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S.1 Overview

We provide additional experiments to further explore the robustness of our
method. Experimental results on the PASCAL VOC 2012 [S.1] are represented
in Sec. In Sec. we investigate correlations between the object size and
the scale at which it is detected. We also utilize our IoU loss in other detectors
and report the results in Sec. [S.4] Inference details are also discussed in Sec.
Finally, we qualitatively show some ObjectBox results in Sec.

S.2 PASCAL VOC 2012

To demonstrate the effectiveness of our method on different object categories
in a subtle way, we perform another experiment on the PASCAL VOC 2012
dataset. We trained the network under the same settings as we performed on
MS-COCO dataset. Notably, our method does not need to set dataset-dependent
hyperparameters like anchor boxes. The results are shown in Table Object-
Box outperforms the other methods, achieving a higher AP score on 13 of the 20
object classes. Overall, ObjectBox achieves an mAP of 83.7%, which is +2.4%
higher than the next best performing method. It can be observed that ObjectBox
works relatively well in both small object and large object classes. For example,
it achieves 92.1% in the class ‘plane’ and 93.3% in the class ‘car’. It can be
observed that ObjectBox is either the best or the second-best method in terms
of AP score in all categories except ‘cat’, ’dog’, and ‘bike’. This is probably due
to the use of YOLO’s Darknet backbone, as YOLOv2 similarly does not work
well in these categories.

S.3 Multiscale Prediction

We investigate correlations between the object size and the scale at which it is
detected. As shown in Table we consider predictions per individual scales,
observing that larger objects are better detected at coarser scales, and smaller
objects are better detected at finer scales, despite being trained without the
bias in defining the positive samples. Each scale level still contributes to the
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Table S.1. Detection results on the PASCAL VOC 2012 dataset. F-RCNN denotes
Faster R-CNN. The bold and underlined numbers respectively indicate the best and
second best results in each column
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prediction of objects at other scales. This shows that the learning can be better
because all objects are being learned at all possible scales.

Table S.2. Predictions per scale level on the MS-COCO dataset

Avg. Precision, IoU Avg. Precision, Area Avg. Recall, Area
Scale level AP AP5() AP75 APS AP}M APL ARS ARM ARL

0, s={8} 249 449 321 255 11.7 20.5 381 184 37.3
1, s={16} 35.7 56.4  37.7 243 49.2 33.6 37.6 64.8 46.3
2, s={32} 42.7 61.6 46.0 22.0 48.0 56.1  30.9 63.2 75.6
all, s={8,16,32} 46.8 65.9 49.5 26.8 49.5 57.6 394 65.2 77.0

S.4 IoU Loss

In this work, we propose an IoU-based loss tailored for our object detection
method. Recall that our loss is applied to our regression targets {L,T, R, B},
which are distance values from the corners of the object center cells to the four
sides of the bounding box. There are other methods that use similar targets for
box regression. For example, FCOS [S.9] defines {l,t,r,b} as regression targets
as distances from each positive location to the bounding box boundaries. The
positive locations are selected based on the scale ranges defined for each pyra-
mid level. ATSS [S.11] uses the same targets but with a different strategy for
positive sample selection. It specifically uses statistical characteristics of objects
as the IoU threshold to adaptively select enough positives for each object from
appropriate pyramid levels.

Regardless of their sample selection strategies, both FCOS and ATSS use
IoU-based losses, such as the GIoU loss function, for bounding box regression.
In our experiments, we replaced their regression losses with our tailored IoU loss,
and trained their models with the same settings as the original ones. The results
are reported in Table It can be seen that our loss consistently improves
detection performance. Our loss improves FCOS by +0.2% on AP, +0.6% on
APsy, +0.1 on APg, 40.9 on APy, and +1.2 on APy. Similarly, it achieves a
higher performance in ATSS by +0.4% on AP, +1.1% on APsg, +0.1% on APss5,
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Table S.3. Relative performance of our loss function and GIoU loss, when applied to
ObjectBox, FCOS and ATSS

Avg. Precision, IoU Avg. Precision, Area
Method Backbone Loss AP APsg AP;s APs APy APp

CloU 42.1 62.1 452 256 449 520
FCOS [S9] ResNeXt-101 © " 103 627 452 957 458 532
CloU 43.6 62.1 474 26.1 47.0 536
ours 44.0 63.2 475 26.2 484  54.2
CToU 44.9 63.6 47.3 25.6 485 559
ours 46.1 65.0 483 26.0 48.7  57.3
GloU 45.7 64.2 43.0 26.1 489 57.0
CSPDarknet ' " 46.8 650 49.5 26.8 49.5  57.6

ATSS [S.11] ResNet-101

ResNet-101

ObjectBox

+0.1 on APg, +1.4 on APy, and +0.6 on AP,. Note that our loss function is
directly applied to the network outputs. It therefore keeps the box integrity
based on the model regression targets, and scores the overlapping areas in all
four directions.

In Sec. 4.3, we showed the effectiveness of our loss function for box regression,
where replacing it with other losses drastically decreased performance. It was
however coupled with the impact of regression location from only one center
location. To further investigate the necessity of this loss in our method, we keep
the best settings from our ablation study in Sec. 4.3, and only replace our loss
with the GIoU loss as used in FCOS and ATSS. Particularly, we use our proposed
regression targets ({L, T, R, B}), augmented centers (the best results in Table 3
part A), one prediction per scale level, and no scale range constraints. As shown
in Table ObjectBox with a ResNet-101 backbone clearly benefits from the
new IoU loss since it obtains a higher performance by +1.2% on AP, +1.4%
on APsy, +1.0% on AP7;, +0.4 on APs, +0.2 on APy, and +1.4 on APy,
when compared with GIoU loss. The performance boost on ObjectBox with a
CSPDarknet backbone is also evident as our loss improves the performance by
+1.1% on AP, +1.7% on APsq, +1.5 on APs5, +0.7 on APg, +0.6 on APy,
and +0.6 on APy,. These relative improvements indicate that the box IoU loss
in our method practically helps to align the bounding boxes more precisely.

S.5 Inference

Our method does not impose any additional costs to the inference stage. Given
an input image, ObjetcBox predicts an objectness (confidence) score, m clas-
sification scores, and four regression values ({L,T, R, B}) for each feature map
location, where m denotes the number of class labels. Therefore, the network
output is of size 3 x Sw X Sﬁ x (m +5), where s; € {8,16,32}. The predictions
at all scale levels are sorted based on their confidence scores. They are then
refined sequentially based on a threshold value (we set it as 0.001) until all can-

didates are investigated. To reduce redundancy in the box prediction, we use
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Table S.4. Inference speed comparison

Method Backbone # params FPS AP
SSD513 [S.4] ResNet-101 57 M 43 31.2
Faster R-CNN w/ FPN [S.2] ResNet-101 42M 26 36.2
YOLOv3 [S.7] DarkNet-53 65 M 20 33.0
FCOS [S.9] ResNeXt-101 32 M 50 42.1
ATSS [S.11] ResNet-101 32 M 50 43.6
ObjectBox ResNet-101 30 M 70 46.1
ObjectBox CSPDarknet 86 M 120 46.8

non-maximum suppression (NMS) [S.5] on the predicted boxes based on their
classification error. We use an NMS threshold 0.6 and obtain the final results by
keeping the highest quality bounding boxes and eliminating the others.

We used the same sizes of input images as in training, and evaluated the
inference speed on a single Titan RTX GPU by measuring the end-to-end infer-
ence time. We selected different anchor-based and anchor-free methods as com-
parisons, including SSD513 [S.4], Faster R-CNN with FPN [S.2], YOLOv3 [5.7],
FCOS [S.9], and ATSS [S.11]. As shown in Table[S.4] the average inference speed
of ObjectBox with the ResNet-101 backbone is 70 FPS. Meanwhile, using the
CSPDarknet backbone can improve the inference speed by 50 FPS, achieving
120 FPS. ObjectBox is significantly faster than other detectors, while having a
larger number of parameters (86 M). For instance, the detection speed of Ob-
jectBox is more than two times higher than that of FCOS (50 FPS). Even with
the same ResNet-101 backbone, ObjectBox outperforms the ATSS frame rate
by 40%, i.e. from 50 FPS for ATSS to 70 FPS for ObjectBox.

The superior time performance of ObjectBox is mainly due to its smaller
detection head, and that it considesrs only object central locations for box re-
gression. More specifically, the number of predictions per scale level is just one
in ObjectBox, while it is equal to the number of anchors (usually > 1) in anchor-
based detectors. It also filters out all non-center locations by using the confidence
score, which undoubtedly reduces the NMS computational load. By relaxing the
scale range constraints, ObjectBox redefines positive and negative training sam-
ples without incurring any additional overheads. It is therefore quite efficient,
while achieving the state-of-the-art performance.

S.6 Qualitative results

In Figure we show some detection examples on the MS-COCO test-dev
dataset. It can be seen that our method is able to successfully detect objects
with different sizes and different scene types, with severely overlapping boxes.
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Fig. S.1. Detection examples of applying ObjectBox on COCO test-dev
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