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In this supplementary material, we provide additional insights and details
about certain aspects of the main paper that were not fundamental for its un-
derstanding, but that are helpful for interested readers, to fully comprehend and
replicate our method. In Section 1, we provide in-depth descriptions of each net-
work component with mathematical definitions as well as architecture diagrams.
Next, we present dataset preparation details including dataset processing, query
sampling and correspondence ground truth generation in Section 2, followed by
the implementation details regarding our training procedure, hyper-parameter
choices and an overview of inference process in Section 3. In Section 4, we provide
additional details on how to compute the metrics used in the paper, in particular
the mean reprojection error Area Under the cumulative Curve (AUC). Finally,
in Section 5 we detail how we generate Table 1 in the main paper and pro-
vide more insights about the practical challenges of large-scale structure-based
localization.

1 Architecture Details

Feature Encoder. We adopt the same encoder architecture as the one pre-
sented in [3, 17], which is shown in Fig. 1. The encoder (left) consists of a
cascade of residual blocks, where each block (right) is composed of sequential
point-shared fully connected layers, followed by instance normalization and non-
linearity (ReLUs). We use two siamese encoders with shared weight parameters
to encode bearing vectors of both 2D image keypoints and 3D points, since it
has been shown to improve GoMatch’s performance (c.f . Section 5.3 in the main
paper).
Attention. We use a graph neural network to update features from the same
modality (self-attention) and multi-head attention layers to exchange features
across modalities (cross-attention). This is similar to PREDATOR [12], although
in that work, the attention module is inserted in the bottleneck of the keypoint
encoder, i.e., KPConv [25], and thus it is applied to the downsampled keypoints.
In our case, the feature encoder does not have a bottleneck and we instead apply
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Fig. 1. Feature Encoder (left) & Residual Block (right)

the attention directly to the final output of our encoder. The full attention
module contains self → cross → self-attention layers and is applied to both
query and database encoded features.

We employ an independent graph neural network [29] to the features com-
ing from each modality. These exchange and refine features of every keypoint
type with a fixed number of closest neighbors in coordinate space. Let f i ∈ Rd

represent the feature for keypoint i and f j the feature corresponding to one of
its neighbors. Let Ei represent the set of edges formed between keypoint i to its
closest K neighbors in coordinate space. We update feature fi according to
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where hθ is a composition of a fully connected layer, instance normalization [27],

and a leaky ReLU, and f
(0)
i is the feature produced by the encoder for keypoint

i.

To exchange information across modalities we leverage cross-attention [28]. In
a cross-attention layer, every keypoint in a modality will interact with keypoints
from the other modality through multi-head attention. There are three important
concepts that govern this interaction: queries, keys and values. This setup mimics
traditional maps or dictionaries, albeit in a continuous form, where every key is
paired with a value and these values can be extracted by querying them with the
appropriate key. Specifically, given a feature f i coming from a keypoint in one
modality and features gj from an arbitrary keypoint j in the other modality,
we form the query, keys and values according to qi = Wqf i, kj = Wkgj and
vj = Wvgj , where Wq, Wk, Wv ∈ Rd×d are parameters learned by the network. We
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update feature f i according to

αij = softmax(q⊤
i kj/

√
d) (3)
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Sinkhorn Matching. After getting refined features from the attention mod-
ule, the Sinkhorn matching stage is responsible for assigning correspondences
between query and database keypoints. To that effect, we leverage the Sinkhorn
algorithm [4, 23] that has foundations in optimal transport theory, to solve the
assignment problem with holistic reasoning. Sinkhorn produces a joint discrete
probability distribution of two keypoints being matched. Consider the following
features after attention fATT

i and gATT
j , corresponding to the i-th query key-

point and the j-th database keypoint. We construct an assignment cost matrix
M ∈ RM×N as

mij =

∥∥∥∥∥ fATT
i

∥fATT
i ∥

−
gATT
j

∥gATT
j ∥

∥∥∥∥∥ , (6)

where mij is the element in the i-th row and j-th column of M. Sinkhorn provides
a solution for the following entropy regularized optimization problem:

P∗ = argmin
P∈U(r,c)

M∑
i=1

N∑
j=1

mijpij − τpij log pij (7)

where U(r, c) := {P ∈ RM×N
+ , P1N = c, P⊤1M = r}, r ∈ RM

+ , c ∈ RN
+ ,

∑M
i ri =

1,
∑N

j cj = 1 and with 1M denoting a vector of 1s of size M . The vectors r and
c represent the (marginal) probability vectors of keypoints being matched. In
our setup, these marginals are initialized uniformly. The hyperparameter τ > 0
controls the strength of the regularization. This problem is solved iteratively
and in a differentiable way through successive steps of row and column-wise
normalization, as presented in Cuturi [4].

In a realistic scenario, many of these keypoints will not have a match and
in the worst case scenario, it can happen that all points from both sets are
unmatched. To handle that, we update the matching cost matrix M with an
extra row and column that act as a “gutter” for unmatched points and denote
this new matrix M̃ ∈ RM+1×N+1. We also add an extra element to both row and
column marginals, that is able to “absorb” all all unmatched points in the other
set if needed, forming the augmented marginals r̃ ∈ RM+1

+ and c̃ ∈ RN+1
+ . We
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present the updated cost matrix and marginals below
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where mu is a parameter learned by the network that represents the cost of con-
sidering points as unmatched. With the cost and marginals as input, Sinkhorn
generates the final discrete probability distribution P̃ ∈ RM+1×N+1

+ , represent-
ing soft correspondences. The pose estimation pipeline requires hard correspon-
dences so we retain only pairs of keypoints that mutually assign to each other.

Outlier Rejection. After Sinkhorn matching, the estimated corresponding
pairs may still contain outlier matches. We follow [17] to cast the outlier rejection
as a binary classification task, where we use a classifier to predict a confidence
score to identify whether a match is an inlier or outlier w.r.t. a specific confidence
threshold. As depicted in Fig. 2, given a predicted match referring to a query
keypoint Query Pj and a database keypoint DB Pi, we first collect keypoint
feature (extracted in the previous stage by the encoder and attention module).
We then concatenate the features of its involved keypoints to form a single
feature representation of that match and feed it into a classification network.
The classifier follows the overall architecture of keypoint encoder described in
Fig. 1 and has a final classification layer, i.e., a linear layer and a sigmoid
operation, to output a probability score for an input match which is then used
to filter a less confident match.
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Fig. 2. Outlier rejection through classification. For a match identified by Sinkhorn, we
collect the matched keypoint features that are extracted by the encoder and attention
module. The feature for a query keypoint and a database keypoint is concatenated into
a single feature representing the match. The match classifier then predicts the match
confidence (as a probability score) which can be used later to filter a less confident
match.
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2 Dataset Details

MegaDepth [15]. Our networks are trained on MegaDepth. We first followed
the preprocessing steps from [8] to generate the undistorted reconstructions.
We adopted the test set published by MegaDepth’s authors, composed of 53
sequences. We further split the remaining sequences into training and validation
splits, where the training and validation splits ensure a similar distribution in
terms of sequence sizes between both. Within each data split, we first sample up
to 500 queries per scene. For each query, we collect its k co-visible views that
have at least 35% of visual overlapping, where we drop queries with not enough
co-visible views, i.e., k < 3. The visual overlapping is computed by the number
of commonly seen 3D points divided by the total seen 3D points in the query
view. Notice, in practice, those co-visible views are supposed to be obtained by
image retrieval techniques [1, 19, 26] (as we do for evaluating on the other two
benchmark datasets). However, for training and ablation study, we use ground-
truth information provided by the dataset to guarantee the co-visibility, which
enables stable training and allows us to focus on analysing the geometric-based
matching performance with proper retrieval quality.

In total, our training set contains 18881 queries covering 99 scenes, our vali-
dation set contains 3146 queries covering 16 scenes and our testing set contains
samples 7344 covering 49 scenes.
Cambridge Landmarks [13]. Cambridge Landmarks is an outdoor urban
localization dataset, where each frame is annotated with a camera pose label.
The video footage was captured through a smartphone camera and includes
significant urban clutter from pedestrian and vehicles. The dataset is composed
of five scenes and each scene is composed of multiple sequences. We report results
in four of these scenes – King’s College, Old Hospital, Shop Facade and St. Mary’s
Church – amounting to a total of 29 sequences, that in our case were all used
for testing. To obtain 3D points for our method, we use the publicly available
reconstruction generated per-scene with SuperPoint [6] from the training images
and ground truth poses. This reconstruction was originally made available by
Torsten Sattler and has been used in the recent work PixLoc [21] for localization
evaluation. In addition, we also follow PixLoc to use their released top-10 query-
retrieval pairs computed by NetVLAD [1]. Both reconstruction and retrieval
pairs are hosted here by the authors of PixLoc.
7-Scenes [22]. 7-Scenes is a pose annotated indoor dataset of seven different
scenes, captured with an RGB-D camera. Each scene is composed of multiple
sequences and every frame in each sequence comes with a color image, a depth
image, and the camera pose. The dataset has a total of 46 sequences and we
used 18 for testing, following the original test split. We use the top-10 query-
retrieval pairs computed by DenseVLAD [26] which were made available here by
the authors of PixLoc [21] and used in their experiments. To obtain reference
3D points from database retrievals, we first use a keypoint detector on the color
image to generate an original set of candidate 2D keypoints. We then transform
their coordinates from the color image space to depth image space and only retain
keypoints that have a valid depth measurement, rounding fractional coordinates

https://cvg-data.inf.ethz.ch/pixloc_CVPR2021/Cambridge-Landmarks
https://cvg-data.inf.ethz.ch/pixloc_CVPR2021/7Scenes/7scenes_densevlad_retrieval/
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to the nearest pixel location. Given a 2D image location and the corresponding
depth value, we compute a 3D keypoint in camera space and then transform
it to scene’s frame of reference. For simplicity and enabled by the fact that we
only make use of a sparse subset of points in the original depth image, we don’t
try to establish 3D point correspondences between different co-visible frames
and consider that each depth image observes a set of unique 3D points in each
frame. This process allows us to flexibly generate 3D points using different types
of keypoint. As shown in Section 5.6, we generated two versions of 3D points
that are obtained using SIFT [16] and SuperPoint [5] keypoints to demonstrate
the generalization capability of GoMatch.
Keypoint Detection. To be consistent with the 3D models in MegaDepth
that are reconstructed with SIFT [16] keypoints, we also use a SIFT detector
to extract keypoints from query images. We limit all detectors to extract up
to 1024 keypoints per image, this is to fit our model into a 12GB GPU during
testing. On 7-Scenes, we are able to apply any keypoint detectors, since we have
the depth map to extract the corresponding 3D coordinate. In our experiments,
we used a hand-crafted detector – SIFT – and a state-of-the-art learning-based
detector – SuperPoint [6] – to extract keypoints. For Cambridge Landmarks, we
also used SuperPoint, ensuring consistency with the reconstructed 3D model.
All of the keypoints are pre-computed for both datasets and cached locally.
Ground Truth Correspondences. To train our network with the matching
loss and to compute reprojection-based AUC metric (c.f . Section 4), we need to
generate ground truth (gt) correspondence labels between query keypoints and
3D point cloud keypoints (database keypoints). Given a set of database keypoints
and a query image with its known camera pose, we project the 3D points into
the query image to obtain its 2D projections. Then we perform mutual nearest
neighbour search based on the L2 distance between the query keypoints and the
projected 3D keypoints and consider them as a gt correspondence if the distance
is below a threshold of 0.001 in normalized image coordinates, i.e., distance
between bearing vectors.

3 Implementation Details

Architecture. We used 12 residual blocks for keypoint encoders (c.f . Fig. 1)
and 4 residual blocks for match classifier for outlier rejection (c.f . Fig. 2). The
features produced by the keypoint encoders and attention module have dimen-
sion 128. The graph neural network used for self attention establishes a KNN
graph with the closest 10 neighbors, in coordinate space. We use 4 parallel heads
for multi-head cross attention. In total, GoMatch has approximately 1.3M weight
parameters.
Training. We train all models using the ADAM [14] optimizer at the learning
rate of 0.001. The batch sizes are chosen to allow each model to be trained on a
single 48GB NVIDIA Quadro RTX 8000 GPU and vary from 16 to 64 batches
(depending on the model size), e.g ., we use batch size 16 for GoMatch. We
train each model for 50 epochs and determine the best checkpoint based on the
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lowest loss value on the validation set. GoMatch requires approximately 20 hours
training time for 50 epochs.
Outlier Rate Control. The keypoints involved in gt matches are the inlier
keypoints and the remaining keypoints are considered outliers. For training sta-
bility, we constrain the keypoint outlier rate to 0.5. Besides our ablation studies
shown in Figure 4 (in the main paper), no keypoint outlier control is applied
during testing.
Keypoint Number Control. By default, we limit query and database key-
points to a maximum number of 1024, to ensure the testing can be performed on
a 12GB GPU. For query keypoints, we enforce the detector to extract at most
1024 keypoints. For database keypoints, we use up to its first 1024 keypoints
if exceeding that number. During training, we ignore training samples where
the number of query keypoints or database keypoints is less than 100. During
inference, we consider a sample as failed if the number of query keypoints or
database keypoints is less than 10.
Inference. Given a query image and a 3D point cloud, we first extract 2D
keypoints from the query using detectors such as SIFT [16] or SuperPoint [6]
(in practice, we load pre-computed keypoints). Next, we identify k retrieval/co-
visible reference views to compute 3D points that are visible to query. Correspon-
dences are established between the query keypoints and co-visible 3D points (in
bearing vectors) by GoMatch. We run the Sinkhorn algorithm for a maximum
of 20 iterations to obtain an initial set of match estimates. Then we remove
all matches with classification scores below a threshold 0.5 to filter uncertain
matches and finally estimate camera pose of the query.
Pose Estimation. We use the OpenCV [2] library to estimate pose from a
set of query to point cloud keypoint correspondences. We first identify an initial
set of inlier matches using a minimal P3P [11] solver paired with RANSAC [10]
and then estimate the final pose through a Levenberg-Marquardt optimization
step acting only on the inliers. We allow RANSAC to perform 1000 iterations
with the admissible maximum inlier error threshold for the bearing vectors set
to 1e-3.

4 Reprojection Error AUC

For MegaDepth, we reported the mean reprojection error area under the cum-
mulative curve (AUC) with thresholds at 1, 5 and 10 pixels. This metric was
inspired by the pose error area under the cummulative curve used in [20, 21, 24].
However, in our case, as the scale unit of MegaDepth is undetermined and might
be inconsistent across scenes, we have to compute the AUC based on reprojec-
tion error instead of pose errors to ensure consistency. To compute our proposed
AUC metric, for each query, we project the inlier 3D points, i.e., the 3D points
involved in the ground-truth (gt) correspondences, onto the query image using
the gt pose and the estimated pose. The mean reprojection errors are computed
as the mean pixel distances between the gt projections and estimated projec-
tions of the 3D points. Then we compute the area under the cummulative recall
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Fig. 3. A hypothetical example of how the mean reprojection error AUC is computed
for the thresholds at 1/5/10 pixels. After sorting the mean reprojection error and
establishing a bijective relation with the recall, one computes the area under the curve
using the trapezoidal rule of integration. Despite not visible, the AUC in cyan for the
10 pixel threshold spans from 0 to 10, and similar to the pink area for the 5 pixels
threshold.

curve up to a specific pixel error threshold as illustrated in Fig. 3. Finally, we
normalize the area by the error threshold to keep the metric score ∈ [0, 100].

As described in Section 2, the gt correspondences are computed with a 0.001
normalized threshold, which means the bearing vectors obtained by projecting
the inlier 3D points using the gt camera pose have up to a 0.001 distance to
the bearing vectors of our labelled gt 2D keypoints. This tolerance is reflected
in pixel space, resulting in relatively low AUC scores at 1 pixel threshold (as
shown in the main paper Table 1) even using our Oracle matcher. However, this
does not affect the function of the AUC metric that is to reveal the performance
gap between different methods. We showed that the AUC metric yields similar
conclusion as the pose error quantile metric used by BPnPNet [3].

5 Practical Challenges in Large-scale Localization

As introduced in the main paper, the primary motivation of our work is to present
a new localization framework that does not suffer from: (i) storage requirements,
(ii) descriptor maintenance effort [7], and (iii) privacy concerns [18, 9]. These
are challenges that current structure-based localization methods face, especially
when it comes to scaling-up for city-level scenes. A considerable amount of lit-
erature focuses on making localization methods more accurate, however, the
aforementioned practical challenges are much less explored. To study the stor-
age requirements, we perform a detailed analysis on MegaDepth, a dataset that
resembles a city-level large-scale environment. While MegaDepth is a collection
of landmarks instead of a real city-scale scene, we argue that a city-scale scene
consists of a collection of districts (similar to landmarks). As shown in Table 1 in
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the main paper, the minimal scene data, i.e., scene coordinates (3D) and cam-
era metadata (Cameras), is always required by a structured-based localization to
obtain 2D-3D correspondences, which will take 15.73MB and 3.44GB storage in
total for all Megadepth scenes. This is the only data that geometric-based match-
ing (GM) methods need to store. This is in contrast to visual-based matching
(VM), as they need to store extra visual descriptors that consume 130/1040GB
for SIFT/SuperPoint descriptors. Alternatively, one can extract descriptors on-
the-fly from the retrieved raw images, which requires saving all of the raw im-
ages with an extra storage of 157GB and leading to more computational burden.
Then, after addressing the storage issue, one still needs to consider the privacy
vulnerability raised during descriptor transmission, since large-scale localization
with a 3D map has to be realistically deployed in a server-client mode, where
the server stores 3D scene data required to perform localization. This is another
motivation driving us towards using geometric information only. Finally, as
thoroughly covered in [7], with the continuous advance of local features, upgrad-
ing descriptors is inevitable in the long-term, and it involves either re-building
the map or transforming the descriptors. In contrast, for geometric-based match-
ing, upgrading our localization algorithm does not need an update on the map
side unless the scene has changed, a case in which every map would need to be
updated.
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