
beyond the surface of each object, ∼ 2 object radius units from its centroid.

The network structure was based on a Fully Convolutional ResNet-152 [12],
similar to PVNet [36], albeit with two main differences. First, we replaced
LeakyReLU with ReLU as the activation function. This was because our ra-
dial voting scheme only includes positive values, in contrast to the vector voting
scheme of PVNet which also admits negative values. Second, we increased the
number of skip connections linking the downsampling and upsampling layers
from three to five, to include extra local features when upsampling [24].

All voxels were initialized to zero, with their values incremented as votes
were cast. The voting process is similar to 3D sphere rendering, wherein those
voxels that intersect with the sphere surface have their values incremented. The
process is based on Andre’s circle rendering algorithm [2]. We generate a series
of 2D slices of A parallel to the x-y plane, that fall within the sphere radius from
the sphere center in both directions of the z-axis. For each slice, the radius of the
circle formed by the intersection of the sphere and that slice is calculated, and all
voxels that intersect with this circumference are incremented. The algorithm is
accurate and efficient, requiring that only a small portion of the voxels be visited
for each sphere rendering. It was implemented in Python and parallelized at the
thread level, and executes with an efficiency similar to forward network inference.

Once the K=3 keypoint locations are estimated for an image, it is straight-
forward to determine the object’s 6 DoF rigid transformation θ, from the corre-
sponding estimated scene and ground truth object keypoint coordinates [17,25].
This is analogous to the approach of [14], and is efficient compared to previous
pure RGB approaches [36] which employ an iterative PnP method.
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4 Experiments

4.1 Datasets

The LINEMOD dataset [15] includes 1200 images per object. The training set
contains only 180 training samples using the standard 15%/85% training/testing
split [49,36,5,14,18]. We augmented the dataset by rendering the objects with a
random rotation and translation, transposed using the BOP rendering kit [16]
onto a background image drawn from the MSCOCO dataset [23]. An additional
1300 augmented images were generated for each object in this way, inflating the
training set to 1480 images per object.

The LINEMOD depth images have an offset compared to the ground-truth
pose values, for unknown reasons [28]. To reduce the impact of this offset, we
regenerated the depth field for each training image from the ground truth pose,
by reprojecting the depth value drawn from the object pose at each 2D pixel
coordinate. The majority (1300) of the resulting training set were in this way
purely synthetic images, and the minority (180) comprised real RGB and syn-
thetic depth. All test images were original, real and unaltered.

Occlusion LINEMOD [3] is a re-annotation of LINEMOD comprising a
subset of 1215 challenging test images of partially occluded objects. The protocol
is to train using LINEMOD images only, and then test on Occlusion LINEMOD
to verify robustness.

YCB-Video [49] is a much larger dataset, containing 130K key frames of
21 objects over 92 videos. We split 113K frames for training and 27K frames
for testing, following PVN3D [14]. For data augmentation, YCB-Video provides
80K synthetic images with random object poses, rendered on a black background.
We repeated here the process described above, by rendering random MSCOCO
images as background. The complete training dataset therefore comprised 113K
real + 80K synthetic = 193K images.

4.2 Implementation Details

Prior to training, each RGB image is shifted and scaled to adhere to the Ima-
geNet mean and standard deviation [6]. The 3D coordinates were calculated from
the image depth fields and represented in decimeter units, as all LINEMOD and
YCB-Video objects are at most 1.5 decimeters in diameter and the backbone
network can estimate better when the output is within a normalized range. The
loss functions of Eqs. 1-3 were used with an Adam optimizer, with initial learn-
ing rate lr=1e-4. The lr was adjusted on a fixed schedule, re-scaled by a factor of
0.1 every 70 epochs. The network trained for 300 and 500 epochs for each object
in the LINEMOD and YCB-Video datasets respectively, with batch size 32.

The accumulator space A is represented as a flat 3D integer array, i.e. an
axis-aligned grid of voxel cubes. The size of A was set for each test image to the
bounding box of the 3D data. The voxel resolution was set to 5 mm, which was
found to be a good tradeoff between memory expense and keypoint localization
accuracy (see Supplementary Material Sec. S.4.5).
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For each object, 3 instances of the network were trained, one for each key-
point. We also implemented a version in which all 3 keypoints were trained
simultaneously, within a single network. In this version, the M̂0, M̂1, and M1

representations of Fig. 3 are replicated 3 times, and the FCN-ResNet weights are
shared. Our experiments (detailed in the supplementary material) showed that
the accuracy was poorer for this version, than when using separate networks for
each keypoint. The only two methods that have used a combined network for all
keypoints and all objects are GDRNet [48] and SOPose [7], against which our
performance compares favourably (see Sec. 4.6).

4.3 Evaluation Metrics

We follow the ADD(s) metric defined by [15] to evaluate LINEMOD, whereas
YCB-Video is evaluated based on both ADD(s) and AUC as proposed by [49]. All
metrics are based on the distances between corresponding points as objects are
transformed by the ground truth and estimated transformations. ADD measures
the average distance between corresponding points, whereas ADDs averages the
minimum distance between closest points, and is more forgiving for symmetric
objects. A pose is considered correct if its ADD(s) falls within 10% of the object
radius. AUC applies the ADD(s) values to determine the success of an estimated
transformation, integrating these results over a varying 0 to 100 mm threshold.

4.4 Comparison of Keypoint Voting Schemes

We first conducted an experiment to evaluate the relative accuracies of the four
voting schemes at keypoint localization, using the process from Sec. 3.2. Each
scheme used the same 15%/85% train/test split of a subset of objects from the
LINEMOD dataset. All four schemes used the exact same backbone network and
hyperparameters. Specifically, they all used a fully convolutional ResNet-18 [24],
batch size 48, initial learning rate 1e-3, and Adam optimizer, with accumulator
space resolution of 1 mm. They were all trained with a fixed learning rate re-
duction schedule, which reduced the rate by a factor of 10 following every 70
epochs, and all trials trained until they fully converged.

The only difference between trials, other than the selective use of either
mo,mv,mp or mr in training M̂1, was a slight variation in the loss functions.
For mo and mr, the L1 loss from Eqs. 1-3 was used, identical to the offset
voting in PVN3D [14]. Alternately, for mv and mp, the Smooth L1 equivalents
of Eqs. 2 and 3 (with β=1) were used, as in PVNet [36] (albeit therein using a
2D accumulator space).

Surface Keypoints: Sets of size K= 4 surface keypoints were selected for each
object tested, using the Farthest Point Sampling (FPS ) method [9]. FPS selects
points on the surface of an object which are well separated, and is a popular
keypoint generation strategy [36,14,38,37]. Following training, each keypoint’s

location k̂θij was estimated by passing each test image Ii through the network,
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Table 1: Keypoint localization error ϵ̄, for surface (FPS) and disperse keypoints:
mean µ and standard deviation σ for 4 voting schemes {v, o, p, r}, with r̄ = mean
keypoint distance to object centroid

ϵ̄ [mm]
vector (3D) offset (3D) polar (2D) radial (1D)

r̄ [mm] µv σv µo σo µp σp µr σr

ape

F
P
S

61.2 10.0 5.8 5.8 2.6 5.6 2.4 1.3 0.7
driller 129.4 10.0 2.3 6.5 4.7 5.3 2.5 2.2 1.0
eggbox 82.5 11.8 5.3 5.2 2.7 4.9 1.9 2.0 0.7

ape

d
is
p
er
se 142.1 12.5 7.6 10.4 5.3 5.7 2.5 1.8 0.8

driller 318.8 11.3 8.2 9.5 3.5 5.2 2.6 2.7 0.8
eggbox 197.3 13.7 8.5 11.4 4.7 7.2 3.4 2.4 1.2

as in Fig. 3. The error ϵi,j for each estimate was its Euclidean distance from its

ground truth location, i.e. ϵi,j=∥k̂θij −kθij ∥. The average of ϵi,j for an object over
all test images and keypoints was the keypoint estimation error, denoted as ϵ̄.

Each voting scheme was implemented with care, so that they were numer-
ically accurate and equivalent. To test the correctness of voting in isolation,
ground truth values of M1 calculated for each object and voting scheme were
passed directly into the voting module, effectively replacing M̂1 with M1 in the
inference stage of Fig. 3. For each voting scheme, the average ϵ̄ for all objects
was similar and less than the accumulator space resolution of 1 mm, indicating
that the implementations were correct and accurate.

The ϵ̄ values were evaluated for the four voting schemes for the ape, driller
and eggbox LINEMOD objects as summarized in Table 1. These three particular
objects were chosen as the ape is the smallest and the driller the largest of the
objects, whereas the eggbox includes a rotational symmetry. Table 1 includes a
measure of the average distance r̄ of the ground truth keypoints to each object
centroid. Radial voting is seen to be the most accurate method, with a mean
value 1.9-4.3x more accurate than the next most accurate polar voting, with
smaller standard deviations. Notably, the ordinal relationship between the four
schemes remains consistent across the scheme dimensionality, which indicates
that dimensionality impacts keypoint localization error.

Disperse Keypoints: We repeated this experiment for keypoints selected from
the corners of each object’s bounding box, which was first scaled by a factor of
2 so that the keypoints were dispersed to fall outside of the object’s surface.
The results in Table 1 indicate that radial voting still outperforms the other two
schemes by a large margin. Whereas the other two methods decrease in accu-
racy sharply as the mean keypoint distance r̄ increases, radial voting accuracy
degrades more gracefully. For example, for the ape, the 232% increase in r̄ from
61.2 to 142.1 mm, reduced accuracy for offset voting by 80% (from 5.8 to 10.4
mm), but only by 23% (from 2.2 to 2.7 mm) for radial voting.
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The improved accuracy of radial voting is likely due to the fact that the radial
scheme regresses a 1D quantity, compared with the 2D polar, and the 3D offset
and vector scheme quantities. It seems likely that the errors in each independent
dimension compound during voting. This is further supported by the recognition
that the polar scheme is simply a reduced dimensionality parametrization of the
vector scheme, and yet its performance is far superior, with between 1.7-2.4x
greater accuracy. Radial voting also has a degree of resilience to rotations, which
is lacking in the other schemes. Specifically, the three voting quantities mo, mv,
and mp are all sensitive to object in-plane rotations, whereas only radius scheme
mr is invariant to in-plane rotations.

4.5 Keypoint Dispersion

Impact on Transformation Estimation: It was suggested in [36] that 6
DoF pose estimation accuracy is improved by selecting keypoints that lie on the
object surface, rather than the bounding box corners which lie just beyond the
object surface. This may be the case when keypoint localization error increases
signficantly with keypoint disperson, as occurs with vector and offset voting.
There is, however, an advantage to dispersing the keypoints farther apart when
using radial voting, which has a lower estimation error.

To demonstrate this, we conducted an experiment in which the keypoint
locations were dispersed to varying degrees under a constant keypoint estimation
error, with the impact measured on the accuracy of the resulting estimated
transformation. We first selected a set K={kj}4j=1 keypoints on the surface of
an object, using the FPS strategy. This set was then rigidly transformed by T ,
comprising a random rotation (within 0◦ to 360◦ for each axis) and a random
translation (within 1/2 of the object radius), to form keypoint set KT . Each
keypoint in KT was then independently pertubed by a magnitude of 1.5 mm
in a random direction, to simulate the keypoint estimation error of the radial
voting scheme, resulting in (estimated) keypoint set K̃T̃ .

Next, the estimated transformation T̃ between K̃T̃ and the original (ground
truth) keypoint set K was calculated using the Horn method [17]. This pro-
cess simulates the pose estimation that would occur between estimated keypoint
locations, each with some error, and their corresponding ground truth model
keypoints. The surface points of the object were then transformed by both the
ground truth T and the estimated T̃ transformations, and the distances sepa-
rating corresponding transformed surface points were compared, as a measure
of the accuracy of the estimated transformation.

The above process was repeated for versions of K that were dispersed by
scaling an integral factor of the object radius from the object centroid. The
exact same error perturbations (i.e. magnitudes and directions) were applied to
each keypoint for each new scale value. The scaled trials therefore represented
keypoints that were dispersed more distant from the object centroid, albeit with
the exact same localization error.

This process was executed for all Occlusion LINEMOD objects, with 100
trials for each scale factor value from 1 to 5. The means of the corresponding
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(a) Transformation error (↓) (b) 6 DoF pose ADD(s) (↑)

Fig. 4: Impact of keypoint dispersion on (a) Transformation estimation error,
and (b) 6 DoF pose estimation ADD(s)

point distances (i.e. the ADD metric as defined in [15]) are plotted in Fig. 4a. It
can be seen that ADD decreases for the first few scale factor increments for all
objects, indicating an improved transformation estimation accuracy for larger
keypoint dispersions. This increase in accuracy stems from improved rotational
estimates, as the same positional perturbation error of a keypoint under a larger
moment arm will result in a smaller angular error. The translational component
of the transformation is not impacted by the scaling, as the Horn method starts
by centering the two point clouds. After a certain increase in scale factor of 3 or
4, the unaffected translational error dominates, and the error plateaus.

This experiment shows that the transformation estimate from corresponding
ground truth and estimated keypoints will be more accurate, when the keypoints
are dispersed further (∼ 1 object radius, i.e. a scale of 2x) from the object’s
surface, when keypoint estimation error itself remains small (∼1.5 cm).

Impact on 6 DoF Pose Estimation: The above result can be leveraged
to further improve the accuracy of 6 DoF pose estimation when using radial
voting. An experiment was executed for all Occlusion LINEMOD objects for
varying keypoint dispersions. The keypoints were first selected to lie on the
surface of each object using FPS, and the complete RCVPose inference pipeline
was executed, yielding an ADD(s) value for each trial image. The keypoints
were then projected outward from each object’s centroid to a distance of 1, 2
and 3 object radius values, and RCVPose inference was once again executed and
ADD(s) recalculated.

The results are plotted in Fig. 4b. Of the 8 objects, 4 had a higher ADD(s)
value at a dispersion of 2x, as did the average over all objects. It seems that
the decreased transformation estimation error (Fig. 4a) at 2x radius dispersion
more than compensates for the gradual increase in keypoint localization error
exhibited by radial voting.
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Table 2: LINEMOD and Occlusion
LINEMOD accuracy results

ADD(s) [%]

Mode Method LM O-LM

SSD6D [19] 9.1 -
Oberweger [31] - 27.1
Hu et al. [18] - 30.4
Pix2Pose [33] 72.4 32.0
DPOD [50] 83.0 32.8
PVNet [36] 86.3 40.8

RGB

DeepIM [22] 88.6 -
PPRN [44] 93.9 58.4
GDR-Net [48] 93.7 62.2
SO-Pose [7] 96.0 62.3

YOLO6D [43] 56.0 6.4
SSD6D+ref [19] 34.1 27.5RGB
PoseCNN [49] - 24.9+D ref
DPOD+ref [50] 95.2 47.3

DenseFusion [46] 94.3 -
PVN3D [14] 99.4 63.2
PR-GCN [51] 99.6 65.0
FFB6D [13] 99.7 66.2
RCVPose 99.4 70.2

RGB-D

RCVPose+ICP 99.7 71.1

Table 3: YCB-Video accuracy results
D ref? Method ADD(s) AUC

PoseCNN [49] 59.9 75.8
DF (per-pixel) [46] 82.9 91.2
SO-Pose [7] 56.8 90.9
GDR-Net [48] 60.1 91.6
PVN3D [14] 91.8 95.5
PR-GCN [51] - 95.8
FFB6D [13] 92.7 96.6

No

RCVPose 95.2 96.6

PoseCNN [49] 85.4 93.0
DF (iterative) [46] 86.1 93.2
PVN3D [14]+ICP 92.3 96.1
FFB6D [13]+ICP 93.1 97.0

Yes

RCVPose+ICP 95.9 97.2

4.6 Comparison with SOTA

We next compared RCVPose against other recent competitive methods in the lit-
erature. We achieved state-of-art results on all three datasets, under a moderate
training effort (i.e. hyper-parameter adjustment). The most challenging dataset
was Occlusion LINEMOD, with results in Table 2. RCVPose+ICP outperformed
all other methods on average, achieving 71.1% mean accuracy, exceeding the next
closest method PVN3D by 7.9%. It achieved the top performance on all objects
except duck, where PVNet had the best result. Even without ICP refinement,
RCVPose achieved close to the same results at 70.2% mean accuracy.

One strength of RCVPose is scale tolerance. Unlike most other methods
whose performance reduced with smaller objects, our method was not impacted
much. Significantly, accuracy improved over FFB6D from 47.2%, 45.7% to 61.3%,
51.2% for the ape and cat, respectively. Another advantage is that it accumulates
votes independently for each pixel and is therefore robust to partial occlusions,
capable of recognizing objects that undergo up to 70% occlusion (see Fig. 5).
The LINEMOD dataset is less challenging, as objects are unoccluded. As listed
in Table 2, RCVPose+ICP still achieved the highest mean accuracy of 99.7%,
slightly exceeding the tie between RCVPose (without ICP) and PVN3D. RCV-
Pose+ICP was the only method to achieve 100% accuracy for more than one
object. Again the RGB-D methods outperformed all other data modes, and the
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 a) ape 

 

b) driller 

 

c) duck 

 

d) eggbox 

 

Fig. 5: RCVPose sample Occlusion LINEMOD results: Blue box = ground truth,
green box = estimate. RCVPose shows robustness to (even severe) occlusion

top RGB method that included depth refinement [33] outperformed the best
pure RGB method [27], supporting the benefits of the added depth mode.

The YCB-Video results in Table 3 list AUC and ADD(s), with and with-
out depth refinement. RCVPose is the top performing method, achieving from
95.2% to 95.9% ADD(s) and from 96.6% to 97.2% AUC accuracy, outperform-
ing the next best method FFB6D by 2.8% ADD(s) and 0.2% AUC. Notably,
RCVPose increased ADD(s) of the relatively small tuna fish can by a full 6%
compared to the second best PVN3D. We also evaluated RCVPose on the BOP
challenge benchmark [16], which is a standardized split of a number of datasets.
Our results on their LINEMOD, Occlusion LINEMOD, and YCB-Video splits
showed that RCVPose outperformed all other published results tested on this
benchmark, when averaged over all 3 datasets (see Supplementary Material Sec.
S.3). RCVPose runs at 18 fps on a server with an Intel Xeon 2.3 GHz CPU and
RTX8000 GPU for a 640×480 image input. This compares well to other voting-
based methods, such as PVNet at 25 fps, and PVN3D at 5 fps. The backbone
network forward path, radial voting process, and Horn transformation solver take
approximately 10, 41, and 4 msecs. per image respectively at inference time.

5 Conclusion

We have proposed RCVPose, a hybrid 6 DoF pose estimator with a ResNet-based
radial estimator and a novel keypoint radial voting scheme. Our radial voting
scheme is shown to be more accurate than previous schemes, especially when
the keypoints are more dispersed, which leads to more accurate pose estimation
requiring only 3 keypoints. We achieved state-of-the-art results on three popu-
lar benchmark datasets, YCB-Video, LINEMOD and the challenging Occlusion
LINEMOD, ranking high on the BOP Benchmark, with an 18 fps runtime. A
limitation is that training and inference are executed separately for each object
and keypoint (also true for other recent competitive approaches) and that the
3D voting space is memory intensive, which will be the focus of future work.

Acknowledgements: Thanks to Bluewrist Inc. and NSERC for their support
of this work.
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