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Abstract. While numerous 3D detection works leverage the comple-
mentary relationship between RGB images and point clouds, develop-
ments in the broader framework of semi-supervised object recognition
remain uninfluenced by multi-modal fusion. Current methods develop in-
dependent pipelines for 2D and 3D semi-supervised learning despite the
availability of paired image and point cloud frames. Observing that the
distinct characteristics of each sensor cause them to be biased towards de-
tecting different objects, we propose DetMatch, a flexible framework for
joint semi-supervised learning on 2D and 3D modalities. By identifying
objects detected in both sensors, our pipeline generates a cleaner, more
robust set of pseudo-labels that both demonstrates stronger performance
and stymies single-modality error propagation. Further, we leverage the
richer semantics of RGB images to rectify incorrect 3D class predictions
and improve localization of 3D boxes. Evaluating our method on the
challenging KITTI and Waymo datasets, we improve upon strong semi-
supervised learning methods and observe higher quality pseudo-labels.
Code will be released here: https://github.com/Divadi/DetMatch.

Keywords: Semi-Supervised Learning, Multi-Modal Learning, Object
Detection.

1 Introduction

Recent advances in Semi-Supervised Learning (SSL) for object recognition focus
on the single-modality setting, demonstrating improvements in either 2D or 3D
detection when leveraging unlabeled samples of that modality. However, SSL
works rarely study the combination of 2D and 3D sensors. In recently published
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Single-Modality Semi-Supervised Learning

Ground Truth
2D Pseudo-Labels
3D Pseudo-Labels

Our Proposed DetMatch

Object Missed in 2D

Sparse Car Missed in 3D

Van Incorrectly Detected as Car Now Correctly Pseudo-Labeled 
Using 2D-3D Matching

Fig. 1: Matching 2D and 3D detections, DetMatch removes false negatives and
positives to generate cleaner pseudo-labels. Points are colored for visualization

datasets, autonomous vehicles are equipped with a comprehensive collection of
sensors that yields multi-modal observations of each scene. Among these devices,
2D RGB cameras and 3D LiDARs have emerged as two independently useful but
also mutually complementary modalities. Thus, it is important for SSL methods
to utilize both 2D and 3D modalities for autonomous driving applications.

We propose a novel multi-modal SSL framework, DetMatch, that leverages
paired but unlabeled data of multiple modalities to train stronger single-modality
object detectors. Our pipeline is agnostic to the designs of the detectors, allowing
for flexible usage in conjunction with perpendicular advancements in architec-
tures. Further, by yielding single-modality models, DetMatch does not constrain
the trained detectors to the multi-modal or even the autonomous driving setting.

We observe that differences in modality characteristics between RGB images
and point clouds cause them to each be better at detecting different types of ob-
jects as illustrated in Figure 1. 3D point clouds are sparse, and their lack of color
causes structurally similar objects to be indistinguishable. On the other hand,
2D RGB images contain a dense array of color information, allowing for easier
discrimination of similarly shaped classes and better detection of objects with
few 3D points captured. However, unlike point clouds, RGB images lack depth
values. Each point in the 3D point cloud represents an exact, observed location
in 3D space, making objects spatially separable - this facilitates 3D detection of
objects that have overlapping, similar-colored projections in 2D. These factors
support our intuition that not only are RGB images and point clouds mutually
beneficial, but that their detection results are strongly complementary.

To leverage this relationship for SSL while keeping each detection model
single-modal, we associate 2D and 3D results at the detection level. Since 2D
and 3D have their own strengths, we use predictions in each modality that have a
corresponding detection in the other modality to generate a cleaner subset of box
predictions that is used to pseudo-label the unlabeled data for that modality. We
find that such pseudo-labels chosen using multiple modalities outperform single-
modality generated pseudo-labels. Although this method exploits the advantages
of each modality to generate stronger pseudo-labels, it insufficiently utilizes the
RGB images’ unique rich semantics. In the previous pipeline, a correctly localized
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& classified 2D detection cannot directly rectify a poor 3D detection. To remedy
this gap, we additionally enforce box and class consistency between matched 2D
pseudo-labels and 3D predictions and observe improved performance.

Our main contributions are as follows:

– We observe that differences in characteristics between 2D and 3D modalities
allow objects of high occlusion to be better detected in 3D, and objects of
similar shape but different class to be better identified and localized in 2D.

– Our SSL framework leverages the mutually beneficial relationship between
multiple modalities during training to yield stronger single-modality models.

– We extensively validate DetMatch the difficult KITTI [12] and Waymo [57]
datasets, notably achieving around 10 mAP absolute improvement over labeled-
only 3D baseline on the 1% and 2% KITTI settings and a 10.6 AP improve-
ment for Pedestrians in 3D on the 1% Waymo setting.

2 Related Work

Semi-Supervised Learning. SSL methods either use consistency regulariza-
tion [1,24,43,47,60] or pseudo-labeling [2,3,25,53,77]. The former forces noised
predictions on unlabeled images to be consistent. The seminal work [1] enforces
consistency over dropout, Temporal Ensembling [24] stores exponential moving
averages (EMA) of past predictions, and Mean Teacher [60] enforces consistency
between “student” and “teacher” models, the latter an EMA of the former.

Pseudo-labeling methods explicitly generate labels on unlabeled data and
train on them in lieu of ground truth. MixMatch [3] ensembles over augmenta-
tions, ReMixMatch [2] uses weak augmentations for labeling and strong augmen-
tations for training, and FixMatch [53] uses a confidence threshold to generate
labels. Our method builds on intuitions from Mean Teacher [60] and asymmetric
augmentations [3,27,33,53] to ensure the teacher model can correctly supervise
the student by maintaining an advantage over the student.
SSL for Object Detection. 2D detection models [5, 29, 32, 44, 45, 61] consist
of a feature extraction backbone [14], a region proposal network [32, 45], and
optionally, a second-stage proposal refinement module [5,45]. 3D object detection
methods [13, 28, 48, 72, 82] follow a similar structure, instead using voxel [9, 11,
13,50,72] or point [39,41,49,70,74] representations instead of 2D modules. Our
proposed DetMatch is agnostic to the single-modality detectors used.

Some 2D SSL object detection methods [19,59] enforce consistency over aug-
mentations, STAC [54] generates pseudo-labels offline, and Instant-Teaching [81]
uses Mosaic [4] and MixUp [78]. A line of work [26, 71] improves thresholding,
and others use EMA for predictions [73] and teacher models [33, 59]. Similarly,
for 3D SSL, SESS [80] trains consistency over asymmetric augmentations and
3DIoUMatch [64] thresholds on predicted IoU. Compared to 2D, more 3D meth-
ods use offline labeling [6,42,65], with some [42,65] using ensembling and multiple
timesteps to refine detections. Improvements in multi-frame fusion are perpen-
dicular to our work, as our DetMatch generates cleaner per-frame pseudo-labels
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that can be used for downstream multi-timestep aggregation and refinement. Un-
like these single-modality SSL methods, our pipeline jointly leverages the unique
characteristics of RGB and point clouds to improve SSL for each modality.
2D-3D Multi-Modal Learning. Many works have explored 2D-3D fusion for
detection and segmentation. Some methods [23, 40, 66] constrain the 3D search
space through 2D detection, while others fuse 2D and 3D features [16, 52, 63,
76, 79] or predictions [37, 38, 62, 68, 75]. Some works have explored cross modal
distillation [8], contrastive pretraining [34–36], or directly transferring 2D model
into 3D [69]. Most relevant to our work is xMUDA [18], which proposes a cross-
modality loss for semantic segmentation domain adaptation. Their 3D model is
supervised by 2D segmentation results and vice versa. However, unlike pixels and
points on which segmentation is done, detections in 2D and 3D do not have a
directly calculable bijective mapping, making cross-modal supervision in object
detection a less constrained problem. Further, training box regression requires
extra consideration. We address these difficulties in our framework.

3 Method

3.1 Problem Definition

In semi-supervised object detection, we have a small set of labeled data {(xl
i,y

l
i)}

Nl
i=1

and a larger set of unlabeled data {xu
i }

Nu
i=1, where Nl and Nu are the number

of labeled and unlabeled frames, respectively. We typically have Nu >> Nl.
We omit the scripts on xl

i when they are clear from context. In autonomous
driving [12,57] and indoor scene understanding [10,17,51,56,67], a single input
sample is a multi-modal tuple x = (x2D,x3D). x2D is a 2D RGB image and x3D

is a 3D point cloud. Similarly, each ground truth annotation is a tuple of 2D and
3D labels, which in turn are each a set of boxes and classification labels:

y =
(
y2D =

{
(b2D, c2D)(j)

}
,y3D =

{
(b3D, c3D)(j)

})
b2D ∈ R4 is a 2D box, b3D ∈ R7 is a 3D box, and c ∈ {0, 1}C is a one-hot
label indicating one of C classes. To reduce the labeling burden for training,
we generate y2D from y3D by projecting b3D to 2D to get b2D using camera
parameters. Thus, our pipeline requires no 2D labels for the target dataset.

3.2 Teacher-Student Framework

We use a student model S and a teacher model T of the same architecture. At a
high level, the teacher T generates pseudo-labels on the unlabeled data that the
student S trains on. For the teacher to correctly and stably supervise the student,
the teacher must maintain an advantage over the student in terms of the perfor-
mance. We accomplish this by iteratively updating and improving the teacher
model through training via exponential moving average (EMA) accumulation:

θT ← αθT + (1− α)θS (1)
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where α is the EMA momentum, and the θ are the model parameters. Unlike
methods that pseudo-label offline [6, 42, 54], our student and its EMA teacher
allow for continuous improvement of pseudo-labels throughout training.

3.3 Single-Modality Semi-Supervised Learning

Overview. In this section, we outline a straightforward teacher-student, single-
modality SSL approach based on the state-of-the-art 2D SSL method Unbiased
Teacher [33]. We find that with a well-tuned confidence threshold, this simple
baseline compares favorably against more complicated approaches in 3D such
as 3DIoUMatch [64]. We omit modality indicators 2D and 3D for this section,
because this SSL baseline is applicable to any detection model.
Pre-training. For the teacher to reasonably guide the student from the start,
we first pre-train the student model on the labeled data. Let T(x) = ŷT ={
(b̂T, ĉT)

(j)
}

and S(x) = ŷS =
{
(b̂S, ĉS)

(j)
}

denote the predictions of the

teacher and the student models respectively, with each consisting of a set of
bounding boxes and classification probabilities. The loss on labeled samples is:

Ll = Lloc

(
ŷl
S,
{
bl(j)

})
+ Lcls

(
ŷl
S,
{
cl

(j)
})

(2)

where Lloc and Lcls represent the localization and classification losses, respec-
tively. After the student is pre-trained to convergence, the teacher is initialized
with the student weights before the SSL training begins.
Semi-Supervised Training. To retain representations learned from the labeled
data, we train using an equal number of labeled and unlabeled samples per batch:

L = Ll + λLu (3)

where Ll is as defined in Equation 2, Lu is the loss on unlabeled samples and
λ is a weighting hyperparameter. To train on unlabeled data, we get box pre-
dictions from the teacher and only keep the ones with maximum classification
confidence above a threshold τ as pseudo-labels. We can write the teacher’s
generated pseudo-labels on the unlabeled data as:

ŷ
(>τ)
T =

{
(b̂T, ĉT)

(j)
}(>τ)

=
{(

b̂
(j)

T , ĉ
(j)
T

) ∣∣∣ max(ĉ
(j)
T ) > τ

}
(4)

giving us the unlabeled loss:

Lu = Lloc

(
ŷu
S,
{
b
(j)
T

}(>τ)
)
+ Lcls

(
ŷu
S,
{
argmax(c

(j)
T )

}(>τ)
)

(5)

After SSL training, we take the teacher as our final model for more stability.
Asymmetric Data Augmentation. Although EMA makes the teacher more
stable than the student, EMA alone does not give the teacher a large enough
advantage in performance. To further decouple their predictions, we adopt asym-
metric data augmentation on the inputs of the teacher and the student. We use
weak augmentationAweak(x) for the teacher and strong augmentationAstrong(x)
for the student. We find that this single-modality SSL framework outperforms
3DIoUMatch on driving datasets, so we adopt it as our baseline for comparison.
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Fig. 2: The proposed DetMatch. We have a teacher and student for each modality
and match 2D and 3D teacher predictions to supervise the students. The 2D
teacher also directly supervises the 3D student through 2D-3D Consistency

3.4 Multi-Modality Semi-Supervised Learning

Overview. Although this single-modality SSL framework improves over labeled-
only training, it has several disadvantages. Firstly, it does not leverage the paired
2D and 3D inputs, leading to sub-optimal single-modality results. Secondly, clas-
sification confidence is a poor measure of box localization performance as noted
by prior work [20,55]. Finally, we find that single-modality self-training is prone
to error propagation, leading to decreased performance in some cases.

To address these problems, we present our multi-modal semi-supervised frame-
work shown in Figure 2. DetMatch jointly maintains a teacher and a student for
each modality and matches 2D and 3D teacher predictions to generate a cleaner
set of pseudo-labels. Furthermore, to leverage the unique advantages of dense,
colorful 2D RGB images, we propose a 2D-3D consistency module that forces 3D
student predictions to be similar to 2D teacher boxes. Our multi-modal frame-
work also performs pre-training and keeps labeled losses Ll

2D,Ll
3D during SSL

training for each modality as in Section 3.3. As the pseudo-label generation
changes, our unlabeled losses Lu

2D,Lu
3D are different from Equation 5. We also

introduce an additional Lconsistency loss. The overall loss for our DetMatch is:

L = (Ll
2D + Ll

3D) + (Lu
2D + Lu

3D) + Lconsistency (6)

2D-3D Hungarian Matching & Supervision. A drawback of the pipeline
in Section 3.3 is its use of classification confidence to determine pseudo-labels. We
visualize this issue in the left plot of Figure 3, which shows that many 3D boxes
with a low max score are highly overlapped with a ground truth box. Moreover,
although scoring modules directly supervised by true IoU [48,64] are better than
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Fig. 3: Comparison between boxes’ true 3D ground-truth IoU and various meth-
ods of assessing box quality on KITTI 1% unlabeled data
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Fig. 4: 2D and 3D model performance at various occlusion levels

max classification score as shown in the middle plot, this IoU prediction module
is unable to differentiate among high IoU values 0.6 - 0.9 as evidenced by the
vertical cluster on the right side. As such, pseudo-labels generated using these
single-modality measures of box quality prediction remain noisy.

We first examine the pros and cons of the 2D and 3D modalities. We plot in
Figure 4 the P/R curves of 2D and 3D detections for Pedestrian and Car classes
on the KITTI validation dataset, with a separate curve for ground truth objects
labeled as low, medium, and high occlusion. We find that at the same occlusion
level, 2D better detects and localizes Pedestrians when compared to 3D. Due
to the sparsity of point clouds and their lack of color information, Pedestrians
are often confused with poles and trees of similar shape in 3D. However, such
ambiguous objects are clearly identifiable in the dense 2D RGB image.

On the other hand, 2D detection struggles with highly overlapping objects
due to its lack of depth information - when viewed in the 3D point cloud, such
overlapping objects are clearly separated. This trend is especially clear when
viewing the P/R curves for the Car class. Although 2D outperforms 3D for
objects of low occlusion, we see a clear reversal for highly occluded objects. These
observations clearly demonstrate that 2D and 3D modalities are complementary
at the detection level - a relationship we propose to leverage for SSL by choosing
as pseudo-labels detections with a corresponding match in the other modality.

More specifically, as shown in Figure 5, we compute an optimal bipartite
matching between 2D and 3D teacher predictions using the Hungarian Algorithm
[22] and consider pairs with a matching cost below a threshold τhung “matched”.
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Fig. 5: Illustration of the 2D-3D Hungarian matching algorithm

The algorithm for matched pairs generation can be written as:{(
(b̂T, ĉT)

2D, (b̂T, ĉT)
3D

)(j)
}(<τhung)

= Hungarian
τhung

2D-3D(ŷ2D
T , ŷ3D

T ) (7)

We omit notation for the matching algorithm and thresholding for brevity. In-
spired by recent works [7,58] on detection using learnable queries, our matching
cost between a pair of 2D and 3D box predictions has three components:

Lmatch

(
(b̂T, ĉT)

2D, (b̂T, ĉT)
3D

)
= λL1LL1 + λiouLiou + λd-focalLd-focal (8)

Note that unlike classification score, a lower cost indicates a stronger match.
LL1 and Liou are box consistency costs between the projected 3D box and

the 2D box. To get the former, we project the 8 corners of the 3D box to the
image and compute a tightly fitted 2D box. LL1 calculates l1 loss between the
2D box parameters and Liou calculates generalized IoU loss [46]. These costs
force paired 2D and 3D pseudo-labels to refer to the same object agree on its
localization. Unlike single-modality box localization confidence methods that
suffer from modality-specific drawbacks and self-confidence bias, our multi-modal
box consistency cost gives us a natural way to assess box quality.
Ld-focal calculates class prediction consistency between the 2D and 3D pre-

dictions. We formulate a double-sided version of FocalLoss [30]:

Ld-focal = FocalLoss
(
ĉ2DT , argmax(ĉ3DT )

)
+ FocalLoss

(
ĉ3DT , argmax(ĉ2DT )

)
(9)

Note that this double-sided FocalLoss allows for a smooth trade-off between 2D
and 3D confidence. A low-confidence 3D box can still be chosen as a pseudo-label
if its matched 2D box has high confidence. Intuitively, high-confidence predic-
tions of one modality can “promote” low-confidence predictions of the other
modality, a dynamic selection not possible with simple confidence thresholding.
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Further, although this formulation of Lfocal does prefer higher-confidence boxes,
its motivation is different from that of confidence thresholding - Lfocal considers
consistency between classification predictions in 2D and 3D. If both modalities
agree on the semantic class of a region, they will have a lower matching cost.

Our proposed 2D-3D matching cost is a remarkably more accurate measure of
box localization quality as shown in the rightmost plot of Figure 3. We then use
the matched and thresholded pairs of 2D and 3D teacher boxes as pseudo-labels
to supervise the 2D and 3D students on the unlabeled data:

Lu
modal =Lloc

(
ŷmodal
S ,

{
(bmodal

T )(j)
}(<τhung)

)
+ Lcls

(
ŷmodal
S ,

{
argmax

(
(cmodal

T )(j)
)}(<τhung)

)
for modal ∈ {2D, 3D} (10)

2D-3D Consistency. Through our 2D-3D Hungarian Matching, we generated
a cleaner set of pseudo-labels to supervise each student. However, although we
have leveraged the advantages 3D can provide 2D, we have not fully exploited
the benefits 3D can get from 2D. We have fulfilled the former because although
a core advantage of 3D is detection of highly occluded or visually unclear boxes,
we need to differentiate these beneficial 3D teacher boxes from the false positives
3D detection is especially prone to. So, it is necessary to first match 3D boxes
with 2D teacher boxes to filter noisy boxes while retaining the beneficial boxes.

On the other hand, the semantically rich format of 2D RGB images make
class confusion less likely and instead enables better localization of non-heavily
occluded objects as shown in Figure 4. So, high-confidence 2D boxes can provide
an additional strong supervision for the 3D student. However, in our previous
pipeline, 2D teacher boxes can only supervise 3D indirectly through 3D teacher
boxes that are potentially worse than 2D in terms of classification and localiza-
tion. We propose to directly match 2D pseudo-labels and 3D student boxes and
enforce box and class consistency between them as shown in Figure 6. Applying
Hungarian Matching and thresholding as in Equation 7:{(

(b̂T, ĉT)
2D, (b̂S, ĉS)

3D
)(j)

}(<τhung)

= Hungarian
τhung

2D-3D(ŷ2D
T , ŷ3D

S ) (11)
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Then, the 2D-3D consistency loss between matched 2D and 3D pairs is:

Lconsistency = λL1LL1 + λiouLiou + λfocalLfocal (12)

Losses LL1 and Liou are identical to the box consistency costs in Equation 8.
Lfocal is FocalLoss with 3D student probabilities supervised by the 2D teacher
box class. This final 2D-3D consistency loss fully utilizes the strengths of RGB.

4 Experiments

4.1 Datasets and Evaluation Metrics

KITTI. We follow 3DIoUMatch and evaluate on the same 1% and 2% labeled
frames sampled from 3712 training frames, and we also evaluate on 20% of
driving sequences. We average over three splits for each % setting. We report for
both 2D and 3D the moderate mAP for the Car, Pedestrian, and Cyclist classes.
Waymo Open Dataset. We also evaluate on the large-scale Waymo dataset,
which has 158361 training frames. Each frame has 360 degree LiDAR and 5
RGB cameras, with the cameras only capturing 240 degrees. This limitation,
coupled with the complex and diverse urban setting, makes multi-modal training
especially difficult on Waymo. We validate our framework on the 1% labeled data
setting, sampling 1% of the 798 sequences, which results in around 1.4k frames.
Due to the sheer scale of the Waymo dataset and the observation that even this
1% split has four times the cars and eight times the pedestrians as the full KITTI
dataset, we validate on a single Waymo split. We report mAP and mAPH at
both LEVEL 1 and LEVEL 2 difficulties for Car and Pedestrian.

4.2 Implementation Details

We use PV-RCNN [48] for 3D detection and Faster-RCNN [45] with FPN [29]
and ResNet50 [14] for 2D detection. To reduce labeling costs specifically for
autonomous driving, we follow multi-modality methods [40,52,62] and pre-train
the 2D detector on COCO [31]. This is a reasonable setting because labeling
costs associated with annotating autonomous driving frames in 3D for specific
applications do not preclude the existence of publicly available 2D detection
datasets in another domain. Further, we find in Table 7 that DetMatch still
dramatically improves over SSL baselines even without COCO pre-training.

We set τ3D = 0.3, τ2D = 0.7, and τhung = −1.5, and use the same τhung
threshold for both applications of Hungarian Matching. For KITTI, we train for
5k iterations with a batch size of 24; for Waymo, we train for 12k iterations with
a batch size of 12. Additional details can be found in the supplementary.

4.3 Results on KITTI

We evaluate our model on 2D and 3D object detection on KITTI, comparing with
3DIoUMatch and our SSL baseline, which is equivalent to Unbiased Teacher [33]
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Table 1: 3D detection performance comparison on KITTI. Training on the la-
beled samples to convergence, we observe slightly better labeled-only perfor-
mance than 3DIouMatch. Improvement is increase from labeled-only results.

Method
1% 2% 20%

mAP Car Ped Cyc mAP Car Ped Cyc mAP Car Ped Cyc

Labeled-Only
(3DIoUMatch Reported)

43.5 73.5 28.7 28.4 54.3 76.6 40.8 45.5 - - - -

3DIoUMatch 48.0 76.0 31.7 36.4 61.0 78.7 48.2 56.2 - - - -
Improvement +4.5 +2.5 +3.0 +8.0 +6.7 +2.1 +7.4 +10.7 - - - -

Labeled-Only
(Reproduced by Us)

45.9 73.8 30.4 33.4 55.8 76.1 44.9 46.4 61.3 77.9 47.1 58.9

Confidence Thresholding 54.4 75.9 42.7 44.6 63.3 76.5 50.0 63.4 68.1 77.8 58.0 68.6
Improvement +8.5 +2.1 +12.3 +11.2 +7.5 +0.4 +5.1 +17.0 +6.8 -0.1 +10.9 +9.7

Ours 59.0 77.5 57.3 42.3 65.6 78.2 54.1 64.7 68.7 78.7 57.6 69.6
Improvement +13.1 +3.7 +26.9 +8.9 +9.8 +2.1 +9.2 +18.3 +7.4 +0.8 +10.5 +10.7

Table 2: 2D detection performance comparison on KITTI. Note that although
we train with projected 3D boxes, we evaluate with annotated 2D boxes.

Method
1% 2% 20%

mAP Car Ped Cyc mAP Car Ped Cyc mAP Car Ped Cyc

Labeled-Only 65.3 86.6 68.6 40.8 68.9 87.4 70.7 48.3 63.9 87.5 64.5 39.8

Confidence Thresholding 60.4 86.1 69.2 25.8 65.5 87.6 71.5 37.2 66.2 88.8 70.0 39.7
Improvement -4.9 -0.5 +0.6 -15.0 -3.4 +0.2 +0.8 -11.1 +2.3 +1.3 +5.5 -0.1

Soft-Teacher [71] 67.3 88.3 68.9 44.7 70.5 88.7 70.8 52.1 67.2 89.0 69.2 43.4
Improvement +2.0 +1.7 +0.3 +3.9 +1.6 +1.3 +0.1 +3.8 +3.3 +1.5 +4.7 +3.6

Ours 71.4 88.8 73.9 51.7 74.5 89.0 74.6 59.9 72.8 89.1 71.6 57.7
Improvement +6.1 +2.2 +5.3 +10.9 +5.6 +1.6 +3.9 +11.6 +8.9 +1.6 +7.1 +17.9

in 2D. The results are shown in Tables 1 and 2. First, we find that with a well-
tuned 3D confidence threshold, our 3D-only confidence thresholding baseline is
able to outperform 3DIoUMatch in both mAP absolute performance and im-
provement. However, we note that for the Car class, 3DIoUMatch outperforms
the 3D SSL baseline which struggles to improve performance over labeled-only
training in 2% and 20% settings. This is because Car is the most common class
and is already well-trained just from the labeled data, making further improve-
ments difficult. Our proposed DetMatch, leveraging both 2D and 3D detections,
consistently outperforms all methods. Notably, we find that in the 1% setting,
we observe a remarkable 26.9% boost in AP, far outperforming 3DIoUMatch,
which achieves a 3% improvement, and our 3D SSL baseline, which achieves a
12.3% improvement. This gap can be attributed to the ambiguity of pedestrians
in 3D and the relative clarity of this class when viewed in the RGB image.

For 2D detection, we see that the Unbiased Teacher baseline suffers from a
drop in performance through SSL training for 1% and 2% settings despite our hy-
perparameter search. Soft-Teacher [71] is able to improve performance, but only
by a small margin. We attribute this to two factors. First, SSL on autonomous
driving datasets is a more difficult setting than SSL on COCO because driving
datasets like KITTI have less image diversity, making it more susceptible to
over-fitting. Indeed, as the amount of labeled data increases for KITTI, 2D SSL
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Table 3: Performance comparison on the validation set of the Waymo Dataset.

1% Data
3D 2D

Car L1 Car L2 Ped L1 Ped L2 Car Ped
mAP mAPH mAP mAPH mAP mAPH mAP mAPH L1 L2 L1 L2

Labeled-Only 47.3 45.6 43.6 42.0 28.9 15.6 26.2 14.1 42.3 39.5 50.8 47.0

Confidence Thresholding 52.6 51.6 48.4 47.5 35.2 16.7 32.0 15.2 44.4 41.3 48.7 45.1
Improvement +5.3 +6.0 +4.8 +5.5 +6.3 +1.1 +5.8 +1.1 +2.1 +1.8 -2.1 -1.9

Ours 52.2 51.1 48.1 47.2 39.5 18.9 35.8 17.1 47.8 44.4 50.6 46.8
Improvement +4.9 +5.5 +4.5 +5.2 +10.6 +3.3 +9.6 +3.0 +5.5 +4.9 -0.2 -0.2

improves. We note that even the limited 1% setting on COCO has 1171 images,
each in a completely different scene. On the other hand, KITTI 1% only has 37
images, and even the larger 20% setting, due to its constraint of sampling driving
sequences, has comparatively lower scene diversity. These factors, coupled with
pre-training on COCO which strengthens the original model, make improving on
the labeled-only baseline difficult. Second, single-modality training is far more
susceptible to self-training error propagation. Although the asymmetric augmen-
tation and EMA work to decouple the student from the teacher, their predictions
are still highly correlated, causing the student to overfit to its own predictions,
including its own errors. Our results show that the proposed DetMatch is more
robust to these factors, demonstrating substantial performance gains over the
labeled-only and 2D SSL baselines. Notably, we find that detection of Cyclists, a
rare category, declines by 15% mAP under Unbiased Teacher in KITTI 1% but
improves by 10.9% mAP with DetMatch, a gap of 25.9% mAP.

4.4 Results on Waymo Open Dataset

To test the robustness of our framework, we additionally benchmark DetMatch
on the difficult Waymo dataset. Because Waymo’s 2D cameras have a combined
FOV of 240 degrees, we use the 3D SSL pseudo-labels for the remaining 120
degrees when training DetMatch. We keep hyperparameters of DetMatch, which
were tuned on KITTI, the same for Waymo and find that they are generally
applicable. Our 3D and 2D results are summarized in Table 3. We find that the
confidence thresholding baseline is strong, consistently demonstrating improve-
ments of 5% or 6% on the mAP metric for 3D. For 2D, we see a smaller im-
provement and even observe the performance on pedestrian drop by two points.
We attribute this to the same factors that caused a drop in KITTI - although
Waymo dataset is larger, its 1% labeled data diversity less than that of COCO.

DetMatch slightly drops in performance for Cars in 3D compared to the SSL
baseline. However, it improves on the SSL baseline by a substantial 4.3 mAP for
Pedestrian L1. Further, DetMatch achieves a large boost of 3.4 mAP for Car L1
in 2D over single-modality SSL, and although it does not boost performance for
2D Pedestrian, DetMatch stymies the decline from Unbiased Teacher.

Overall, compared to the labeled-only and SSL baselines, our method signif-
icantly boosts performance for Pedestrian on 3D and Car on 2D while largely
maintaining other settings’ performance. We attribute the large Pedestrian 3D
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Table 4: 3D Effect of τhung
3D Eval mAP Car Ped Cyc

Labeled-Only 45.9 73.8 30.4 33.4

τhung = −1 54.2 76.1 49.3 37.2
τhung = −1.5 57.9 76.7 55.0 42.0
τhung = −2 52.4 76.9 43.7 36.7

Table 5: 2D Effect of τhung
2D Eval mAP Car Ped Cyc

Labeled-Only 65.3 86.6 68.6 40.8

τhung = −1 69.3 87.9 70.4 49.5
τhung = −1.5 70.2 88.7 72.1 49.9
τhung = −2 56.5 89.5 52.3 27.7

Table 6: Ablation of DetMatch Modules

1% Data
3D 2D

mAP Car Ped Cyc mAP Car Ped Cyc

Labeled-Only 45.9 73.8 30.4 33.4 65.3 86.6 68.6 40.8
+Confidence Thresholding 54.4 75.9 42.7 44.6 60.4 86.1 69.2 25.8
+ 2D-3D Teacher Matching 57.9 76.7 55.0 42.0 70.2 88.7 72.1 49.9

+
2D Teacher & 3D Student

Box Consistency
59.4 77.4 56.5 44.4 69.8 88.5 71.9 49.0

+
2D Teacher & 3D Student

Class Consistency
59.0 77.5 57.3 42.3 71.4 88.8 73.9 51.7

+
2D Teacher & 3D Student

MSE instead of Focal
58.2 77.6 57.7 39.3 68.1 88.6 72.0 50.8

improvement to DetMatch’s effective use of RGB images’ advantage in identify-
ing and localizing this class. On the other hand, the Car 2D boost stems from
the 2D detector benefiting from 3D’s stronger detection of Cars, which are often
highly occluded in the urban streets captured in Waymo. Thus, although our
DetMatch does not uniformly boost all classes, perhaps due to Faster-RCNN
with ResNet50 being an older and weaker model in 2D compared to PV-RCNN
in 3D, the remarkable boost regardless in Pedestrian 3D detection and Car 2D
detection demonstrate that our pipeline is effective in exploiting the unique ad-
vantages of each sensor to improve detections of the other modality.

4.5 Ablation Studies and Discussion

Here, we focus on quantitative results; visualizations are in the supplementary.
Threshold for DetMatch. Results for KITTI 1% at various τhung on Det-
Match with just the 2D-3D Teacher Matching pseudo-labeling module are shown
in Tables 4 and 5. Ablations on single-modality thresholds τ3D and τ2D are in the
supplementary. We find that Car prefers a more stringent (lower) cost threshold.
Further, we observe that 2D and 3D mAP both peak at the same τhung = −1.5,
which shows that improvements in one modality strongly benefit the other.
Ablation of Multi-Modal Components. Next, we study the effect of each
module of DetMatch in Table 6. Components not part of our final model are in
gray. We focus on the Car and Pedestrian classes for this fine-grained comparison
as Cyclist results vary by up to 3 AP even on 100% labeled data runs. Replacing
the single-modality thresholding with our 2D-3D teacher matched pseudo-labels
results in a large improvement. This shows us that pseudo-labeling with objects
consistently detected in both modalities better supervises the student.

Enforcing box consistency between the 2D teacher and 3D student improves
substantially improves the 3D performance with a small 0.2 point drop in Car
and Pedestrian 2D performance. We attribute this boost to the 3D student now
generating boxes that better fit objects in the dense 2D image. FocalLoss class
consistency boosts 3D and 2D Pedestrian performance by 0.8 and 2 points, re-
spectively. This is in-line with our observations that Pedestrian is difficult to
detect in 3D - by rectifying class prediction of under-confident or incorrect 3D
detections using 2D, the 3D model improves. Further, the 2D performance im-
proves because 2D pseudo-labels are tied with 3D teacher predictions. By train-
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Table 7: Impact of COCO Pre-training

1% Data
3D 2D

mAP Car Ped Cyc mAP Car Ped Cyc

w/ COCO

Pre-Training

Labeled-Only 45.9 73.8 30.4 33.4 65.3 86.6 68.6 40.8
Ours 59.0 77.5 57.3 42.3 71.4 88.8 73.9 51.7

w/o COCO

Pre-Training

Labeled-Only 45.9 73.8 30.4 33.4 46.2 77.6 47.1 13.9
Ours 57.1 77.7 55.3 38.3 59.1 85.9 59.0 30.7

ing the 3D model to generate more accurate 3D Pedestrian detections, the 2D
model is better supervised as well. This improvement demonstrates the mutually
beneficial relationship between improvements in the 2D and 3D models.

We try replacing FocalLoss in class consistency with MSE following Mean
Teacher [60]. That this decreases performance gives us more insight into the
purpose of class consistency. MSE encourages logit matching [21, 60], which is
closely related to knowledge distillation [15], where, by imitating class similarities
predicted by a teacher, the student learns the underlying function of the teacher.
In our setting, the teacher and student are of different modalities and consume
data of very different representations, inhibiting such mimicking. As such, what
our consistency module does is directly interpretable - it rectifies 3D student box
and class predictions using the 2D teacher outputs.
Without COCO Pre-training. We also evaluate our pipeline without COCO
pre-training, as shown in Table 7. We find that although COCO pre-training is
important for 2D performance, we still achieve strong 3D performance without
it, notably maintaining a substantial 24.9% AP improvement for Pedestrian.
This shows that DetMatch does not need COCO, instead benefiting more from
the multi-modal interaction. Further, improvements from using COCO shows
that our framework is a unique and effective way of transferring benefits from
2D labels, which are easier to annotate than 3D labels, to the 3D detection task.

5 Conclusion

In this work, we proposed DetMatch, a flexible multi-modal SSL framework for
object detection that obtains state-of-the-art performance on various limited la-
beled data settings on KITTI and Waymo. We demonstrate that pseudo-labels
generated by matching 2D and 3D detections allow each modality to benefit from
the other’s advantages and improvements. Further, by enforcing consistency be-
tween 3D student and 2D teacher boxes, we leverage the unique advantages that
the dense RGB image gives the 2D detector in detecting ambiguous objects. As
our pipeline achieves improved performance on 3D detection by using a COCO
pre-trained 2D detector, our method also shows potential in leveraging cheaper
or publicly available 2D annotations to lower 3D data requirements.

Acknowledgements: Co-authors from UC Berkeley were sponsored by Berke-
ley Deep Drive (BDD).
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